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PREFACE

The fundamental objectives of the book remains the same as in the first edition—to present
electromagnetic (EM) concepts in a clearer and more interesting manner than earlier texts.
This objective is achieved in the following ways:

1. To avoid complicating matters by covering EM and mathematical concepts simul-
taneously, vector analysis is covered at the beginning of the text and applied gradually.
This approach avoids breaking in repeatedly with more background on vector analysis,
thereby creating discontinuity in the flow of thought. It also separates mathematical theo-
rems from physical concepts and makes it easier for the student to grasp the generality of
those theorems.

2. Each chapter starts with a brief introduction that serves as a guide to the whole
chapter and also links the chapter to the rest of the book. The introduction helps students
see the need for the chapter and how the chapter relates to the previous chapter. Key points
are emphasized to draw the reader's attention to them. A brief summary of the major con-
cepts is provided toward the end of the chapter.

3. To ensure that students clearly understand important points, key terms are defined
and highlighted. Essential formulas are boxed to help students identify them.

4. Each chapter includes a reasonable amount of examples with solutions. Since the
examples are part of the text, they are clearly explained without asking the reader to fill in
missing steps. Thoroughly worked-out examples give students confidence to solve prob-
lems themselves and to learn to apply concepts, which is an integral part of engineering ed-
ucation. Each illustrative example is followed by a problem in the form of a Practice Exer-
cise, with the answer provided.

5. At the end of each chapter are ten review questions in the form of multiple-choice
objective items. It has been found that open-ended questions, although intended to be
thought provoking, are ignored by most students. Objective review questions with answers
immediately following them provide encouragement for students to do the problems and
gain immediate feedback.

A large number of problems are provided are presented in the same order as the mate-
rial in the main text. Problems of intermediate difficulty are identified by a single asterisk;
the most difficult problems are marked with a double asterisk. Enough problems are pro-

XIII
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vided to allow the instructor to choose some as examples and assign some as homework
problems. Answers to odd-numbered problems are provided in Appendix C.

6. Since most practical applications involve time-varying fields, six chapters are
devoted to such fields. However, static fields are given proper emphasis because they are
special cases of dynamic fields. Ignorance of electrostatics is no longer acceptable because
there are large industries, such as copier and computer peripheral manufacturing, that rely
on a clear understanding of electrostatics.

7. The last chapter covers numerical methods with practical applications and com-
puter programs. This chapter is of paramount importance because most practical problems
are solvable only by using numerical techniques.

8. Over 130 illustrative examples and 400 figures are given in the text. Some addi-
tional learning aids, such as basic mathematical formulas and identities, are included in the
Appendix. Another guide is a special note to students, which follows this preface.

In this edition, a new chapter on modern topics, such as microwaves, electromagnetic
interference and compatibility, and fiber optics, has been added. Also, the Fortran codes in
previous editions have been converted to Matlab codes because it was felt that students are
more familiar with Matlab than with Fortran.

Although this book is intended to be self-explanatory and useful for self-instruction
the personal contact that is always needed in teaching is not forgotten. The actual choice o1
course topics, as well as emphasis, depends on the preference of the individual instructor
For example, the instructor who feels that too much space is devoted to vector analysis o:
static fields may skip some of the materials; however, the students may use them as refer
ence. Also, having covered Chapters 1 to 3, it is possible to explore Chapters 9 to 15. In
structors who disagree with the vector-calculus-first approach may proceed with Chapter;
1 and 2, then skip to Chapter 4 and refer to Chapter 3 as needed. Enough material i
covered for two-semester courses. If the text is to be covered in one semester, some sec
tions may be skipped, explained briefly, or assigned as homework. Sections marked wit!
the dagger sign (t) may be in this category.

A suggested schedule for a four-hour semester coverage is on page xv.
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Suggested Schedule

Chapter Title Approximate Number of Hours

1 Vector Algebra
2 Coordinate Systems and Transformation
3 Vector Calculus

4 Electrostatic Fields

5 Electric Fields in Material Space

6 Electrostatic Boundary-Value Problems

7 Magnetostatic Fields
8 Magnetic Forces, Materials, and Devices
9 Maxwell's Equations

10 Electromagnetic Wave Propagation
11 Transmission Lines
12 Waveguides
13 Antennas

14 Modern Topics
15 Numerical Methods
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2

2

4

6

4

5

4

6

4

5

5

4

5

(3)

(6)
4
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Matthew N. O. Sadiku



A NOTE TO THE STUDENT

Electromagnetic theory is generally regarded by most students as one of the most difficult
courses in physics or the electrical engineering curriculum. But this misconception may be
proved wrong if you take some precautions. From experience, the following ideas are pro-
vided to help you perform to the best of your ability with the aid of this textbook:

1. Pay particular attention to Part I on Vector Analysis, the mathematical tool for this
course. Without a clear understanding of this section, you may have problems with the rest
of the book.

2. Do not attempt to memorize too many formulas. Memorize only the basic ones,
which are usually boxed, and try to derive others from these. Try to understand how for-
mulas are related. Obviously, there is nothing like a general formula for solving all prob-
lems. Each formula has some limitations due to the assumptions made in obtaining it. Be
aware of those assumptions and use the formula accordingly.

3. Try to identify the key words or terms in a given definition or law. Knowing the
meaning of these key words is essential for proper application of the definition or law.

4. Attempt to solve as many problems as you can. Practice is the best way to gain
skill. The best way to understand the formulas and assimilate the material is by solving
problems. It is recommended that you solve at least the problems in the Practice Exercise
immediately following each illustrative example. Sketch a diagram illustrating the
problem before attempting to solve it mathematically. Sketching the diagram not only
makes the problem easier to solve, it also helps you understand the problem by simplifying
and organizing your thinking process. Note that unless otherwise stated, all distances are in
meters. For example (2, - 1 , 5) actually means (2 m, - 1 m, 5 m).

A list of the powers of ten and Greek letters commonly used throughout this text is
provided in the tables located on the inside cover. Important formulas in calculus, vectors,
and complex analysis are provided in Appendix A. Answers to odd-numbered problems are
in Appendix C.

XVI
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VECTOR ALGEBRA

One thing I have learned in a long life: that all our science, measured against
reality, is primitive and childlike—and yet is the most precious thing we have.

—ALBERT EINSTEIN

1.1 INTRODUCTION

Electromagnetics (EM) may be regarded as the study of the interactions between electric
charges at rest and in motion. It entails the analysis, synthesis, physical interpretation, and
application of electric and magnetic fields.

Kkctioniiiniutics (k.Yli is a branch of physics or electrical engineering in which
electric and magnetic phenomena are studied.

EM principles find applications in various allied disciplines such as microwaves, an-
tennas, electric machines, satellite communications, bioelectromagnetics, plasmas, nuclear
research, fiber optics, electromagnetic interference and compatibility, electromechanical
energy conversion, radar meteorology," and remote sensing.1'2 In physical medicine, for
example, EM power, either in the form of shortwaves or microwaves, is used to heat deep
tissues and to stimulate certain physiological responses in order to relieve certain patho-
logical conditions. EM fields are used in induction heaters for melting, forging, annealing,
surface hardening, and soldering operations. Dielectric heating equipment uses shortwaves
to join or seal thin sheets of plastic materials. EM energy offers many new and exciting
possibilities in agriculture. It is used, for example, to change vegetable taste by reducing
acidity.

EM devices include transformers, electric relays, radio/TV, telephone, electric motors,
transmission lines, waveguides, antennas, optical fibers, radars, and lasers. The design of
these devices requires thorough knowledge of the laws and principles of EM.

For numerous applications of electrostatics, see J. M. Crowley, Fundamentals of Applied Electro-
statics. New York: John Wiley & Sons, 1986.
2For other areas of applications of EM, see, for example, D. Teplitz, ed., Electromagnetism: Paths to
Research. New York: Plenum Press, 1982.
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+1.2 A PREVIEW OF THE BOOK

The subject of electromagnetic phenomena in this book can be summarized in Maxwell's
equations:

V-D = pv (1.1)

V • B = 0 (1.2)

• • * • • • *•- V X E = - — ( 1 . 3 )
dt

V X H = J + — (1.4)
dt

where V = the vector differential operator
D = the electric flux density
B = the magnetic flux density
E = the electric field intensity
H = the magnetic field intensity
pv = the volume charge density

and J = the current density.

Maxwell based these equations on previously known results, both experimental and theo-
retical. A quick look at these equations shows that we shall be dealing with vector quanti-
ties. It is consequently logical that we spend some time in Part I examining the mathemat-
ical tools required for this course. The derivation of eqs. (1.1) to (1.4) for time-invariant
conditions and the physical significance of the quantities D, B, E, H, J and pv will be our
aim in Parts II and III. In Part IV, we shall reexamine the equations for time-varying situa-
tions and apply them in our study of practical EM devices.

1.3 SCALARS AND VECTORS

Vector analysis is a mathematical tool with which electromagnetic (EM) concepts are most
conveniently expressed and best comprehended. We must first learn its rules and tech-
niques before we can confidently apply it. Since most students taking this course have little
exposure to vector analysis, considerable attention is given to it in this and the next two
chapters.3 This chapter introduces the basic concepts of vector algebra in Cartesian coordi-
nates only. The next chapter builds on this and extends to other coordinate systems.

A quantity can be either a scalar or a vector.

Indicates sections that may be skipped, explained briefly, or assigned as homework if the text is
covered in one semester.

3The reader who feels no need for review of vector algebra can skip to the next chapter.

I



1.4 UNIT VECTOR

A scalar is a quantity that has only magnitude.

Quantities such as time, mass, distance, temperature, entropy, electric potential, and popu-
lation are scalars.

A vector is a quantity that has both magnitude and direction.

Vector quantities include velocity, force, displacement, and electric field intensity. Another
class of physical quantities is called tensors, of which scalars and vectors are special cases.
For most of the time, we shall be concerned with scalars and vectors.4

To distinguish between a scalar and a vector it is customary to represent a vector by a
letter with an arrow on top of it, such as A and B, or by a letter in boldface type such as A
and B. A scalar is represented simply by a letter—e.g., A, B, U, and V.

EM theory is essentially a study of some particular fields.

A field is a function that specifies a particular quantity everywhere in a region.

If the quantity is scalar (or vector), the field is said to be a scalar (or vector) field. Exam-
ples of scalar fields are temperature distribution in a building, sound intensity in a theater,
electric potential in a region, and refractive index of a stratified medium. The gravitational
force on a body in space and the velocity of raindrops in the atmosphere are examples of
vector fields.

1.4 UNIT VECTOR

A vector A has both magnitude and direction. The magnitude of A is a scalar written as A
or |A|. A unit vector aA along A is defined as a vector whose magnitude is unity (i.e., 1) and
its direction is along A, that is,

(1-5)

(1.6)

(1.7)

Note that |aA| = 1. Thus we may write A as

A = AaA

which completely specifies A in terms of its magnitude A and its direction aA.
A vector A in Cartesian (or rectangular) coordinates may be represented as

(Ax, Ay, Az) or Ayay + Azaz

4For an elementary treatment of tensors, see, for example, A. I. Borisenko and I. E. Tarapor, Vector
and Tensor Analysis with Application. Englewood Cliffs, NJ: Prentice-Hall, 1968.
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(a) (b)

Figure 1.1 (a) Unit vectors ax, ay, and az, (b) components of A along
ax, â ,, and az.

where Ax, A r and Az are called the components of A in the x, y, and z directions respec-
tively; ax, aT and az are unit vectors in the x, y, and z directions, respectively. For example,
ax is a dimensionless vector of magnitude one in the direction of the increase of the x-axis.
The unit vectors ax, a,,, and az are illustrated in Figure 1.1 (a), and the components of A along
the coordinate axes are shown in Figure 1.1 (b). The magnitude of vector A is given by

A = VA2
X + Al + A\

and the unit vector along A is given by

Axax Azaz

VAT+AT+AI

(1-8)

(1.9)

1.5 VECTOR ADDITION AND SUBTRACTION

Two vectors A and B can be added together to give another vector C; that is,

C = A + B (1.10)

The vector addition is carried out component by component. Thus, if A = (Ax, Ay, Az) and
B = (Bx,By,Bz).

C = (Ax + Bx)ax + {Ay + By)ay + (Az + Bz)az

Vector subtraction is similarly carried out as

D = A - B = A + (-B)
= (Ax - Bx)ax + (Ay - By)ay + (Az - Bz)az

(l.H)

(1.12)



B

(a)

1.6 POSITION AND DISTANCE VECTORS

(b)

Figure 1.2 Vector addition C = A + B: (a) parallelogram rule,
(b) head-to-tail rule.

Figure 1.3 Vector subtraction D = A -
B: (a) parallelogram rule, (b) head-to-tail

fA rule.

(a) (b)

Graphically, vector addition and subtraction are obtained by either the parallelogram rule
or the head-to-tail rule as portrayed in Figures 1.2 and 1.3, respectively.

The three basic laws of algebra obeyed by any giveny vectors A, B, and C, are sum-
marized as follows:

Law Addition Multiplication

Commutative A + B = B + A kA = Ak

Associative A + (B + C) = (A + B) + C k(( A) = (k()A

Distributive k(A + B) = kA + ZfcB

where k and € are scalars. Multiplication of a vector with another vector will be discussed
in Section 1.7.

1.6 POSITION AND DISTANCE VECTORS

A point P in Cartesian coordinates may be represented by (x, y, z).

The position vector r,. (or radius vector) of point P is as (he directed silancc from
the origin () lo P: i.e..

r P = OP = xax + yay (1.13)
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4,5)
/ I

- - / I

111 I A I

Figure 1.4 Illustration of position vector rP

3a, + 4a., + 5az.

Figure 1.5 Distance vector rPG.

The position vector of point P is useful in defining its position in space. Point (3, 4, 5), for
example, and its position vector 3ax + 4a>( + 5az are shown in Figure 1.4.

The distance vector is ihc displacement from one point to another.

If two points P and Q are given by (xP, yP, zp) and (xe, yQ, ZQ), the distance vector (or
separation vector) is the displacement from P to Q as shown in Figure 1.5; that is,

rPQ ~ rQ rP

= (xQ - xP)ax + (yQ - yP)&y + (zQ - zP)az
(1.14)

The difference between a point P and a vector A should be noted. Though both P and
A may be represented in the same manner as (x, y, z) and (Ax, Ay, Az), respectively, the point
P is not a vector; only its position vector i> is a vector. Vector A may depend on point P,
however. For example, if A = 2xya,t + y2ay - xz2az and P is (2, -1 ,4 ) , then A at P
would be — 4a^ + ay — 32a;,. A vector field is said to be constant or uniform if it does not
depend on space variables x, y, and z. For example, vector B = 3a^ — 2â , + 10az is a
uniform vector while vector A = 2xyax + y2ay — xz2az is not uniform because B is the
same everywhere whereas A varies from point to point.

EXAMPLE 1.1
If A = 10ax - 4ay + 6azandB = 2&x + av, find: (a) the component of A along ay, (b) the
magnitude of 3A - B, (c) a unit vector along A + 2B.
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Solution:

(a) The component of A along ay is Ay = -4 .

(b) 3A - B = 3(10, -4 , 6) - (2, 1, 0)
= (30,-12,18) - (2, 1,0)
= (28,-13,18)

Hence

|3A - B| = V282 + (-13)2 + (18)2 = VT277
= 35.74

(c) Let C = A + 2B = (10, -4 , 6) + (4, 2, 0) = (14, - 2 , 6).

A unit vector along C is

(14,-2,6)

or

Vl4 2 + (-2)2 + 62

ac = 0.91 \3ax - 0.1302a,, + 0.3906az

Note that |ac| = 1 as expected.

PRACTICE EXERCISE 1.1

Given vectors A = ax + 3a. and B = 5ax + 2av - 6a,, determine

(a) |A + B

(b) 5A - B

(c) The component of A along av

(d) A unit vector parallel to 3A 4- B

Answer: (a) 7, (b) (0, - 2 , 21), (c) 0, (d) ± (0.9117, 0.2279, 0.3419).

Points P and Q are located at (0, 2, 4) and ( - 3 , 1, 5). Calculate

(a) The position vector P

(b) The distance vector from P to Q

(c) The distance between P and Q

(d) A vector parallel to PQ with magntude of 10
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Solution:

(a) i> = 0ax + 2av + 4az = 2a, + 4az

(b) rPQ = rQ - i> = ( - 3 , 1, 5) - (0, 2, 4) = ( - 3 , - 1 , 1)

or = - 3 a x - ay + az

(c) Since rPQ is the distance vector from P to Q, the distance between P and Q is the mag-
nitude of this vector; that is,

Alternatively:

d = |i>e| = V 9 + 1 + 1 = 3.317

d= V(xQ - xPf + (yQ- yPf + (zQ - zPf
= V 9 + T + T = 3.317

(d) Let the required vector be A, then

A = AaA

where A = 10 is the magnitude of A. Since A is parallel to PQ, it must have the same unit
vector as rPQ or rQP. Hence,

rPQ

and

( -3 , -1 ,1)
3.317

A = ± I 0 ( 3 ' * ' — - = ±(-9.045a^ - 3.015a, + 3.015az)

PRACTICE EXERCISE 1.2

Given points P(l, - 3 , 5), Q(2, 4, 6), and R(0, 3, 8), find: (a) the position vectors of
P and R, (b) the distance vector rQR, (c) the distance between Q and R,

Answer: (a) ax — 3ay + 5az, 3a* + 33,, (b) —2a* - ay + 2az.

EXAMPLE 1.3
A river flows southeast at 10 km/hr and a boat flows upon it with its bow pointed in the di-
rection of travel. A man walks upon the deck at 2 km/hr in a direction to the right and per-
pendicular to the direction of the boat's movement. Find the velocity of the man with
respect to the earth.

Solution:

Consider Figure 1.6 as illustrating the problem. The velocity of the boat is

ub = 10(cos 45° ax - sin 45° a,)
= 7.071a^ - 7.071a, km/hr
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Figure 1.6 For Example 1.3.

The velocity of the man with respect to the boat (relative velocity) is

um = 2(-cos 45° ax - sin 45° a,,)
= -1.414a, - 1.414a,, km/hr

Thus the absolute velocity of the man is

uab = um + uh = 5.657a., - 8.485ay

| u j = 10.2/-56.3"

that is, 10.2 km/hr at 56.3° south of east.

PRACTICE EXERCISE 1.3

An airplane has a ground speed of 350 km/hr in the direction due west. If there is a
wind blowing northwest at 40 km/hr, calculate the true air speed and heading of the
airplane.

Answer: 379.3 km/hr, 4.275° north of west.

1.7 VECTOR MULTIPLICATION

When two vectors A and B are multiplied, the result is either a scalar or a vector depend-
ing on how they are multiplied. Thus there are two types of vector multiplication:

1. Scalar (or dot) product: A • B
2. Vector (or cross) product: A X B
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Multiplication of three vectors A, B, and C can result in either:

3. Scalar triple product: A • (B X C)

or

4. Vector triple product: A X (B X C)

A. Dot Product

The dot product of two vectors A and B, wrilten as A • B. is defined geometrically
as the product of the magnitudes of A and B and the cosine of the angle between
them.

Thus:

A • B = AB cos I (1.15)

where 6AB is the smaller angle between A and B. The result of A • B is called either the
scalar product because it is scalar, or the dot product due to the dot sign. If A =
(Ax, Ay, Az) and B = (Bx, By, Bz), then

A • B = AXBX + AyBy + AZBZ (1.16)

which is obtained by multiplying A and B component by component. Two vectors A and B
are said to be orthogonal (or perpendicular) with each other if A • B = 0.

Note that dot product obeys the following:

(i) Commutative law:

A - B = B - A (1.17)

(ii) Distributive law:

A (B + C) = A B + A C (1.18)

A - A = |A|2 = A2 (1.19)

(iii)
Also note that

ax • ay = ay • az = az • ax = 0 (1.20a)

ax • ax = ay • ay = a z • a z = 1 (1.20b)

It is easy to prove the identities in eqs. (1.17) to (1.20) by applying eq. (1.15) or (1.16).
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B. Cross Product

The cross product of two vectors A ;ind B. written as A X B. is a vector quantity
whose magnitude is ihe area of the parallclopiped formed by A and It (see Figure
1.7) and is in the direction of advance of a right-handed screw as A is turned into B.

Thus

A X B = AB sin 6ABan (1.21)

where an is a unit vector normal to the plane containing A and B. The direction of an is
taken as the direction of the right thumb when the fingers of the right hand rotate from A to
B as shown in Figure 1.8(a). Alternatively, the direction of an is taken as that of the
advance of a right-handed screw as A is turned into B as shown in Figure 1.8(b).

The vector multiplication of eq. (1.21) is called cross product due to the cross sign; it
is also called vector product because the result is a vector. If A = (Ax

B = (Bx, By, Bz) then

A X B =
ax

Ax

Bx

av

Ay

By

az

K
Bz

- AzBy)ax + (AZBX - AxBz)ay + (AxBy - AyBx)az

Ay, Az) and

(1.22a)

(1.22b)

which is obtained by "crossing" terms in cyclic permutation, hence the name cross
product.

Figure 1.7 The cross product of A and B is a vector with magnitude equal to the
area of the parallelogram and direction as indicated.
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A X B AX B

* - A

(a) (b)

Figure 1.8 Direction of A X B and an using (a) right-hand rule, (b) right-handed
screw rule.

Note that the cross product has the following basic properties:

(i) It is not commutative:

It is anticommutative:

A X B ^ B X A

A X B = - B X A

(ii) It is not associative:

A X (B X C) =h (A X B) X C

(iii) It is distributive:

(iv)

A X ( B + C) = A X B + A X C

A X A = 0

Also note that

ax X ay = az

a, X az = ax

az X ax = ay

(1.23a)

(1.23b)

(1.24)

(1.25)

(1.26)

(1.27)

which are obtained in cyclic permutation and illustrated in Figure 1.9. The identities in eqs.
(1.25) to (1.27) are easily verified using eq. (1.21) or (1.22). It should be noted that in ob-
taining an, we have used the right-hand or right-handed screw rule because we want to be
consistent with our coordinate system illustrated in Figure 1.1, which is right-handed. A
right-handed coordinate system is one in which the right-hand rule is satisfied: that is,
ax X ay = az is obeyed. In a left-handed system, we follow the left-hand or left-handed
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(a) (b)

Figure 1.9 Cross product using cyclic permutation: (a) moving
clockwise leads to positive results: (b) moving counterclockwise
leads to negative results.

screw rule and ax X ay = -az is satisfied. Throughout this book, we shall stick to right-
handed coordinate systems.

Just as multiplication of two vectors gives a scalar or vector result, multiplication of
three vectors A, B, and C gives a scalar or vector result depending on how the vectors are
multiplied. Thus we have scalar or vector triple product.

C. Scalar Triple Product

Given three vectors A, B, and C, we define the scalar triple product as

A • (B X C) = B • (C X A) = C • (A X B) (1.28)

obtained in cyclic permutation. If A = (Ax, Ay, Az), B = (Bx, By, Bz), and C = (Cx, Cy, Cz),
then A • (B X C) is the volume of a parallelepiped having A, B, and C as edges and is
easily obtained by finding the determinant of the 3 X 3 matrix formed by A, B, and C;
that is,

A • (B X C) = Bx By Bz

Cy C,
(1.29)

Since the result of this vector multiplication is scalar, eq. (1.28) or (1.29) is called the
scalar triple product.

D. Vector Triple Product

For vectors A, B, and C, we define the vector tiple product as

A X (B X C) = B(A • C) - C(A • B) (1.30)
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obtained using the "bac-cab" rule. It should be noted that

but

(A • B)C # A(B • C)

(A • B)C = C(A • B).

(1.31)

(1.32)

1.8 COMPONENTS OF A VECTOR

A direct application of vector product is its use in determining the projection (or compo-
nent) of a vector in a given direction. The projection can be scalar or vector. Given a vector
A, we define the scalar component AB of A along vector B as [see Figure 1.10(a)]

AB = A cos 6AB = |A| |aB| cos 6AB

or

AR = A • afl (1.33)

The vector component AB of A along B is simply the scalar component in eq. (1.33) multi-
plied by a unit vector along B; that is,

AB = ABaB = (A (1-34)

Both the scalar and vector components of A are illustrated in Figure 1.10. Notice from
Figure 1.10(b) that the vector can be resolved into two orthogonal components: one com-
ponent AB parallel to B, another (A - As) perpendicular to B. In fact, our Cartesian repre-
sentation of a vector is essentially resolving the vector into three mutually orthogonal com-
ponents as in Figure l.l(b).

We have considered addition, subtraction, and multiplication of vectors. However, di-
vision of vectors A/B has not been considered because it is undefined except when A and
B are parallel so that A = kB, where k is a constant. Differentiation and integration of
vectors will be considered in Chapter 3.

-»- B • - B

(a)

Figure 1.10 Components of A along B: (a) scalar component AB, (b) vector
component AB.
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Given vectors A = 3ax + 4ay + az and B = 2ay - 5az, find the angle between A and B.

Solution:

The angle dAB can be found by using either dot product or cross product.

A • B = (3, 4, 1) • (0, 2, - 5 )
= 0 + 8 - 5 = 3

Alternatively:

A| = V3 2 + 42 + I2 = V26

COS BAR =

B| = VO2 + 22 + (-5)2 = V29

A B 3

IAIIBI V(26)(29)
= 0.1092

9AR = cos"1 0.1092 = 83.73°

A X B = 3 4
az

1
0 2 - 5

= ( -20 - 2)ax + (0 + 15)ay + (6 - 0)az

= (-22,15,6)

|A X B + 152 + 62 = V745

sin 6AB =
A X Bj V745

/ (26X29)
= 0.994

dAB = cos"1 0.994 = 83.73°

PRACTICE EXERCISE 1.4

If A = ax + 3az and B = 5a* + 2ay - 6a., find 6AB.

Answer: 120.6°.

EXAMPLE 1.5
Three field quantities are given by

P = 2ax - a,

Q = 2a^ - ay + 2az

R = 2ax - 33 ,̂ + az

Determine

(a) (P + Q) X (P - Q)

(b) Q R X P
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(c) P • Q X R

(d) sin0eR

(e) P X (Q X R)

(f) A unit vector perpendicular to both Q and R

(g) The component of P along Q

Solution:

(a) (P + Q) X (P - Q) = P X (P - Q) + Q X (P - Q)
= P X P - P X Q + Q X P - Q X Q
= O + Q X P + Q X P - O
= 2Q X P

= 2
ay a,

2 - 1 2
2 0 - 1

= 2(1 - 0) ax + 2(4 + 2) ay + 2(0 + 2) az

= 2ar + 12av 4a,

(b) The only way Q • R X P makes sense is

Q (RX P) = (2 , -1 ,2 ) 2
2

ay
- 3

0

a
1

- 1

= (2, - 1 , 2 ) -(3, 4, 6)
= 6 - 4 + 12 = 14.

Alternatively:

Q (R X P) =
2 - 1 2
2 - 3 1
2 0 - 1

To find the determinant of a 3 X 3 matrix, we repeat the first two rows and cross multiply;
when the cross multiplication is from right to left, the result should be negated as shown
below. This technique of finding a determinant applies only to a 3 X 3 matrix. Hence

Q (RXP)= _

• +

= +6+0-2+12-0-2
= 14

as obtained before.
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(c) From eq. (1.28)

or

(d)

P (Q X R) = Q (R X P) = 14

P (Q X R) = (2, 0, -1 ) • (5, 2, -4 )
= 10 + 0 + 4
= 14

| Q X R

IQIIRI 1(2,

/45 V5
3V14 V14

= 0.5976

(e) P X (Q X R) = (2, 0, -1 ) X (5, 2, -4 )
= (2, 3, 4)

Alternatively, using the bac-cab rule,

P X (Q X R) = Q(P R) - R(P Q)
= (2, - 1 , 2)(4 + 0 - 1) - (2, - 3 , 1)(4 + 0 - 2 )
= (2, 3, 4)

(f) A unit vector perpendicular to both Q and R is given by

± Q X R ±(5,2, - 4 )
3 |QXR|

= ± (0.745, 0.298, -0 .596)

Note that |a| = l , a - Q = 0 = a - R . Any of these can be used to check a.

(g) The component of P along Q is

cos 6PQaQPQ =

= (P • aG)ae =

(4

(P Q)Q
IQI2

= 2
9( 4 + 1 + 4 )

= 0.4444ar - 0.2222av + 0.4444a7.

PRACTICE EXERCISE 1.5

Let E = 3av + 4a, and F = 4a^ - 10av + 5a r

(a) Find the component of E along F.

(b) Determine a unit vector perpendicular to both E and F.

Answer: (a) (-0.2837, 0.7092, -0.3546), (b) ± (0.9398, 0.2734, -0.205).
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FXAMPIF 1 f. Derive the cosine formula

and the sine formula

a2 = b2 + c2 - 2bc cos A

sin A sin B sin C

a b c

using dot product and cross product, respectively.

Solution:

Consider a triangle as shown in Figure 1.11. From the figure, we notice that

a + b + c = 0

that is,

b + c = - a

Hence,

a2 = a • a = (b + c) • (b + c)
= b b + c c + 2 b c

a2 = b2 + c2 - 2bc cos A

where A is the angle between b and c.
The area of a triangle is half of the product of its height and base. Hence,

l-a X b| = l-b X c| = l-c X al

ab sin C = be sin A = ca sin B

Dividing through by abc gives

sin A sin B sin C

Figure 1.11 For Example 1.6.
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PRACTICE EXERCISE 1.6

Show that vectors a = (4, 0, -1 ) , b = (1,3, 4), and c = ( -5 , - 3 , - 3 ) form the
sides of a triangle. Is this a right angle triangle? Calculate the area of the triangle.

Answer: Yes, 10.5.

EXAMPLE 1.7 Show that points Ptf, 2, -4 ) , P2{\, 1, 2), and P 3 ( -3 , 0, 8) all lie on a straight line. Deter-
mine the shortest distance between the line and point P4(3, - 1 , 0).

Solution:

The distance vector fptp2 is given by

Similarly,

rPJP2 — rp2

Tp,P3 = Tp3-1

rPtP4
 = rP4 - •

rP P X rP

rP,= (1,1
= (-4

>, = ("3,
= (-8,

>, = (3, -
= (-2,

p =

=

a*
- 4
- 8

(0,0,

,2)
, - 1

0,8)
- 2 ,

1,0)
- 3 ,

a,
- 1

2

0)

- ( 5
6)

, 2, -4)

- (5, 2, -4)
12)

- (5, 2, -4)

4)

az

6
12

showing that the angle between r>iP2 and rPiPi is zero (sin 6 = 0). This implies that Ph P2,
and P3 lie on a straight line.

Alternatively, the vector equation of the straight line is easily determined from Figure
1.12(a). For any point P on the line joining P, and P2

where X is a constant. Hence the position vector r> of the point P must satisfy

i> - i>, = M*p2 ~ rP)

that is,

i> = i>, + \(i>2 - i>,)

= (5, 2, -4 ) - X(4, 1, -6 )

i> = (5 - 4X, 2 - X, - 4 + 6X)

This is the vector equation of the straight line joining Px and P2- If P3 is on this line, the po-
sition vector of F3 must satisfy the equation; r3 does satisfy the equation when X = 2.
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(a)

Figure 1.12 For Example 1.7.

The shortest distance between the line and point P4(3, - 1 , 0) is the perpendicular dis-
tance from the point to the line. From Figure 1.12(b), it is clear that

d = rPiPt sin 6 = |rP|p4 X aP]p2

312
= 2.426

53

Any point on the line may be used as a reference point. Thus, instead of using P\ as a ref-
erence point, we could use P3 so that

d= sin

PRACTICE EXERCISE 1.7

If P, is (1,2, - 3 ) and P2 is ( -4 , 0,5), find

(a) The distance P]P2

(b) The vector equation of the line P]P2

(c) The shortest distance between the line P\P2 and point P3(7, - 1 ,2 )

Answer: (a) 9.644, (b) (1 - 5X)ax + 2(1 - X) av + (8X - 3) â , (c) 8.2.

SUMMARY 1. A field is a function that specifies a quantity in space. For example, A(x, y, z) is a vector
field whereas V(x, y, z) is a scalar field.

2. A vector A is uniquely specified by its magnitude and a unit vector along it, that is,
A = AaA.
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3. Multiplying two vectors A and B results in either a scalar A • B = AB cos 6AB or a
vector A X B = AB sin 9ABan. Multiplying three vectors A, B, and C yields a scalar
A • (B X C) or a vector A X (B X C).

4. The scalar projection (or component) of vector A onto B is AB = A • aB whereas vector
projection of A onto B is AB = ABaB.

1.1 Identify which of the following quantities is not a vector: (a) force, (b) momentum, (c) ac-
celeration, (d) work, (e) weight.

1.2 Which of the following is not a scalar field?

(a) Displacement of a mosquito in space

(b) Light intensity in a drawing room

(c) Temperature distribution in your classroom

(d) Atmospheric pressure in a given region

(e) Humidity of a city

1.3 The rectangular coordinate systems shown in Figure 1.13 are right-handed except:

1.4 Which of these is correct?

(a) A X A = |A|2

( b ) A X B + B X A = 0

(c) A • B • C = B • C • A

(d) axay = az

(e) ak = ax - ay

where ak is a unit vector.

(a)

-*• y

(d) (e)

Figure 1.13 For Review Question 1.3.

(c)

y

(f)
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1.5 Which of the following identities is not valid?

(a) a(b + c) = ab + be
(b) a X (b + c) = a X b + a X c
(c) a • b = b • a
(d) c • (a X b) = - b • (a X c)

(e) aA • aB = cos dAB

1.6 Which of the following statements are meaningless?

(a) A • B + 2A = 0
(b) A • B + 5 = 2A

(c) A(A + B) + 2 = 0

(d) A • A + B • B = 0

1.7 Let F = 2ax - 63^ + 10a2 and G = ax + Gyay + 5az. If F and G have the same unit
vector, Gy is

(a) 6 (d) 0

(b) - 3 (e) 6

1.8 Given that A = ax + aay + az and B = <xax + ay + az, if A and B are normal to each
other, a is

(a) - 2 (d) 1
(b) -1/2 (e) 2

(c) 0

1.9 The component of 6ax + 2a}, — 3az along 3ax — 4a>( is

(a) -12ax - 9ay - 3az

(b) 30a, - 40a^
(c) 10/7
(d) 2

(e) 10

1.10 Given A = — 6ax + 3ay + 2az, the projection of A along ay is

(a) - 1 2
(b) - 4

(c) 3
(d) 7

(e) 12

Answers: Lid, 1.2a, 1.3b,e, 1.4b, 1.5a, 1.6b,c, 1.7b, 1.8b, 1.9d, 1.10c.
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1.1 Find the unit vector along the line joining point (2, 4, 4) to point ( - 3 , 2, 2).

25

1.2 Let A = 2a^ + 53 ,̂ - 3az, B = 3a^ - 4ay, and C = ax + ay + az. (a) Determine
A + 2B. (b) Calculate |A - 5C| . (c) For what values of k is |kB| = 2? (d) Find
(A X B)/(A • B).

1.3 If

A = ay - 3az

C = 3ax 5av 7az

determine:

(a) A - 2B + C

(b) C - 4(A + B)

2A - 3B

(d) A • C - |B|2

(e) |B X (|A + | C )

1.4 If the position vectors of points T and S are 3a^ — 23 ,̂ + az and Aax 4- 6ay + 2ax, re-
spectively, find: (a) the coordinates of T and S, (b) the distance vector from T to S, (c) the
distance between T and S.

1.5 If

Aay + 6az

A = 5ax

B = -*x

C = 8ax + 2a,

find the values of a and /3 such that aA + 0B + C is parallel to the y-axis.

1.6 Given vectors

A = aax + ay + Aaz

o — ^a x ~T~ p3y O3Z

C = 5ax - 2ay + 7a,

determine a, /3, and 7 such that the vectors are mutually orthogonal.

1.7 (a) Show that

(A • B)2 + (A X B)2 = (AB)2

az X ax

a, • aY X a.' a, =
a^ X ay

a* • ay X az
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1.8 Given that

P = 2ax - Ay - 2az

Q = 4a_, + 3ay + 2a2

C = ~ax + ay + 2az

find: (a) |P + Q - R|, (b) P • Q X R, (c) Q X P • R, (d) (P X Q) • (Q X R),
(e) (P X Q) X (Q X R), (f) cos 6PR, (g) sin 6PQ.

1.9 Given vectors T = 2ax — 6ay + 3az and 8 = 3̂ -4- 2ay + az, find: (a) the scalar projec-
tion of T on S, (b) the vector projection of S on T, (c) the smaller angle between T and S.

1.10 If A = — ax + 6ay + 5az andB = ax + 2ay + 3ax, find: (a) the scalar projections of A
on B, (b) the vector projection of B on A, (c) the unit vector perpendicular to the plane
containing A and B.

1.11 Calculate the angles that vector H = 3ax + 5ay - 8az makes with the x-,y-, and z-axes.

1.12 Find the triple scalar product of P, Q, and R given that

P = 2ax - ay + az

Q = â  + ay + az

and

R = 2a, + 3az

1.13 Simplify the following expressions:

(a) A X (A X B)

(b) A X [A X (A X B)]

1.14 Show that the dot and cross in the triple scalar product may be interchanged, i.e.,
A • (B X C) = (A X B) • C.

1.15 Points Pi(l, 2, 3), P2(~5, 2, 0), and P3(2, 7, -3 ) form a triangle in space. Calculate the
area of the triangle.

1.16 The vertices of a triangle are located at (4, 1, -3 ) , ( -2 , 5, 4), and (0,1,6). Find the three
angles of the triangle.

1.17 Points P, Q, and R are located at ( - 1 , 4, 8), ( 2 , - 1 , 3), and ( - 1 , 2, 3), respectively.
Determine: (a) the distance between P and Q, (b) the distance vector from P to R, (c) the
angle between QP and QR, (d) the area of triangle PQR, (e) the perimeter of triangle PQR.

*1.18 If r is the position vector of the point (x, y, z) and A is a constant vector, show that:

(a) (r - A) • A = 0 is the equation of a constant plane

(b) (r — A) • r = 0 is the equation of a sphere

*Single asterisks indicate problems of intermediate difficulty.
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Figure 1.14 For Problem 1.20.
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(c) Also show that the result of part (a) is of the form Ax + By + Cz + D = 0 where
D = -(A2 + B2 + C2), and that of part (b) is of the form x2 + y2 + z2 = r2.

*1.19 (a) Prove that P = cos 0i&x + sin 6xay and Q = cos 82ax + sin 02ay are unit vectors in
the xy-plane respectively making angles &i and 82 with the x-axis.

(b) By means of dot product, obtain the formula for cos(02 — #i)- By similarly formulat-
ing P and Q, obtain the formula for cos(02 + #i).

(c) If 6 is the angle between P and Q, find —|P — Q| in terms of 6.

1.20 Consider a rigid body rotating with a constant angular velocity w radians per second about
a fixed axis through O as in Figure 1.14. Let r be the distance vector from O to P, the
position of a particle in the body. The velocity u of the body at P is |u| = dw=
r sin 6 |co or u = <o X r. If the rigid body is rotating with 3 radians per second about

an axis parallel to ax — 2ay + 2az and passing through point (2, —3, 1), determine the
velocity of the body at (1, 3,4).

1.21 Given A = x2yax — yzay + yz2az, determine:

(a) The magnitude of A at point T(2, —1,3)

(b) The distance vector from T to 5 if S is 5.6 units away from T and in the same direction
as A at T

(c) The position vector of S

1.22 E and F are vector fields given by E = 2xa_,. + ay + yzaz and F = xyax — y2ay+
xyzaz. Determine:

(a) | E | a t ( l , 2 , 3)

(b) The component of E along F at (1, 2, 3)

(c) A vector perpendicular to both E and F at (0, 1 , - 3 ) whose magnitude is unity



Chapter 2

COORDINATE SYSTEMS
AND TRANSFORMATION

Education makes a people easy to lead, but difficult to drive; easy to govern but
impossible to enslave.

—HENRY P. BROUGHAM

2.1 INTRODUCTION

In general, the physical quantities we shall be dealing with in EM are functions of space
and time. In order to describe the spatial variations of the quantities, we must be able to
define all points uniquely in space in a suitable manner. This requires using an appropriate
coordinate system.

A point or vector can be represented in any curvilinear coordinate system, which may
be orthogonal or nonorthogonal.

An orthogonal system is one in which the coordinates arc mutually perpendicular.

Nonorthogonal systems are hard to work with and they are of little or no practical use.
Examples of orthogonal coordinate systems include the Cartesian (or rectangular), the cir-
cular cylindrical, the spherical, the elliptic cylindrical, the parabolic cylindrical, the
conical, the prolate spheroidal, the oblate spheroidal, and the ellipsoidal.1 A considerable
amount of work and time may be saved by choosing a coordinate system that best fits a
given problem. A hard problem in one coordi nate system may turn out to be easy in
another system.

In this text, we shall restrict ourselves to the three best-known coordinate systems: the
Cartesian, the circular cylindrical, and the spherical. Although we have considered the
Cartesian system in Chapter 1, we shall consider it in detail in this chapter. We should bear
in mind that the concepts covered in Chapter 1 and demonstrated in Cartesian coordinates
are equally applicable to other systems of coordinates. For example, the procedure for

'For an introductory treatment of these coordinate systems, see M. R. Spigel, Mathematical Hand-
book of Formulas and Tables. New York: McGraw-Hill, 1968, pp. 124-130.

28
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finding dot or cross product of two vectors in a cylindrical system is the same as that used
in the Cartesian system in Chapter 1.

Sometimes, it is necessary to transform points and vectors from one coordinate system
to another. The techniques for doing this will be presented and illustrated with examples.

2.2 CARTESIAN COORDINATES (X, Y, Z)

As mentioned in Chapter 1, a point P can be represented as (x, y, z) as illustrated in
Figure 1.1. The ranges of the coordinate variables x, y, and z are

-00 < X < 00

-00<-y<o> (2.1)

— 00 < I < 00

A vector A in Cartesian (otherwise known as rectangular) coordinates can be written as

(Ax,Ay,AJ or A A + Ayay + Azaz (2.2)

where ax, ay, and az are unit vectors along the x-, y-, and z-directions as shown in
Figure 1.1.

2.3 CIRCULAR CYLINDRICAL COORDINATES (p, cj>, z)

The circular cylindrical coordinate system is very convenient whenever we are dealing
with problems having cylindrical symmetry.

A point P in cylindrical coordinates is represented as (p, <j>, z) and is as shown in
Figure 2.1. Observe Figure 2.1 closely and note how we define each space variable: p is the
radius of the cylinder passing through P or the radial distance from the z-axis: <f>, called the

Figure 2.1 Point P and unit vectors in the cylindrical
coordinate system.
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azimuthal angle, is measured from the x-axis in the xy-plane; and z is the same as in the
Cartesian system. The ranges of the variables are

0 < p < °°

0 < </> < 27T

-00 < Z < 00

A vector A in cylindrical coordinates can be written as

(2.3)

(Ap, A^,, Az) or Apap (2.4)

where ap> a^, and az are unit vectors in the p-, <£-, and ^-directions as illustrated in
Figure 2.1. Note that a^ is not in degrees; it assumes the unit vector of A. For example, if a
force of 10 N acts on a particle in a circular motion, the force may be represented as
F = lOa ,̂ N. In this case, a0 is in newtons.

The magnitude of A is

= (Al
p

,2x1/2 (2.5)

Notice that the unit vectors ap, a^, and az are mutually perpendicular because our co-
ordinate system is orthogonal; ap points in the direction of increasing p, a$ in the direction
of increasing 0, and az in the positive z-direction. Thus,

a^ = az • az = 1

a = a7 • a = 0

np X a<j> = a ,

a^ X az = a,

az X ap = a*

(2.6a)

(2.6b)

(2.6c)

(2.6d)

(2.6e)

where eqs. (2.6c) to (2.6e) are obtained in cyclic permutation (see Figure 1.9).
The relationships between the variables (x, y, z) of the Cartesian coordinate system

and those of the cylindrical system (p, <j>, z) are easily obtained from Figure 2.2 as

cj) = tan"1- ,
x z (2.7)

or

x = p cos 0 , y = p sin <(>, z = z (2.8)

Whereas eq. (2.7) is for transforming a point from Cartesian (x, y, z) to cylindrical (p, <$>, z)
coordinates, eq. (2.8) is for (p, 4>, z) —»(x, y, z) transformation.
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Figure 2.2 Relationship between (x, y, z) and

(P, *. z).

The relationships between (ax, ay, az) and (ap, a^, a2) are obtained geometrically from
Figure 2.3:

or

= cos 0 ap - sin

ap = cos (j>ax + sin

= - s i n

= a7

cos

(b)

Figure 2.3 Unit vector transformation: (a) cylindrical components of ax, (b) cylin-
drical components of a r

(2.9)

(2.10)
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Finally, the relationships between (Ax, Ay, Az) and (Ap, A0, Az) are obtained by simply
substituting eq. (2.9) into eq. (2.2) and collecting terms. Thus

A = (Ax cos <j> + Ay sin <j>)ap + (~AX sin <j> + Ay cos 0)a 0 + Azaz (2.11)

or

Ap = Ax cos <t> + Ay sin <f>

A,/, = ~AX sin <f> + Ay cos tj> (2.12)

In matrix form, we have the transformation of vector A from (Ax,Ay,Az) to
(Ap, A0, A,) as

(2.13)A,
Az

=
cos </> sin 0 0
— sin<j> cos 0 0

0 0 1

Ax

Ay

Az

The inverse of the transformation (Ap, A^, Az) —> (Ax, Ay, Az) is obtained as

Ax cos <t> sin $ 0
-sin^> cos ^ 0

0 0 1 A,
(2.14)

or directly from eqs. (2.4) and (2.10). Thus

cos </> — sin 4> 0
sin <j> cos <j> 0

0 0 1

V
A.

(2.15)

An alternative way of obtaining eq. (2.14) or (2.15) is using the dot product. For
example:

(2.16)
"A/
Ay

Az

=
a ^ a p

az- ap

a ^ a 0

a y a 0

a z a 0

*x

az

• az

• az

•az

A
A
A

The derivation of this is left as an exercise.

2.4 SPHERICAL COORDINATES (r, 0, (/>)

The spherical coordinate system is most appropriate when dealing with problems having a
degree of spherical symmetry. A point P can be represented as (r, 6, 4>) and is illustrated in
Figure 2.4. From Figure 2.4, we notice that r is defined as the distance from the origin to
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point P or the radius of a sphere centered at the origin and passing through P; 6 (called the
colatitude) is the angle between the z-axis and the position vector of P; and 4> is measured
from the x-axis (the same azimuthal angle in cylindrical coordinates). According to these
definitions, the ranges of the variables are

O < 0 < i r (2.17)

0 < <f> < 2TT

A vector A in spherical coordinates may be written as

(Ar,Ae,A^) or A&r + Agae + A^ (2.18)

where an ae, and 3A are unit vectors along the r-, B-, and ^-directions. The magnitude of A is

|A| = (A2
r +A2

e+ Aj)112 (2.19)

The unit vectors an â , and a^ are mutually orthogonal; ar being directed along the
radius or in the direction of increasing r, ae in the direction of increasing 6, and a0 in the di-
rection of increasing <f>. Thus,

ar • ar = ae •

ar • ae = ae •;

ar x ae = a^

ae X â , = ar

a0 X ar = a9

ar = 0

(2.20)

Figure 2.4 Point P and unit vectors in spherical coordinates.
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The space variables (x, y, z) in Cartesian coordinates can be related to variables
(r, 0, <p) of a spherical coordinate system. From Figure 2.5 it is easy to notice that

= Vx2-,/- HZ2, 0 = tan '
z

or

x = r sin 0 cos 0, y = r sin 0 sin </>, z = r cos I

(2.21)

(2.22)

In eq. (2.21), we have (x, y, z) —> (r, 0, #) point transformation and in eq. (2.22), it is
(r, 6, 4>) —»(x, y, z) point transformation.

The unit vectors ax, ay, a2 and ar, ae, a^ are related as follows:

or

ax = sin 0 cos 4> a r + cos 0 cos <£ as - sin

83, = sin 6 sin <£ a r + cos 6 sin 0 ae + cos <j

az = cos 6 ar — sin 0 a s

a r = sin 0 cos 0 a* + sin d sin <£ ay + c o s

a^ = cos 0 cos <t> ax + cos 0 sin </> ay — sin

(2.23)

(2.24)

= —sin cos </> ay

Figure 2.5 Relationships between space variables (x, y, z), (r, 6,
and (p , <t>, z).
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The components of vector A = (Ax, Ay, Az) and A = (Ar, Ae, A^) are related by substitut-
ing eq. (2.23) into eq. (2.2) and collecting terms. Thus,

A = (Ax sin 0 cos 4> + Ay sin 0 sin 0 + Az cos 0)ar + (Ax cos 0 cos 0
+ Ay cos 0 sin 0 — Az sin d)ae + {—Ax sin 0 + Ay cos <A)â , (2.25)

and from this, we obtain

Ar = A^ sin 0 cos <t> + Ay sin 0 sin <j> + Az cos 0

Ae = Ax cos 0 cos 4> + Ay cos 0 sin <f> — Az sin

A^ = — A* sin </> + Ay cos 0

(2.26)

A.
=

sin 6 cos 0 sin 0 sin 0 cos 0
—cos 0 cos 0 cos 0 sin </> — sin 0
— sin 0 cos 4> 0

X

In matrix form, the (Ax, Ay, Az) -> (Ar, Ae, A$) vector transformation is performed accord-
ing to

(2.27)

The inverse transformation (An Ae, A^) —> (Ax, Ay, Az) is similarly obtained, or we obtain it
from eq. (2.23). Thus,

(2.28)

Alternatively, we may obtain eqs. (2.27) and (2.28) using the dot product. For example,

\AX~
Av =

sin
sin
cos

0
0
0

COS 0

sin 0
cos 0 cos </>
cos 0 sin 0
- s i n 0

— sin
cos

T)

0_

Ar

As

Ar ar • ax ar • ay ar • az
(2.29)

For the sake of completeness, it may be instructive to obtain the point or vector trans-
formation relationships between cylindrical and spherical coordinates using Figures 2.5
and 2.6 (where <f> is held constant since it is common to both systems). This will be left as
an exercise (see Problem 2.9). Note that in point or vector transformation the point or
vector has not changed; it is only expressed differently. Thus, for example, the magnitude
of a vector will remain the same after the transformation and this may serve as a way of
checking the result of the transformation.

The distance between two points is usually necessary in EM theory. The distance d
between two points with position vectors rl and r2 is generally given by

d=\r2- (2.30)
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Figure 2.6 Unit vector transformations for cylindri-
cal and spherical coordinates.

or

d2 = (x2 - x,f + (y2 - yxf + (z2 - zif (Cartesian)

d2 = p\ + p2 - 2p,p2 cos((^2 - 0 0 + (z2 - Z\f (cylindrical)

- 2r^r2 cos d2 cos 0j
sin 02 sin dx cos(</>2 - 0i) (spherical)

d2 = r\ + r\ - 2r^r2 cos d2 cos 0j

(2.31)

(2.32)

(2.33)

EXAMPLE 2.1 Given point P(—2, 6, 3) and vector A = yax + (x + z)ay, express P and A in cylindrical
and spherical coordinates. Evaluate A at P in the Cartesian, cylindrical, and spherical
systems.

Solution:

At point P: x = - 2 , y = 6, z = 3. Hence,

p = V x 2 + y2 = V 4 + 36 = 6.32

4> = tan"1 - = tan"1 = 108.43°
x - 2

r= Vx2 + y2 + z2 = V4 + 36 + 9 = 7

= 64.62°
_, Vx2 + y2 _ V40

d = tan ' — - *— '= tan
Z 5

Thus,

P(-2, 6, 3) = P(6.32, 108.43°, 3) = P(7, 64.62°, 108.43°)

In the Cartesian system, A at P is

A = 6ax + â
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For vector A, Ax = y, Ay = x + z, Az = 0. Hence, in the cylindrical system

Ap

A*
Az

=
cos

—sin
4>
<t>
0

sin
cos

0
0
0

0
0
1

y
X +

0
z

or

Ap = y cos (j) + (x + z) sin 0

A,/, = —y sin 0 + (JC + z) cos <

A, = 0

But x = p cos <j>,y = p sin 0, and substituting these yields

A = (Ap, A$, Az) = [p cos 0 sin 0 + (p cos 0 + z) sin 0]ap

+ [ - p sin 0 + (p cos 0 + z) cos

AtP

Hence,

= V40, tan </> = —

c o s </> =

A =

sin</> =

- 2

-2
V40'

V40 V40 V V40

40

6 / \ /— - 2V40- + 3 1

- ~ 6 _ 38
y ^p / '

V40 V40

Similarly, in the spherical system

V40 / V40-

= -0.9487a,, - 6.OO8a0

Ar

Ae
A*

or

sin 0 cos </> sin 9 sin 0 cos 0
cos 6 cos 0 cos 6 sin 0 — sin 6
—sin 0 cos 0 0

Ar = y sin 0 cos <j> + (x + z)sin 6 sin 0

A9 = y cos 0 cos 0 + (x + z)cos 0 sin

A4, = ~y sin (j> + (x + z)cos 0

x + z
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But x = r sin 6 cos (j>, y = r sin 6 sin </>, and z = r cos 0. Substituting these yields

r 8 + )
= r[sin2 6 cos $ sin 0 + (sin 0 cos </> + cos 6) sin 0 sin 4>]ar

+ r[sin 0 cos 6 sin </> cos 0 + (sin 0 cos </> + cos 0) cos 6 sin

AtP

Hence,

+ r[ —sin $ sin2

r = 1,

-2

(sin 6 cos 0 + cos 8) cos

tan 0 = tan0 =
40

40
cos <b =

V40' V40'
cos t) = T sin (7 =

49 V40 V40

I" V^O 3 6
' L 7 7

40 - 2

>y

40 V40

V40

40 V 7

40 - 2
7

- 6
7 40

18

40

- 2

+ - • -7 V40-

38
— - a r ^ i
7 7V40 40

= -0 .8571a r - 0.4066a9 - 6.OO8a0

Note that |A| is the same in the three systems; that is,

,z ) | = |A(r, 0, < )̂| = 6.083

PRACTICE EXERCISE 2.1

(a) Convert points P(\, 3, 5), 7X0, - 4 , 3), and S ( -3 , - 4 , -10) from Cartesian to
cylindrical and spherical coordinates.

(b) Transform vector

Q =
Vx2

to cylindrical and spherical coordinates.

(c) Evaluate Q at T in the three coordinate systems.
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Answer: (a) P(3.162, 71.56°, 5), P(5.916, 32.31°, 71.56°), T(4, 270°, 3),
T(5, 53.13°, 270°), 5(5, 233.1°, - 1 0 ) , 5(11.18, 153.43°, 233.1°)

(b) : (cos 4> ap — sin <j> â , — z sin <j> az), sin 9 (sin 0 cos <j> —

r cos2 0 sin <j>)ar + sin 0 cos 0 (cos 0 + r sin 0 sin </>)ag — sin 0 sin

(c) 0. 2.4az, 0. 2.4az, 1.44ar - 1.92a,,

EXAMPLE 2.2
Express vector

10
B = — ar + r cos 6 ae + a,*

in Cartesian and cylindrical coordinates. Find B (—3, 4, 0) and B (5, TT/2, —2).

Solution:

Using eq. (2.28):

sin 0 cos <
sin 0 sin 4
cos 9

cos 0 cos <$> -sin</>
cos 0 sin 0 cos <t>

- s i n 0 0

K)
r

r cos I
1

or

10
Bx = — sin 0 cos <j) + r cos 0 cos <f> - sin <

10
5^ = — sin 0 sin <j> + r cos 0 sin $ + cos ^

10
5 7 = — cos 9 - r cos 0 sin 0

r

But r = Vx 2 + y2 + z2, 9 = tan"

Hence,

-, and 6 = tan —
x
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Substituting all these gives

loVx 2 + y2 x Vx2 + / + z2 z2x
'x2 + y2

lOx
+ xz

x2 + y2 + z2 V(?

10W + y2

y ~~ / 2 , .2 , 2-.

y2 + z2) f)
Vx2 + y2 + z

2 • x2 + y2 + z2+
y

lOy
+

B7 =

x2 + y2 + z2 V ( ? + y2){x2 + y2 + z2)

lOz

+

>xA + /
X

'x2 + y2

zVx2 + y2

x2 + y2 + z2

B = B A + Byay + Bzaz

where Bx, By, and Bz are as given above.
At ( - 3 , 4, 0), x = - 3 , y = 4, and z = 0, so

Thus,

, = 0 - 0 = 0

B

For spherical to cylindrical vector transformation (see Problem 2.9),

sin ^ cos 6 0
0 0 1

or

cos d - s in0 0

10 2

= — sin 6 + r cos

H)

r cos

10
7 = — cos d

r
- r sin 6 cos 6

But r = V p z + zl and 6 = tan ' -

V + y2

^+7
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Thus,

sin V =
/7T7'

cos C =

7 <•

T5
P + Z

P +

Hence,

B =
10p

At (5, TT/2, - 2 ) , p = 5, 0 = TT/2, and z = - 2 , so

B
50 4

29 V29/
V

p + Z

lOz

>2 + z2 VTT?

- 2 0 10
+29 V29

= 2.467ap

Note that at ( - 3 , 4, 0),

\B(x,y,z)\ = |B(p,<A,z)| = |B(r, 0,0)| = 2.907

This may be used to check the correctness of the result whenever possible.

PRACTICE EXERCISE 2.2

Express the following vectors in Cartesian coordinates:

(a) A = pz sin 0 ap + 3p cos 0 â , + p cos 0 sin 0 a.

(b) B = r2 ar + sin 6 a*

1
Answer: (a) A = [(xyz - 3xy) ar + (zj + 3x ) ay + xy a j

(b) B =

\yixz + y2 + zz) + x\ay

2.5 CONSTANT-COORDINATE SURFACES

Surfaces in Cartesian, cylindrical, or spherical coordinate systems are easily generated by
keeping one of the coordinate variables constant and allowing the other two to vary. In the



42 M Coordinate Systems and Transformation

Cartesian system, if we keep x constant and allow y and z to vary, an infinite plane is gen-
erated. Thus we could have infinite planes

x = constant

y = constant

z = constant

(2.34)

which are perpendicular to the x-, y-, and z-axes, respectively, as shown in Figure 2.7. The
intersection of two planes is a line. For example,

x = constant, y = constant (2.35)

is the line RPQ parallel to the z-axis. The intersection of three planes is a point. For
example,

x = constant, y = constant, z = constant (2.36)

is the point P(x, y, z). Thus we may define point P as the intersection of three orthogonal
infinite planes. If P is (1, - 5 , 3), then P is the intersection of planes x = 1, y = - 5 , and
z = 3.

Orthogonal surfaces in cylindrical coordinates can likewise be generated. The sur-
faces

p = constant

<\> = constant

z = constant

(2.37)

are illustrated in Figure 2.8, where it is easy to observe that p = constant is a circular
cylinder, <f> = constant is a semiinfinite plane with its edge along the z-axis, and
z = constant is the same infinite plane as in a Cartesian system. Where two surfaces meet
is either a line or a circle. Thus,

z = constant, p = constant (2.38)

z = constant

x = constant
Figure 2.7 Constant x, y, and z surfaces.

.
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Figure 2.8 Constant p, (j>, and z surfaces.

*-y

<p = constant

is a circle QPR of radius p, whereas z = constant, <j> = constant is a semiinfinite line. A
point is an intersection of the three surfaces in eq. (2.37). Thus,

p = 2, <t> = 60°, z = 5 (2.39)

is the point P(2, 60°, 5).
The orthogonal nature of the spherical coordinate system is evident by considering the

three surfaces

r = constant

0 = constant

<f> = constant

(2.40)

which are shown in Figure 2.9, where we notice that r — constant is a sphere with its
center at the origin; 8 = constant is a circular cone with the z-axis as its axis and the origin
as its vertex; 0 = constant is the semiinfinite plane as in a cylindrical system. A line is
formed by the intersection of two surfaces. For example:

r = constant, tj> = constant

= constant

(2.41)

Figure 2.9 Constant r, 9, and <j> surfaces.
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is a semicircle passing through Q and P. The intersection of three surfaces gives a point.
Thus,

r = 5, 0 = 30°, 0 = 60° (2.42)

is the point P(5, 30°, 60°). We notice that in general, a point in three-dimensional space can
be identified as the intersection of three mutually orthogonal surfaces. Also, a unit normal
vector to the surface n = constant is ± an, where n is x, y, z, p, </>, r, or 6. For example, to
plane* = 5, a unit normal vector is ±ax and to planed = 20°, a unit normal vector is a^.

EXAMPLE 2.3 Two uniform vector fields are given by E = -5a p +
23 ,̂ - 6az. Calculate

+ 3az and F = ap

(a) |E X F

(b) The vector component of E at P(5, TT/2, 3) parallel to the line x = 2, z = 3

(c) The angle E makes with the surface z = 3 at P

Solution:

(a) E X F = - 5 10
1 2 - 6

= ( -60 - 6)a, + (3 - 3O)a0 + ( -10 - 10)3,
= (-66, -27 , -20)

|E X F| = V66 2 + 272 + 202 = 74.06

(b) Line x = 2, z = 3 is parallel to the y-axis, so the component of E parallel to the given
line is

(E • av)av

But at P(5, TT/2, 3)

Therefore,

= sin <t> ap + c o s <j> a<*>
= sin TT/2 ap + cos •nil a^, = a p

(E diy = (E • ap)ap = - (or -5ay)

(c) Utilizing the fact that the z-axis is normal to the surface z = 3, the angle between the
z-axis and E, as shown in Figure 2.10, can be found using the dot product:

E az = |E|(1) cos 6Ez -> 3 = V l 3 4 cos $Ez

3
cos oEz =

'134
= 0.2592 -» BEz = 74.98°

Hence, the angle between z = 3 and E is

90° - BEz = 15.02°

J
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Figure 2.10 For Example 2.3(c).

45

PRACTICE EXERCISE 2.3

Given the vector field

H = pz cos 0 ap + e sin — a^ + p a.

At point (1,7r/3,0), find

(a) H • a,

(b) H X a ,

(c) The vector component of H normal to surface p = 1

(d) The scalar component of H tangential to the plane z = 0

Answer: (a) -0.433, (b) -0.5 ap, (c) 0 ap, (d) 0.5.

EXAMPLE 2.4
Given a vector field

D = r sin 0 ar sin 6 cos 0 ae + r2a^

determine

(a) DatPQO, 150°, 330°)

(b) The component of D tangential to the spherical surface r = 10 at P

(c) A unit vector at P perpendicular to D and tangential to the cone d = 150°

Solution:

(a) At P, r = 10, 6 = 150°, and 0 = 330°. Hence,

D = 10 sin 330° ar - ~ sin 150° cos 330° ae + 100 a0 = ( -5 , 0.043, 100)
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(b) Any vector D can always be resolved into two orthogonal components:

D = D, + Dn

where Dt is tangential to a given surface and Dn is normal to it. In our case, since ar is
normal to the surface r = 10,

Hence,

Dn = r sin 0 ar = —5ar

D, = D - Dn = 0.043a,, +

(c) A vector at P perpendicular to D and tangential to the cone 0 = 1 5 0 ° is the same as the
vector perpendicular to both D and ae. Hence,

D X afl =
ar ae a 0

- 5 0.043 100
0 1 0

= - 1 0 0 a r - 5a*

A unit vector along this is

- 100ar - 53A
a = — , = -0.9988ar - 0.04993^

VlOO2 + 52

PRACTICE EXERCISE 2.4

If A = 3ar + 2ae - 6a0 and B = 4a,. + 33^, determine

(a) A • B

(b) |A X B

(c) The vector component of A along az at (1, TT/3, 5ir/4)

Answer: (a) - 6 , (b) 34.48, (c) -0.116ar + 0.201a,,.

SUMMARY 1. The three common coordinate systems we shall use throughout the text are the Carte-
sian (or rectangular), the circular cylindrical, and the spherical.

2. A point P is represented as P(x, y, z), P(p, <j>, z), and P(r, 6, 4>) in the Cartesian, cylin-
drical, and spherical systems respectively. A vector field A is represented as (Ax, Ay, Az)
or A^nx + Ayay + Azaz in the Cartesian system, as (Ap, A$, Az) or Apap + A^a^ + Azaz

in the cylindrical system, and as (An Ae, A^) or A^ar + Aeae + A^a^ in the spherical
system. It is preferable that mathematical operations (addition, subtraction, product,
etc.) be performed in the same coordinate system. Thus, point and vector transforma-
tions should be performed whenever necessary.

3. Fixing one space variable defines a surface; fixing two defines a line; fixing three
defines a point.

4. A unit normal vector to surface n = constant is ± an.
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PfVJEW QUtSTlONS

2.1 The ranges of d and (/> as given by eq. (2.17) are not the only possible ones. The following
are all alternative ranges of 6 and <j>, except

(a) 0 < 6 < 2TT, 0 < ct> < x

(b) 0 < 6 < 2x, 0 < 0 < 2x

(c) - TC <6<ir, 0<( /><7r

(d) - ir/2 < 0 < TT/2, 0 < 0 < 2TT

(e)O<0Sx, -7r<0<7r

( f ) - 7 T < 0 < 7 r , - X < 0 < 7 T

2.2 At Cartesian point ( — 3, 4, — 1), which of these is incorrect?

(a) p = - 5 _

(b) r = \Jlb

(c) 6 = tan"1 —

(d) <t> = t a n " 1 ^ "

2.3 Which of these is not valid at point (0, 4, 0)?

(a)

(b)

(c)

(d)

a* =

a« =
ar =

= - a *
= — az

= 4ay

= ay

A unit normal vector t

(a)

(b)

(c)

(d)

a r

a»
a0

none of the above

2.5 At every point in space, a 0 • a# = 1.

(a) True

(b) False

2.6 If H = 4afi - 3a0 + 5az, at (1, x/2, 0) the component of H parallel to surface p = 1 is

(a) 4ap

(b) 5az

(c) - 3 a *

(d) -3a,,, + 5a2

(e) 5arf, + 3az
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2.7 Given G = 20ar + 50as + 4Oa0, at (1, T/2, TT/6) the component of G perpendicular to
surface 6 = TT/2 is

(a) 20ar

(b)

(c) 0

(d) 20ar +

(e) -40a r

2.8 Where surfaces p = 2 and z = 1 intersect is

(a) an infinite plane

(b) a semiinfinite plane

(c) a circle

(d) a cylinder

(e) a cone

2.9 Match the items in the left list with those in the right list. Each answer can be used once,
more than once, or not at all.

(a) 0 = ?r/4

(b) <$> = 2ir/3

(c) JC = - 1 0

(d) r = 1,0 =

(e) p = 5

(f) p = 3 , <A =

(g) p = 10, z =

(h) r = 4 , <£ =

(i) r = 5, 0 =

x / 3 , <f> = w/2

5n73

= 1

TT/6

TT/3

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

infinite plane

semiinfinite plane

circle

semicircle

straight line

cone

cylinder

sphere

cube

point

2.10 A wedge is described by z = 0, 30° < <t> < 60°. Which of the following is incorrect:

(a) The wedge lies in the x — y plane.

(b) It is infinitely long

(c) On the wedge, 0 < p < <*>

(d) A unit normal to the wedge is ± az

(e) The wedge includes neither the x-axis nor the y-axis

Answers: 2.1b,f, 2.2a, 2.3c, 2.4b, 2.5b, 2.6d, 2.7b, 2.8c, 2.9a-(vi), b-(ii), c-(i), d-(x),
e-(vii), f-(v), g-(iii), h-(iv), i-(iii), 2.10b.
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PROBLEMS
2.1 Express the following points in Cartesian coordinates:

(a)P(l,60°, 2)

(b) G(2, 90°, -4 )
(c)R(, 45°, 210°)
(d) T(4, TT/2, TT/6)

2.2 Express the following points in cylindrical and spherical coordinates:

(a) P(l, - 4 , -3 )
(b) g(3, 0, 5)
(c) R{-2, 6, 0)

2.3 (a) If V = xz — xy + yz, express V in cylindrical coordinates,

(b) If U = x2 + 2>>2 + 3z2, express U in spherical coordinates.

2.4 Transform the following vectors to cylindrical and spherical coordinates:

(a) D = (x + z)ay

(b) E = (y2 - x2)ax + xyzay + (x2 - Z
2)az

2.5 Convert the following vectors to cylindrical and spherical systems:

xax + yay + Aaz

(a) F =
Vx2

(b) G = (x2 + y2) xar

Vx2^

2.6 Express the following vectors in Cartesian coordinates:

(a) A = p(z2 + l)ap - pz cos <j> a0

(b) B = 2r sin 6 cos <j> a r + r cos 8 cos 6 ae — r sin 4>

2.7 Convert the following vectors to Cartesian coordinates:

(a) C = z sin <f> ap - p cos <f> a0 + 2pzaz

sin d cos d
(b) D = —- ar + —r- ae

Vx2

2.8 Prove the following:

(a) ax • ap = cos >̂
a x a 0 = - s i n ^
3^-3^ = sin <£
3y • 3 0 = COS 0

(b) ax • a r = sin 6 cos
â . • as = cos 0 cos
By • ar = sin 0 sin 0
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ay- ae = cos 6 sin
az • a r = cos 6
a • as = —sin 6

2.9 (a) Show that point transformation between cylindrical and spherical coordinates is ob-
tained using

p = r sin 9, z = r cos 9, 4> = 4>

(b) Show that vector transformation between cylindrical and spherical coordinates is ob-
tained using

or

Ar

Ae

A0_

A,

=

=

sin
cos

0

sin
0

cos

e
e

e

9

0 cos
0 -s in
1 0

cos 8
0

— sin 8

9
9

0
1
0

Ar

(Hint: Make use of Figures 2.5 and 2.6.)

2.10 (a) Express the vector field

H = xy2zax + x2yzay

in cylindrical and spherical coordinates,

(b) In both cylindrical and spherical coordinates, determine H at (3, —4, 5).

2.11 Let A = p cos 9 ap + pz2 sin <j> az

(a) Transform A into rectangular coordinates and calculate its magnitude at point
(3, - 4 , 0).

(b) Transform A into spherical system and calculate its magnitude at point (3, —4, 0).

2.12 The transformation (Ap, A0, Az) —•> (Ax, Ay, Az) in eq. (2.15) is not complete. Complete it
by expressing cos 4> and sin <f> in terms of x, y, and z. Do the same thing to the transforma-
tion (Ar, Ae, A^) -» (A x , Ay, Az) in eq. (2.28).

2.13 In Practice Exercise 2.2, express A in spherical and B in cylindrical coordinates. Evaluate
A at (10, TT/2, 3TI74) and B at (2, TT/6, 1).
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2.14 Calculate the distance between the following pairs of points:

(a) (2, 1,5) and (6, - 1 , 2 )

(b) (3, T/2, -1) and (5, 3TT/2, 5)

(c) (10, TT/4, 3TT/4) and (5, x/6, 7*74).

2.15 Describe the intersection of the following surfaces:

= 10
(a)

(b)

(c)

(d)

(e)

(f)

X

X

r

p

r

= 2,
= 2,

= 10,
= g

= 60°,

y =

y =

e =
<t> =
z =
0 =

5

- 1 ,

30°

40°

10

90°

2.16 At point 7(2, 3, —4), express az in the spherical system and ar in the rectangular system.

*2.17 Given vectors A = 2a^ + 4ay + 10az and B = - 5 a p + a0 - 3az, find

(a) A + Ba tP (0 ,2 , - 5 )

(b) The angle between A and B at P

(c) The scalar component of A along B at P

2.18 Given that G = (x + y2)ax + xzay + (z2 + zy)az, find the vector component of G
along a0 at point P(8, 30°, 60°). Your answer should be left in the Cartesian system.

*2.19 If J = r sin 0 cos <f> ar - cos 26 sin 4> ae + tan - In r a0 at T(2, TT/2, 3% 12), determine

the vector component of J that is

(a) Parallel to az

(b) Normal to surface 4> = 37r/2

(c) Tangential to the spherical surface r = 2

(d) Parallel to the line y = - 2 , z = 0

2.20 Let H - 5p sin <f> ap - pz cos <j> a0 + 2paz. At point P(2, 30°, - 1), find:

(a) a unit vector along H

(b) the component of H parallel to ax

(c) the component of H normal to p = 2

(d) the component of H tangential to <j> = 30°
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*2.21 Let

and

A = p(z2 - l)ap - pz cos <t> â , + /o2z2az

B = r2 cos 0 ar + 2r sin 0 a0

At r(—3, 4, 1), calculate: (a) A and B, (b) the vector component in cylindrical coordi-
nates of A along B at T, (c) the unit vector in spherical coordinates perpendicular to both
A and B at T.

*2.22 Another way of defining a point P in space is (r, a, jS, 7) where the variables are por-
trayed in Figure 2.11. Using this definition, find (r, a, |8, 7) for the following points:

(a) ( -2 , 3, 6)

(b) (4, 30°, - 3 )

(c) (3, 30°, 60°)

(Hint: r is the spherical r, 0 < a, 0, 7 < 2ir.)

Figure 2.11 For Problem 2.22.

2.23 A vector field in "mixed" coordinate variables is given by

x cos 4> tyz ( x2 .
G = az + — + ( 1 - - j I a,

P p1 \ pz

Express G completely in spherical system.



Chapter 3

VECTOR CALCULUS

No man really becomes a fool until he stops asking questions.

—CHARLES P. STEINMETZ

3.1 INTRODUCTION

Chapter 1 is mainly on vector addition, subtraction, and multiplication in Cartesian coordi-
nates, and Chapter 2 extends all these to other coordinate systems. This chapter deals with
vector calculus—integration and differentiation of vectors.

The concepts introduced in this chapter provide a convenient language for expressing
certain fundamental ideas in electromagnetics or mathematics in general. A student may
feel uneasy about these concepts at first—not seeing "what good" they are. Such a student
is advised to concentrate simply on learning the mathematical techniques and to wait for
their applications in subsequent chapters.

J.2 DIFFERENTIAL LENGTH, AREA, AND VOLUME

Differential elements in length, area, and volume are useful in vector calculus. They are
defined in the Cartesian, cylindrical, and spherical coordinate systems.

A. Cartesian Coordinates

From Figure 3.1, we notice that

(1) Differential displacement is given by

d\ = dx ax + dy ay + dz az (3.1)

53
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•A-

Figure 3.1 Differential elements in the
right-handed Cartesian coordinate system.

(2) Differential normal area is given by

dS = dy dz
dxdz
dzdy

a*
av

a,

and illustrated in Figure 3.2.
(3) Differential volume is given by

dv = dx dy dz

(3.2)

(3.3)

dy

â

(a)

dz <

(b)

i a z

dy

(c)

Figure 3.2 Differential normal areas in Cartesian coordinates:
(a) dS = dy dz â , (b) dS = dxdz ay, (c) dS = dx dy a,
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These differential elements are very important as they will be referred to again and
again throughout the book. The student is encouraged not to memorize them, however, but
to learn to derive them from Figure 3.1. Notice from eqs. (3.1) to (3.3) that d\ and dS are
vectors whereas dv is a scalar. Observe from Figure 3.1 that if we move from point P to Q
(or Q to P), for example, d\ = dy ay because we are moving in the y-direction and if we
move from Q to S (or S to Q), d\ = dy ay + dz az because we have to move dy along y, dz
along z, and dx = 0 (no movement along x). Similarly, to move from D to Q would mean
that dl = dxax + dyay + dz az.

The way dS is denned is important. The differential surface (or area) element dS may
generally be defined as

dS = dSan (3.4)

where dS is the area of the surface element and an is a unit vector normal to the surface dS
(and directed away from the volume if dS is part of the surface describing a volume). If we
consider surface ABCD in Figure 3.1, for example, dS = dydzax whereas for surface
PQRS, dS = -dy dz ax because an = -ax is normal to PQRS.

What we have to remember at all times about differential elements is d\ and how to
get dS and dv from it. Once d\ is remembered, dS and dv can easily be found. For example,
dS along ax can be obtained from d\ in eq. (3.1) by multiplying the components of d\ along
â , and az; that is, dy dz ax. Similarly, dS along az is the product of the components of d\
along ax and ay; that is dx dy az. Also, dv can be obtained from d\ as the product of the three
components of dl; that is, dx dy dz. The idea developed here for Cartesian coordinates will
now be extended to other coordinate systems.

B. Cylindrical Coordinates

Notice from Figure 3.3 that in cylindrical coordinates, differential elements can be found
as follows:

(1) Differential displacement is given by

dl = dpap + p dcj> a 0 + dz az (3.5)

(2) Differential normal area is given by

dS = p d<j> dz ap

dp dz a^
p d4> dp az

(3.6)

and illustrated in Figure 3.4.
(3) Differential volume is given by

dv = p dp dcf> dz (3.7)
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dp
1

pd<t>

-dz

z

Figure 3.3 Differential elements in
cylindrical coordinates.

As mentioned in the previous section on Cartesian coordinates, we only need to re-
member dl; dS and dv can easily be obtained from dl. For example, dS along az is the
product of the components of dl along ap and a^; that is, dp p d<f> az. Also dv is the product
of the three components of dl; that is, dp p d<j> dz.

C. Spherical Coordinates

From Figure 3.5, we notice that in spherical coordinates,

(1) The differential displacement is

dl = drar + rdd ae + r sin 0 d<f> a0 (3.8)

(b) (c)

~-y

Figure 3.4 Differential normal areas in cylindrical coordinates:
(a) dS = pd<j> dz ap, (b) dS = dp dz a ,̂ (c) dS = p d<f> dp az
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pd<(> = r s i n 6 d<j>

Figure 3.5 Differential elements
in the spherical coordinate system.

(2) The differential normal area is

dS = r2 sin 6 d6 d<f> a r

r sin 6 dr d<j> a#

r dr dd aA

and illustrated in Figure 3.6.
(3) The differential volume is

dv = r2 sind drdd.

(3.9)

(3.10)

r sin 0,1 •''

r,in '

(a)

ar

\

r sin 6dcf>

/ \ /dr

ae r

(b) (c)

w.

Figure 3.6 Differential normal areas in spherical coordinates:
(a) dS = r2 sin 0 dO d<j> ar, (b) dS = r sin 0 dr d<j> a ,̂
(c) dS = rdr dd â ,
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Again, we need to remember only dl from which dS and dv are easily obtained. For
example, dS along ae is obtained as the product of the components of dl along ar and
a^; that is, dr • r sin 6 d4>; dv is the product of the three components of dl; that is,
dr • r dd • r sin 6 d<t>.

EXAMPLE 3.1
Consider the object shown in Figure 3.7. Calculate

(a) The distance BC

(b) The distance CD

(c) The surface area ABCD

(d) The surface area ABO

(e) The surface area A OFD

(f) The volume ABDCFO

Solution:

Although points A, B, C, and D are given in Cartesian coordinates, it is obvious that the
object has cylindrical symmetry. Hence, we solve the problem in cylindrical coordinates.
The points are transformed from Cartesian to cylindrical coordinates as follows:

A(5,0,0)-»A(5,0°,0)

5(0, 5, 0) -» 5( 5, - , 0

C(0, 5, 10) -» C( 5, - , 10

D(5,0, 10)-»£>(5,0°, 10)

0(5, 0, 10)

Figure 3.7 For Example 3.1.

C(0, 5, 10)

5(0,5,0)
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(a) Along BC, dl = dz; hence,

BC = | dl= dz= 10

(b) Along CD, dl = pd<f> and p = 5, so

CTSIl

CD= \ p d<j) = 5

(c) For ABCD, dS = pd<t> dz, p = 5. Hence,

ir/2 r 10

area ABCD = \ dS = \ I pd

ir/2

= 2.5TT

= 5
x/2 r 1 0

= 25TT

(d) For ABO, dS = pd<j> dp and z = 0, so

TTr/2 r 5 (-TT/2 (-5

p dcj> dp = d<j> p dp = 6 . 2 5 T T

(e) For AOFD, d5 = dp dz and 0 = 0°, so

area AOFD = dp dz = 50

(f) For volume ABDCFO, dv = pd<f> dz dp. Hence,

r5 rir/2 rlO <• 10 /-ir/2 <-5

v = L/v = p d0 dz dp = dz J = 62.5TT

PRACTICE EXERCISE 3.1

Refer to Figure 3.26; disregard the differential lengths and imagine that the object is
part of a spherical shell. It may be described as 3 S r < 5 , 60° < 0 < 90°,
45° < 4> < 60° where surface r = 3 is the same as AEHD, surface 0 = 60° is A£FB,
and surface <£ = 45° is AfiCO. Calculate

(a) The distance DH

(b) The distance FG

(c) The surface area AEHD

(d) The surface area ABDC

(e) The volume of the object

Answer: (a) 0.7854, (b) 2.618, (c) 1.179, (d) 4.189, (e) 4.276.
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3.3 LINE, SURFACE, AND VOLUME INTEGRALS

The familiar concept of integration will now be extended to cases when the integrand in-
volves a vector. By a line we mean the path along a curve in space. We shall use terms such
as line, curve, and contour interchangeably.

The line integral A • d\ is the integral of ihc tangential component of A along

curve L.

Given a vector field A and a curve L, we define the integral

fb

A-dl = (3.11)

as the line integral of A around L (see Figure 3.8). If the path of integration is a closed
curve such as abca in Figure 3.8, eq. (3.11) becomes a closed contour integral

A - d l (3.12)

which is called the circulation of A around L.
Given a vector field A, continuous in a region containing the smooth surface S, we

define the surface integral or the^wx of A through S (see Figure 3.9) as

or simply

(3.13)

= \A\ cos OdS= A-andS

Figure 3.8 Path of integration of vector field A.

pathi
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surface S

Figure 3.9 The flux of a vector field A
through surface S.

where, at any point on S, an is the unit normal to S. For a closed surface (defining a
volume), eq. (3.13) becomes

= * A • dS
•'s

(3.14)

which is referred to as the net outward flux of 'A from S. Notice that a closed path defines
an open surface whereas a closed surface defines a volume (see Figures 3.11 and 3.16).

We define the integral

(3.15)

as the volume integral of the scalar pv over the volume v. The physical meaning of a line,
surface, or volume integral depends on the nature of the physical quantity represented by
A or pv. Note that d\, dS, and dv are all as defined in Section 3.2.

Given that F = x2ax - xz&y - y2&z, calculate the circulation of F around the (closed) path
shown in Figure 3.10.

Solution:

The circulation of F around path L is given by

+ + + ) F • d\
h h V

Fdl =

where the path is broken into segments numbered 1 to 4 as shown in Figure 3.10.
For segment 1, v = 0 = z

= jc2a x , = dxax

Notice that d\ is always taken as along +ax so that the direction on segment 1 is taken care
of by the limits of integration. Thus,

¥-d\= x2dx = -
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Figure 3.10 For Example 3.2.

*-y

For segment 2, x = 0 = z, F = -y2az, d\ = dy ay, F • d\ = 0. Hence,

F • dl = 0

For segment 3, y = 1, F = x2ax - xz&y - az, and dl = dxax + dz a2, so

F • d\ = (xldx - dz)

But on 3, z = *; that is, Jx = dz. Hence,

- l

3

F • d\ = (xz - 1) dx = — - x
' 3

For segment 4, x = 1, so F = ax — zay — y2az, and d\ = dy ay + dz az. Hence,

Fdl = (-zrfy-/dz)

But on 4, z = y; that is, dz = rfy, so

F • d\ =
.4 J ,

0 2 3 ° = 5

1 6

By putting all these together, we obtain
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Figure 3.11 For Practice Exercise 3.2.

63

PRACTICE EXERCISE 3.2

Calculate the circulation of

A = p cos <j> ap + z sin $ a2

around the edge L of the wedge defined by 0 < p < 2, 0 £ <t> £ 60°, z = 0 and
shown in Figure 3.11.

Answer: 1.

3.4 DEL OPERATOR

The del operator, written V, is the vector differential operator. In Cartesian coordinates,

(3.16)
dx'

V = -a* + Tya> + Tza<

This vector differential operator, otherwise known as the gradient operator, is not a vector
in itself, but when it operates on a scalar function, for example, a vector ensues. The oper-
ator is useful in denning

1. The gradient of a scalar V, written, as W
2. The divergence of a vector A, written as V • A
3. The curl of a vector A, written as V X A
4. The Laplacian of a scalar V, written as V V

Each of these will be denned in detail in the subsequent sections. Before we do that, it
is appropriate to obtain expressions for the del operator V in cylindrical and spherical
coordinates. This is easily done by using the transformation formulas of Section 2.3
and 2.4.
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To obtain V in terms of p, <j>, and z, we recall from eq. (2.7) that1

Hence

— = cos q>
dx dp

tan 0 = —
x

sin (j) d

p dq>

d d COS 4> d
— = sin <f> 1
dy dp p 8<t>

(3.17)

(3.18)

Substituting eqs. (3.17) and (3.18) into eq. (3.16) and making use of eq. (2.9), we obtain V
in cylindrical coordinates as

(3.19)V =
d

3 -f-
" dp

]
3 —

P

d

d<p
- a

d

dz

Similarly, to obtain V in terms of r, 6, and <p, we use

= Vx2 + y2 + z2, tan 0 = tan d> = -
x

to obtain

d d cos 6 cos 4> d sin <j> d
— = sin 6 cos cp 1
dx dr r 30 p dcp
8 . d cos 0 sin 0 3 cos 0 5

— = sin 0 sin <p 1 1
dy dr r 80 P d<j>

d d sin 0 d
— = cos 6
dz dr r 80

(3.20)

(3.21)

(3.22)

Substituting eqs. (3.20) to (3.22) into eq. (3.16) and using eq. (2.23) results in V in spheri-
cal coordinates:

1 d 1
(3.23)

Notice that in eqs. (3.19) and (3.23), the unit vectors are placed to the right of the differen-
tial operators because the unit vectors depend on the angles.

'A more general way of deriving V, V • A, V X A, W, and V2V is using the curvilinear coordinates.
See, for example, M. R. Spiegel, Vector Analysis and an Introduction to Tensor Analysis. New York:
McGraw-Hill, 1959, pp. 135-165.
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3.5 GRADIENT OF A SCALAR

The gradient of a scalar field V is a vccior thai represents both the magnitude and the
direction of the maximum space rale of increase of V.

A mathematical expression for the gradient can be obtained by evaluating the difference in
the field dV between points Pl and P2 of Figure 3.12 where V,, V2, and V3 are contours on
which V is constant. From calculus,

dV dV dV
= — dx + — dy + — dz

dx dy dz
dV dV dV ,

+ — ay + — az) • (dx ax + dy ay + dz az)ax ay +

For convenience, let

Then

dV dV dV
—*x + ~ay + —dx By dz

dV = G • d\ = G cos 6 dl

(3.24)

(3.25)

or

dV
— = Gcos6
dl

(3.26)

Figure 3.12 Gradient of a scalar.

*- y
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where d\ is the differential displacement from P, to P2 and 6 is the angle between G and d\.
From eq. (3.26), we notice that dV/dl is a maximum when 0 = 0, that is, when d\ is in the
direction of G. Hence,

dV

dl dn
(3.27)

where dV/dn is the normal derivative. Thus G has its magnitude and direction as those of
the maximum rate of change of V. By definition, G is the gradient of V. Therefore:

dV 3V dV
grad V = W = — ax + — av + — a,s 5x dy y dz

(3.28)

By using eq. (3.28) in conjunction with eqs. (3.16), (3.19), and (3.23), the gradient of
V can be expressed in Cartesian, cylindrical, and spherical coordinates. For Cartesian co-
ordinates

Vy =
dV
— a, -
dx

dV
av -

ay y

dV
a.

dz '

for cylindrical coordinates,

vy =
dV

dp

i dV
— a<4
3(f> *

dV
-1 a.

dz
(3.29)

and for spherical coordinates,

av i ay 1 ay
= — ar + a« +

dr r 39 rs infl d<f>
(3.30)

The following computation formulas on gradient, which are easily proved, should be
noted:

(a) V(v + u) = vy + vu
(b) V{vu) = yvt/ + uw

(c)

(d)

- yvc/

" = nVn~xVV

(3.31a)

(3.31b)

(3.31c)

(3.31d)

where U and V are scalars and n is an integer.
Also take note of the following fundamental properties of the gradient of a scalar

field V:

1. The magnitude of Vy equals the maximum rate of change in V per unit distance.
2. Vy points in the direction of the maximum rate of change in V.
3. Vy at any point is perpendicular to the constant V surface that passes through that

point (see points P and Q in Figure 3.12).
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4. The projection (or component) of VV in the direction of a unit vector a is W • a
and is called the directional derivative of V along a. This is the rate of change of V
in the direction of a. For example, dV/dl in eq. (3.26) is the directional derivative of
V along PiP2 in Figure 3.12. Thus the gradient of a scalar function V provides us
with both the direction in which V changes most rapidly and the magnitude of the
maximum directional derivative of V.

5. If A = VV, V is said to be the scalar potential of A.

EXAMPLE 3.3
Find the gradient of the following scalar fields:

(a) V = e~z sin 2x cosh y

(b) U = p2z cos 2<t>

(c) W= lOrsin20cos<£

Solution:

(a)
dv_t

dx'

dV dV

v™-¥
= 2e zcos 2x cosh y ax + e zsin 2x sinh y ay — e Jsin 2x cosh y az

1 dU dU_

P d0 dz a7

= 2pz cos 2<f> ap — 2pz sin 2(/> a^ + p cos 20 az

_ aw i aw i aw
dr a r 36 " rsinfl 90 "

= 10 sin2 6 cos 0 ar + 10 sin 26 cos 0 a# — 10 sin 0 sin 01

PRACTICE EXERCISE 3.3

Determine the gradient of the following scalar fields:

(a) U = x2y + xyz

(b) V = pz sin <t> + z2 cos2 <t> + p2

(c) / = cos 6 sin 0 In r + r2<j>

Answer: (a) y{2x + z)ax + x(x + z)ay + xyaz

(b) (z sin 0 + 2p)ap + (z cos 0 sin

(p sin <t> + 2z c o s 2 <j>)az

/cos 0 sin <i(c) ( —- + 2r0 Jar

/cot 0
I cos q> In r + r cosec 0

sin 9 sin
In r ae +
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EXAMPLE 3.4

Vector Calculus

Given W = x2y2 + xyz, compute VW and the direction derivative dW/dl in the direction
3ax + 4ay + 12az at (2,-1,0).

Solution:
dW dW dW

VW = a, + av + a,
dx x dy y dz z

= (2xyz + yz)ax + (2xzy + xz)ay + (xy)az

At (2, -1,0) : VW =
Hence,

ay - 2az

PRACTICE EXERCISE 3.4

Given <P = xy + yz + xz, find gradient 0 at point (1,2, 3) and the directional deriv-
ative of <P at the same point in the direction toward point (3,4,4).

Answer: 5ax + 4a.. + 3az, 7.

EXAMPLE 3.5
Find the angle at which line x = y = 2z intersects the ellipsoid x2 + y2 + 2z2 = 10.

Solution:

Let the line and the ellipsoid meet at angle \j/ as shown in Figure 3.13. The line x = y = 2z
can be represented by

r(X) = 2Xâ  + 2X3,, + Xaz

where X is a parameter. Where the line and the ellipsoid meet,

(2X)2 + (2X)2 + 2X2 = 10 ~> X = ± 1

Taking X = 1 (for the moment), the point of intersection is (x, y, z) = (2,2,1). At this
point, r = 2a^ + 2a,, + az.

ellipsoid

/

Figure 3.13 For Example 3.5; plane of intersection of a line
with an ellipsoid.
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The surface of the ellipsoid is defined by

f(x,y,z)=x2 + y2 + 2z2-W

The gradient of/is

Vf=2xax + 2yay + 4zaz

At (2,2,1), V/ = 4ax + 4ay + 4a r Hence, a unit vector normal to the ellipsoid at the point
of intersection is

. _ ^ v / _ a. + a. + a,

V3

Taking the positive sign (for the moment), the angle between an and r is given by

cos 6 =
an • r 2 + 2 + 1

• r V W 9 3V3
= «n \p

Hence, \j/ = 74.21°. Because we had choices of + or — for X and an, there are actually four
possible angles, given by sin i/< = ±5/(3 V3).

PRACTICE EXERCISE 3.5

Calculate the angle between the normals to the surfaces x y + z — 3 and
x log z — y2 = - 4 at the point of intersection (— 1, 2,1).

Answer: 73.4°.

3.6 DIVERGENCE OF A VECTOR AND DIVERGENCE
THEOREM

From Section 3.3, we have noticed that the net outflow of the flux of a vector field A from
a closed surface S is obtained from the integral § A • dS. We now define the divergence of
A as the net outward flow of flux per unit volume over a closed incremental surface.

The divergence of A at a given point P is ihc outward (lux per unii volume as the
volume shrinks about P.

Hence,

div A = V • A = lim
Av—>0

A-dS

Av
(3.32)
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(a) (b)

• P

(c)

Figure 3.14 Illustration of the divergence of a vector field at P; (a) positive
divergence, (b) negative divergence, (c) zero divergence.

where Av is the volume enclosed by the closed surface S in which P is located. Physically,
we may regard the divergence of the vector field A at a given point as a measure of how
much the field diverges or emanates from that point. Figure 3.14(a) shows that the diver-
gence of a vector field at point P is positive because the vector diverges (or spreads out) at
P. In Figure 3.14(b) a vector field has negative divergence (or convergence) at P, and in
Figure 3.14(c) a vector field has zero divergence at P. The divergence of a vector field can
also be viewed as simply the limit of the field's source strength per unit volume (or source
density); it is positive at a source point in the field, and negative at a sink point, or zero
where there is neither sink nor source.

We can obtain an expression for V • A in Cartesian coordinates from the definition in
eq. (3.32). Suppose we wish to evaluate the divergence of a vector field A at point
P(xo,yo, zo); we let the point be enclosed by a differential volume as in Figure 3.15. The
surface integral in eq. (3.32) is obtained from

A • dS = M + + + + + ) A • dS (3.33)
S ^ •'front •'back •'left ^right Aop •'bottorr/

A three-dimensional Taylor series expansion of Ax about P is

BAr
Ax(x, v, z) = Ax(xo, yo, Zo) * * „ )

dx
+ (z - Zo)—

dz

+ (y-yo) dy
(3.34)

+ higher-order terms

For the front side, x = xo + dx/2 and dS = dy dz ax. Then,

dx dA
A • dS = dy dz

front

dx
xo, yo, zo) + —

22 dx
+ higher-order terms

For the back side, x = x0 - dx/2, dS - dy dz(~ax). Then,

dx dA
L 2 dx

back L

A • dS = -dydzl Ax(x0, yo, zo) ~ higher-order terms
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top side

Figure 3.15 Evaluation of V • A at point

P(x0, Jo. Zo).

front —
side

- i • /»
dz

dy

Jx
+. right side

dA
A • dS + I A • dS = dx dy dz — -

Hence,

•'front -"back

By taking similar steps, we obtain

and

left

A • dS + \ A-dS = dxdydz
right

dx

dAy

dy

A-dS A • dS = dx dy dz —
dz

+ higher-order terms (3.35)

+ higher-order terms (3.36)

+ higher-order terms (3.37)
•"top ^bottom

Substituting eqs. (3.35) to (3.37) into eq. (3.33) and noting that Av = dx dy dz, we get

, A • dS• $s
AV->O Av

Mi
dz

(3.38)

because the higher-order terms will vanish as Av —> 0. Thus, the divergence of A at point
P(xo, yo, zo) in a Cartesian system is given by

(3.39)

Similar expressions for V • A in other coordinate systems can be obtained directly
from eq. (3.32) or by transforming eq. (3.39) into the appropriate coordinate system. In
cylindrical coordinates, substituting eqs. (2.15), (3.17), and (3.18) into eq. (3.39) yields

V-A
1 dA6 dA,f +

P dp
(3.40)
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Substituting eqs. (2.28) and (3.20) to (3.22) into eq. (3.39), we obtain the divergence of A
in spherical coordinates as

(3.41)V- A -
1 d 2

dr(' A

1

r sin i
\.e sin 0) H

1

rsind d<f>

Note the following properties of the divergence of a vector field:

1. It produces a scalar field (because scalar product is involved).
2. The divergence of a scalar V, div V, makes no sense.
3. V • (A + B) = V • A + V • B
4. V • (VA) = VV • A + A • VV

From the definition of the divergence of A in eq. (3.32), it is not difficult to expect that

(3.42)

This is called the divergence theorem, otherwise known as the Gauss-Ostrogradsky
theorem.

Hie divergence theorem stales thai Ihe total mil ward llux of a vector licld A through
ihc closed surface." .V is ihe same as the volume integral of the divergence of A.

To prove the divergence theorem, subdivide volume v into a large number of small
cells. If the Mi cell has volume Avk and is bounded by surface Sk

A-dS

Avt (3.43)

Since the outward flux to one cell is inward to some neighboring cells, there is cancellation
on every interior surface, so the sum of the surface integrals over Sk's is the same as the
surface integral over the surface 5. Taking the limit of the right-hand side of eq. (3.43) and
incorporating eq. (3.32) gives

A-dS= V-Adv (3.44)

which is the divergence theorem. The theorem applies to any volume v bounded by the
closed surface S such as that shown in Figure 3.16 provided that A and V • A are continu-
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Figure 3.16 Volume v enclosed by surface S.

. Closed Surface S

EXAMPLE 3.6

ous in the region. With a little experience, it will soon become apparent that volume inte-
grals are easier to evaluate than surface integrals. For this reason, to determine the flux of
A through a closed surface we simply find the right-hand side of eq. (3.42) instead of the
left-hand side of the equation.

Determine the divergence of these vector fields:

(a) P = x2yz ax + xz az

(b) Q = p sin 0 ap + p2z a$ cos <j) az

(c) T = —z cos d ar + r sin 6 cos <j> a# + cos

Solution:

(a) V • P = —Px + —Pv + —Pz
dx x dy y dz zdx

= ~(x2yz)
dx

= 2xyz + x
dy

(b) V • Q = —^- (pQp) + -~Q^ + ^-Qz
P dp p B(j) dz
1 S , 1 d 2

 d

= - — (P sin 0) + - — (p z) + — (z cos <t>)
P dp p d<t> dz

= 2 sin ^ + cos <j>

(c) V • T = \ 3 - (r2Tr) + - ^
r dr r sin 8

~^(Te sin 6)
B6 r sin 9

1 d 1
= -^ — (cos 6) +

r2 dr

d o l a
(r sin 9 cos <£) H — (cos 9)

r sin 0 30 r sin 0 dd>

2r sin 0 cos 6 cos <t> + 0
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PRACTICE EXERCISE 3.6

Determine the divergence of the following vector fields and evaluate them at the
specified points.

(a) A = yz&x + 4xy&y + j a z at (1, - 2 , 3 )

(b) B = pz sin <t> ap + 3pz2 cos <$> a^ at (5, TT/2, 1)

(c) C = 2r cos 0 cos <j> ar + r y \ at (1, ir/6, ir/3)

Answer: (a) Ax, 4, (b) (2 - 3z)z sin <f>, - 1 , (c) 6 cos 6 cos <£, 2.598.

EXAMPLE 3.7
If G(r) = lOe 2z(/»aP + a j , determine the flux of G out of the entire surface of the cylinder
p = l , 0 < z < 1. Confirm the result using the divergence theorem.

Solution:

If !P is the flux of G through the given surface, shown in Figure 3.17, then

where ft, Vfc, and Ys are the fluxes through the top, bottom, and sides (curved surface) of
the cylinder as in Figure 3.17.

For Yt,z= \,dS = pdp d<j> az. Hence,

10e > dp d<t>=

Figure 3.17 For Example 3.7.

J
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For Yb, z = 0 and dS = pdp d<j>(—az). Hence,

G • dS -

= - 1 0 7 T

75

10e°pdpd<t> = -10(27r)y

For Ys, p = 1, dS = p dz d<j) a Hence,

= I G • dS = | | Kte~2zp2 dz d4> = 10(l)2(2ir)
2 = 0 J^) =

,.~2z

- 2

= 10TT(1 - e"2)

Thus,

- IOTT + 10TT(1 - e~2) = 0

Alternatively, since S is a closed surface, we can apply the divergence theorem:

But

= <P G-dS = | (V-G)rfv

- -
P ap

= -~(p 2 l0e~ 2 z ) - 20e^2z = 0
P dp

showing that G has no source. Hence,

= (V • G) dv = 0

PRACTICE EXERCISE 3.7

Determine the flux of D = p2 cos2 0 â  + z sin 0 a^ over the closed surface of the
cylinder 0 ^ j < I, p = 4. Verify the divergence theorem for this case.

Answer: (Air.

3.7 CURL OF A VECTOR AND STOKES'S THEOREM

In Section 3.3, we defined the circulation of a vector field A around a closed path L as the
integral $LA • d\.
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The curl of A is an axial (or rotational) vector whose magnitude is the maximum cir-
culation of A per unit area as the area lends to zero and whose direction is the normal
direction of the area when the area is oriented so as to make the circulation
maximum.' '

That is,

curl A = V X A = lim
A • d

(3.45)

where the area AS is bounded by the curve L and an is the unit vector normal to the surface
AS and is determined using the right-hand rule.

To obtain an expression for V X A from the definition in eq. (3.45), consider the dif-
ferential area in the ^z-plane as in Figure 3.18. The line integral in eq. (3.45) is obtained as

A • d l = ( + + + \ jA-dl (3.46)
JL ^Lb 'be Kd 'dj

We expand the field components in a Taylor series expansion about the center point
P(Xo,yo>zo) as in eq. (3.34) and evaluate eq. (3.46). On side ab, d\ = dyay and
z = zo - dzli, so

ab

dz
A • d\ = dy\ A(xo, yo, zo) ~ —

On side be, d\ = dz az and y = yo + dy/2, so

A-dl = dz
be

z(xo, yo, Zo)

2 dz

dy dAz

2 dy

On side cd, d\ = dy ay and z = z0 + dzJ2, so

A • d\ = -dy | Ay(xo, yo, zo) + y ~j^

(3.47)

(3.48)

(3.49)

Figure 3.18 Contour used in evaluating the ^-component
of V X A at point P(x0, y0, z0).

2Because of its rotational nature, some authors use rot A instead of curl A.

J
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On side da, d\ = dz Skz and y = yo - dy/2, so

'da

A • d\ = - dz | Az(xo, yo, Zo) ~ —
dydAz

2 dy
(3.50)

Substituting eqs. (3.47) to (3.50) into eq. (3.46) and noting that AS = dy dz, we have

A • d\ bA7 dAv
lim

AS

or

(curl A)x =

dy dz

dA7 dAy

By dz

The y- and x-components of the curl of A can be found in the same way. We obtain

dA7

(3.51)

(curl A)y =

(curl A)z =

dz dx

AAj, dAx

dx dy

(3.52a)

(3.52b)

The definition of V X A in eq. (3.45) is independent of the coordinate system. In
Cartesian coordinates the curl of A is easily found using

VX A = A A A
dx dy dz
A A A
nx riy nz

(3.53)

V X A = [dy
ldAy

[ dx
dAJ
dy J "z

aA z l
dx yy

(3.54)

By transforming eq. (3.54) using point and vector transformation techniques used in
Chapter 2, we obtain the curl of A in cylindrical coordinates as

ap p a
A A
dp d</>
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or

(3.55)

and in spherical coordinates as

V X A =

ar r ae r sin 0 â ,

~dr ~dd ~d4>
Ar rAe r sin 0 yL

or

V X A rsinflL 3^ 8 < ^ | a r

l [ 1 dAr 3(M 0 )
r [ s i n 0 9(̂ > ar

, 1 i W _ M , ,
+ r ar ae ' a "

(3.56)

Note the following properties of the curl:

1. The curl of a vector field is another vector field.
2. The curl of a scalar field V, V X V, makes no sense.
3. VX(A + B) = V X A + V X B
4. V X (A X B) = A(V • B) - B(V • A) + (B • VA - (A • V)B
5. V X (VA) = VV X A + VV X A
6- The divergence of the curl of a vector field vanishes, that is, V • (V X A) = 0.
7. The curl of the gradient of a scalar field vanishes, that is, V X VV = 0.

Other properties of the curl are in Appendix A.
The physical significance of the curl of a vector field is evident in eq. (3.45); the curl

provides the maximum value of the circulation of the field per unit area (or circulation
density) and indicates the direction along which this maximum value occurs. The curl of a
vector field A at a point P may be regarded as a measure of the circulation or how much the
field curls around P. For example, Figure 3.19(a) shows that the curl of a vector field
around P is directed out of the page. Figure 3.19(b) shows a vector field with zero curl.

Figure 3.19 Illustration of a curl: (a) curl at P points out
of the page; (b) curl at P is zero.

(a) (b)
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dS Figure 3.20 Determining the sense of d\
and dS involved in Stokes's theorem.

Closed Path L

Surfaces J

Also, from the definition of the curl of A in eq. (3.45), we may expect that

A • d\ = (VXA)- ( iS (3.57)

This is called Stokes's theorem.

Stokes's theorem suites that ihe circulation of a vcclor Meld A around a (closed) pain
/- is equal lo the surface integral ol'lhe curl of A over the open surface S bounded by
/.. (see Figure 3.20) provided that A and V X A are continuous on .V.

The proof of Stokes's theorem is similar to that of the divergence theorem. The surface
S is subdivided into a large number of cells as in Figure 3.21. If the Ath cell has surface area
ASk and is bounded by path Lk.

A-dl = A ' d l =

A-dl

AS,
ASt (3.58)

Figure 3.21 Illustration of Stokes's theorem.
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As shown in Figure 3.21, there is cancellation on every interior path, so the sum of the line
integrals around Lk's is the same as the line integral around the bounding curve L. There-
fore, taking the limit of the right-hand side of eq. (3.58) as ASk —> 0 and incorporating
eq. (3.45) leads to

A • dl = (V X A) • dS

which is Stokes's theorem.
The direction of dl and dS in eq. (3.57) must be chosen using the right-hand rule or

right-handed screw rule. Using the right-hand rule, if we let the fingers point in the direc-
tion ofdl, the thumb will indicate the direction of dS (see Fig. 3.20). Note that whereas the
divergence theorem relates a surface integral to a volume integral, Stokes's theorem relates
a line integral (circulation) to a surface integral.

EXAMPLE 3.8
Determine the curl of the vector fields in Example 3.6.

Solution:

(dPz dPy \ (dPx dP^ fdPy dPx
(a) V X P = —-* - —*) U + — i - —^ a , + —*

V 3 j 3z / \ dz dx J \ dx dy a7

= (0 - 0) ax + (x2y - z)
= (x2y - z)ay - x2zaz

(0 - x2z) az

= (-y sin 0 - p2) ap + (0 - 0)8* + ^ (3p2z - p cos <t>)az

(z sin <t> + p3)ap + (3pz - cos

(c) V X T =
r sin 0 L 30 30

i r i d <

ar

r sin I

r

— (cos 0 sin 0) (r sin 0 cos 0) | ar

30 30
1 3 (cos0) 3

( r c o s ,sin 0 30 r2 3r

dr
(r sin 0 cos 0) - —-

d (COS0)

(cos 26 + r sin 0 sin 0)a, H— (0 — cos 6)ae
r sin 0

1 / sin (9
+ — 2r sin 0 cos 0 H 5-r V r

2

/cos 20 . \ cos 0
= —r-r + sin 0 I ar

Vrsin0 / r

/ 1 \
+ 2 cos 0 + -^ sin 0 a0
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PRACTICE EXERCISE 3.8

Determine the curl of the vector fields in Practice Exercise 3.6 and evaluate them at
the specified points.

Answer: (a) ax + yay + (4y - z)az, ax - 2% - 1 la,

(b) -6pz cos 0 ap + p sin 0 â  + (6z - l)z cos 0 a2, 5a,;,

cot 6 I 3
(c) —^ ar - ^2 cot 0 sin 0 + - ^

1.732 ar - 4.5 ae + 0.5 a0.

+ 2 sin 6 cos 0 a*,

EXAMPLE 3.9
If A = p cos 0 ap + sin 0 â , evaluate ^ A • d\ around the path shown in Figure 3.22.
Confirm this using Stokes's theorem.

Solution:

Let

A - d l + [ + I + I | A - J 1
'b 'c 'd

where path L has been divided into segments ab, be, cd, and da as in Figure 3.22.
Along ab, p = 2 and d\ = p d<t> a0. Hence,

k-d\ =
30°

p sin 0 d(j> = 2(—cos 0)
= 60°

30°

= -(V3 - 1)
60°

5

/ ^ t
I ~

/

is' \ \ ^

7/
Xb

0 I
1

< L

\

r

\ , C

\
\

\
\
\
\
\
\
1
1 ,

Figure 3.22 For Example 3.9.
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Along be, <t> = 30° and d\ = dp ap. Hence,

A • d\ = p cos <&dp = cos 30° —

Along cd, p = 5 and dl = p d<f> a^. Hence,

2lV3

60°

p sin <j>d<j> = 5 ( - c o s <f>)
60°

= f(V3-0
30°

Along da, <j> = 60° and dl = dp ap. Hence,

A • dl = p cos <j>dp = cos 60° —
^ 2

21

Putting all these together results in

5V3 5 21
2 2 4

= — ( V 3 - 1) = 4.941
4

Using Stokes's theorem (because L is a closed path)

But dS = pd<(>dpaz and

. 1 3A,
V X A = a j -—^

= (0 - (0 -

A • dl = (V X A)

I dAo dAz\ l\d

+ aj —^ - —^ I + a,T | —
dAn

Hence:

(V X A)
60° z-5

60°

sin i
30° J2

dp

p) sin 4> az

— (1 + p ) sin <fi p dp d<t>

5

= -cos'

27
= — (V3 - 1) = 4.941
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PRACTICE EXERCISE 3.9

Use Stokes's theorem to confirm your result in Practice Exercise 3.2.

Answer: 1.

EXAMPLE 3.10
For a vector field A, show explicitly that V • V X A = 0; that is, the divergence of the curl
of any vector field is zero.

Solution:

This vector identity along with the one in Practice Exercise 3.10 is very useful in EM. For
simplicity, assume that A is in Cartesian coordinates.

dx dy dz

dx' dy' dz

dx dy dz
A A A

dAz

dy

dAy

dz
d fdAz dAy^

dx \ dy dz

dAy _ dA,

dx dz y \ dx dy
d /dA v dÂ

d2Az d2Av

V dx dz
d2Ax

dx \ dx
2AV d 2 A ,

dx dy dx dz
= 0

dy dx dy dz dz dx dz 3y

because
d2A7 d2A7

dx dy dy dx
and so on.

PRACTICE EXERCISE 3.10

For a scalar field V, show that V X W = 0; that is, the curl of the gradient of any
scalar field vanishes.

Answer: Proof.

.8 LAPLACIAN OF A SCALAR

For practical reasons, it is expedient to introduce a single operator which is the composite
of gradient and divergence operators. This operator is known as the Laplacian.
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The Laplacian of u scalar field V, written as V2V. is the divergence of the gradient
of V.

Thus, in Cartesian coordinates,

Laplacian V = V • W = V2V

d

dx'

d d

dz'
01.
dx '

OX..
By''

dV_

dz a7
(3.59)

that is,

(3.60)

Notice that the Laplacian of a scalar field is another scalar field.
The Laplacian of V in other coordinate systems can be obtained from eq. (3.60) by

transformation. In cylindrical coordinates,

(3.61)

and in spherical coordinates,

1 d ( 2dV\
r2 dr \ dr J r2

1

sin

d f

V ou V

dV\

dd) ' r2

1

sin2^

d2V

d<j>2
(3.62)

A scalar field V is said to be harmonic in a given region if its Laplacian vanishes in
that region. In other words, if

V 2 V=0 (3.63)

is satisfied in the region, the solution for V in eq. (3.63) is harmonic (it is of the form of sine
or cosine). Equation (3.63) is called Laplace's equation. Solving this equation will be our
major task in Chapter 6.

We have only considered the Laplacian of a scalar. Since the Laplacian operator V2 is
a scalar operator, it is also possible to define the Laplacian of a vector A. In this context,
V2A should not be viewed as the divergence of the gradient of A, which makes no sense.
Rather, V2A is defined as the gradient of the divergence of A minus the curl of the curl of
A. That is,

V2A = V(V- A) - V X V X A (3.64)

J
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This equation can be applied in finding V2A in any coordinate system. In the Cartesian
system (and only in that system), eq. (3.64) becomes

V2A = (3.65)

EXAMPLE 3.11
Find the Laplacian of the scalar fields of Example 3.3; that is,

(a) V = e~z sin 2x cosh y

(b) U = p2z cos 20

(c) W = lOr sin2 0 cos 0

Solution:

The Laplacian in the Cartesian system can be found by taking the first derivative and later
the second derivative.

d2V t)2V r)2V

dx 5y dz

= — (2e~z cos 2x cosh y) H (e z cos 2x sinh y)
dx dy

H (~e z sin 2x cosh y)
dz

= -Ae~z sin 2xcoshy + e~z sin 2xcoshy + e~z sin 2xcoshy
= -2e~z sin 2x cosh y

1 d2U d2U
(b)

P dp

= (2p2z cos 20) ~ 4p2z cos 20 + 0
P dp pz

= Az cos 20 — Az cos 20
= 0

1
r2 sin 6 d$r dr

1 r)
= -^ — (10r2 sin2 0 cos 0)

lOr sin2 0 cos 0

r2 sin2 0

d ( . ndW

d9

d2W

r2sin20 dct>2

1 f)
; (10r sin 20 sin 6 cos 0)
sin0 d6

20 sin2 0 cos 0 20r cos 20 sin 6 cos 0

r2 sin 0
lOr sin 26 cos 0 cos 0 10 cos 0

r2 sin 6 r

(2 sin2 0 + 2 cos 20 + 2 cos2 0 - 1 )

( 1 + 2 cos 26)
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PRACTICE EXERCISE 3.11

Determine the Laplacian of the scalar fields of Practice Exercise 3.3, that is,

(a) V = x2y + xyz

(b) V = pz sin 4> + z2 cos2 <l> + p2

(c) / = cos 0 sin 4> In r + r2 <j>

, 2z2 1
Answer: (a) 2y, (b) 4 + 2 cos 0 5-cos2<^>, (c) —z cos 0 sin <̂  (1 - 2 1 n r

cosec2 $ In r) + 6$.

3.9 CLASSIFICATION OF VECTOR FIELDS

A vector field is uniquely characterized by its divergence and curl. Neither the diver-
gence nor curl of a vector field is sufficient to completely describe the field. All vector
fields can be classified in terms of their vanishing or nonvanishing divergence or curl as
follows:

(a) V • A = 0, V X A = 0

(b) V • A ¥= 0, V X A = 0

(c) V • A = 0, V X A * 0

(d) V ' A # O , V X A # O

Figure 3.23 illustrates typical fields in these four categories.

J , 1 O\
> I

\

(a) (b) (c) (d)

Figure 3.23 Typical fields with vanishing and nonvanishing divergence or curl.
(a) A = kax, V • A = 0, V X A = 0,
(b) A = kr, V • A = 3k, V X A = 0,
(c) A = k X r, V • A = 0, V X A = 2k,
(d) A = k X r + cr, V • A = 3c, V X A = 2k.
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A vector field A is said to be solenoidal (or divergenceless) if V • A = 0.

Such a field has neither source nor sink of flux. From the divergence theorem,

A • dS = V • A dv = 0 (3.66)

Hence, flux lines of A entering any closed surface must also leave it. Examples of sole-
noidal fields are incompressible fluids, magnetic fields, and conduction current density
under steady state conditions. In general, the field of curl F (for any F) is purely solenoidal
because V • (V X F) = 0, as shown in Example 3.10. Thus, a solenoidal field A can
always be expressed in terms of another vector F; that is,

if

then

V-A = 0

A • JS = 0 and F = V X A
(3.67)

A vector field A is said to be irrotational (or potential) if V X A — 0.

That is, a curl-free vector is irrotational.3 From Stokes's theorem

(V X A) • dS = 4> A • d\ = 0 (3.68)

Thus in an irrotational field A, the circulation of A around a closed path is identically zero.
This implies that the line integral of A is independent of the chosen path. Therefore, an ir-
rotational field is also known as a conservative field. Examples of irrotational fields include
the electrostatic field and the gravitational field. In general, the field of gradient V (for any
scalar VO is purely irrotational since (see Practice Exercise 3.10)

V X (VV) = 0 (3.69)

Thus, an irrotational field A can always be expressed in terms of a scalar field V; that is

V X A = 0

A • d\ = 0 and

one reason to use the term irrotational.

A = -vy
(3.70)

For this reason, A may be called & potential field and V the scalar potential of A. The neg-
ative sign in eq. (3.70) has been inserted for physical reasons that will become evident in
Chapter 4.

In fact, curl was once known as rotation, and curl A is written as rot A in some textbooks. This is
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A vector A is uniquely prescribed within a region by its divergence and its curl. If we
let

and

V • A = P v

V X A = ps

(3.71a)

(3.71b)

pv can be regarded as the source density of A and ps its circulation density. Any vector A
satisfying eq. (3.71) with both pv and ps vanishing at infinity can be written as the sum of
two vectors: one irrotational (zero curl), the other solenoidal (zero divergence). This is
called Helmholtz 's theorem. Thus we may write

A = - V V + V X B (3.72)

If we let A, = — W and As = V X B, it is evident from Example 3.10 and Practice Exer-
cise 3.10 that V X A; = 0 and V X As = 0, showing that A, is irrotational and As is sole-
noidal. Finally, it is evident from eqs. (3.64) and (3.71) that any vector field has a Lapla-
cian that satisfies

V2A = Vpv - V X ps (3.73)

EXAMPLE 3.12
Show that the vector field A is conservative if A possesses one of these two properties:

(a) The line integral of the tangential component of A along a path extending from a point
P to a point Q is independent of the path.

(b) The line integral of the tangential component of A around any closed path is zero.

Solution:

(a) If A is conservative, V X A = 0, so there exists a potential V such that

. dV dV dV
A = - W = -1 — ar + — a, + — a,

Hence,

Q

A-dl

dx

dV
—
dx

dy

dV

dz

dV
—
dz

or

dV dx dV_dy dVdz~\
dx ds dy ds dz ds J

QdV [Q

— ds = - dV
ds J

A • d\ = V(P) - V(Q)
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showing that the line integral depends only on the end points of the curve. Thus, for a con-

[Q
servative field, A • d\ is simply the difference in potential at the end points.

(b) If the path is closed, that is, if P and Q coincide, then

Adl= V(P) - V(P) = 0

PRACTICE EXERCISE 3.12

Show that B = (y + z cos xz)ax + xay + x cos xz az is conservative, without comput-
ing any integrals.

Answer: Proof.

1. The differential displacements in the Cartesian, cylindrical, and spherical systems are
respectively

d\ = dxax + dy ay + dz az

d\ = dp ap + p defy a^ + dz az

d\ = dr ar + r dd ae + r sin 6 d(j> â ,

Note that d\ is always taken to be in the positive direction; the direction of the dis-
placement is taken care of by the limits of integration.

2. The differential normal areas in the three systems are respectively

dS = dy dz six

y

dx dy az

dS = pdcj> dz ap

dp dz a^
p dp d<j> az

dS = r 2 sin 6 dd d<j) a r

r sin 8 dr d<j> a#
r dr dd a$

Note that dS can be in the positive or negative direction depending on the surface
under consideration.

3. The differential volumes in the three systems are

dv = dxdy dz

dv = p dp d<t> dz

dv = r2 sin 6 dr dd d</>
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4. The line integral of vector A along a path L is given by JL A • d\. If the path is closed,
the line integral becomes the circulation of A around L; that is, j>L A • d\.

5. The flux or surface integral of a vector A across a surface S is defined as Js A • dS.
When the surface S is closed, the surface integral becomes the net outward flux of A
across S; that is, cf> A • dS.

6. The volume integral of a scalar pv over a volume v is defined as /„ pv dv.
7. Vector differentiation is performed using the vector differential operator V. The gradi-

ent of a scalar field V is denoted by V V, the divergence of a vector field A by V • A, the
curl of A by V X A, and the Laplacian of V by V2V.

8. The divergence theorem, (j>5 A • dS = / v V • A dv, relates a surface integral over a
closed surface to a volume integral.

9. Stokes's theorem, <f>L A • d\ = /s(V X A) • dS, relates a line integral over a closed
path to a surface integral.

10. If Laplace's equation, V2V = 0, is satisfied by a scalar field V in a given region, V is
said to be harmonic in that region.

11. A vector field is solenoidal if V • A = 0; it is irrotational or conservative if V XA = 0.
12. A summary of the vector calculus operations in the three coordinate systems is pro-

vided on the inside back cover of the text.
13. The vector identities V • V X A = 0 and V X VV = 0 are very useful in EM. Other

vector identities are in Appendix A. 10.

REVIEW QUESTIONS

3.1 Consider the differential volume of Figure 3.24. Match the items in the left column with
those in the right column.

(a) d\ from A to B (i) dydzax

(b) dlfromAtoD (ii) -dxdzay

(c) d\ from A to £ (iii) dx dy az

(d) dS for face ABCD (iv) -dxdyaz

(e) dS for face AEHD (v) dxax

(f) dS for face DCGH (vi) dy ay

(g) dS for face ABFE (vii) dzaz

3.2 For the differential volume in Figure 3.25, match the items in the left list with those in the
right list.

(a) d\ from £ to A (i) — p d4> dz ap

(b) dlfromBtoA (ii) —dpdza^

(c) d\ from D to A (iii) —p dp d<j> az

(d) dS for face ABCD (iv) pdpd(f>az

(e) dS for face AEHD (v) dp ap

(f) dS for face ABFE (vi) pd<t>a^

(g) dS for face DCGH (vii) dz az
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F Figure 3.24 For Review Question 3.1.

91

3.3 A differential volume in spherical coordinates is shown in Figure 3.26. For the volume
element, match the items in the left column with those in the right column.

(a) dlfromAtoD

(b) </lfrom£toA
(c) dlfmmAtoB

(d) dS for face EFGH

(e) dS for face AEHD

(f) dS for face ABFE

(i) -r2 sin

(ii) —r sin $ drd(j>ae

(iii) r dr d6 a0

(iv) drar

(v) rd6ae

(vi) r sin $ d(j> &#

3.4 If r = xax + yay + zaz, the position vector of point (x, y, z) and r = |r|, which of the fol-
lowing is incorrect?

(a) Vr = rlr
(b) V • r = 1

(c) V2(r • r) = 6

(d) V X r = 0

3.5 Which of the following is a meaningless combination?

(a) graddiv

(b) divcurl

(c) curl grad

(d) curl grad

(e) div curl

F Figure 3.25 For Review Question 3.2.
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F Figure 3.26 For Review Question 3.3 (and also
for Practice Exercise 3.1).

3.6 Which of the following is zero?

(a) grad div

(b) div grad

(c) curl grad

(d) curl curl

3.7 Given field A = 3x2yz ax + x3z ay + (x3y - 2z)az, it can be said that A is

(a) Harmonic

(b) Divergenceless

(c) Solenoidal

(d) Rotational

(e) Conservative

3.8 The surface current density J in a rectangular waveguide is plotted in Figure 3.27. It is
evident from the figure that J diverges at the top wall of the guide whereas it is diver-
genceless at the side wall.

(a) True

(b) False

3.9 Stokes's theorem is applicable only when a closed path exists and the vector field and its
derivatives are continuous within the path.

(a) True

(b) False

(c) Not necessarily

3.10 If a vector field Q is solenoidal, which of these is true?

(a) §L Q • d\ = 0

(b) §s Q • dS = 0

(c) V X Q = 0

(d) V X Q # 0

(e) V2Q = 0
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Figure 3.27 For Review Question 3.8.

u ^

Answers: 3.1a-(vi), b-(vii), c-(v), d-(i), e-(ii), f-(iv), g-(iii), 3.2a-(vi), b-(v), c-(vii), d-(ii),
e-(i), f-Ov), g-(iii), 3.3a-(v), b-(vi), c-(iv), d-(iii), e-(i), f-(ii), 3.4b, 3.5c, 3.6c,
3.7e, 3.8a, 3.9a, 3.10b.

Using the differential length dl, find the length of each of the following curves:

(a) p = 3, TT/4 < 0 < ir/2, z = constant

(b) r = 1,0 = 3O°,O<0<6O°

(c) r = 4, 30° < 6 < 90°, </> = constant

3.2 Calculate the areas of the following surfaces using the differential surface area dS:

(a) p = 2, 0 < z < 5, ir/3 < </> < vr/2

(b) z = 1, 1 < p < 3, 0 < 4> < TT/4

(c) r = 10, TT/4 < 6 < 2TT/3, 0 < <j> < 2ir

(d) 0 < r < 4, 60° < 6 < 90°, <t> = constant

3.3 Use the differential volume dv to determine the volumes of the following regions:

(a) 0 < x < 1, 1 < y < 2, - 3 < z < 3
(b) 2 < p < 5, TI73 < (/> < 7T, - 1 < z < 4

(c) 1 < r < 3, TT/2 < 0 < 2x/3, TT/6 < <£ < x/2

3.4 Given that ps = x2 + xy, calculate SsPsdS over the region y < x2, 0 < x < 1.

3.5 Given that H = x ax + y a,, evaluate H • dl, where L is along the curve y = x from

3.6 Find the volume cut from the sphere radius r = a by the cone 6 = a. Calculate the
volume when a = x/3 and a = TT/2.
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B

3.7 If the integral I F • dl is regarded as the work done in moving a particle from A to B,
A

find the work done by the force field

F = 2xy ax + (x2 - z2) ay ~ 3xz2 az

on a particle that travels from A(0, 0, 0) to B(2, 1, 3) along
(a) The segment (0, 0, 0) -» (0, 1, 0) -» (2, 1, 0) -> (2, 1, 3)
(b) The straight line (0, 0, 0) to (2, 1, 3)

3.8 If

H = (x - y)ax + {x2 + zy)ay + 5yz az

evaluate } H • dl along the contour of Figure 3.28.

3.9 If V = (x + y)z, evaluate <p V dS, where S is the surface of the cylindrical wedge defined

by 0 < 4> < 7i72, 0 < z < 2 and dS is normal to that surface.

3.10 Let A = 2xyax + xzay - yaz. Evaluate J A dv over:

(a) a rectangular region 0 2 J : < 2 , O S J < 2 , 0 ^ Z S 2

(b) a cylindrical region p < 3 , 0 s j < 5

(c) a spherical region r < 4

3.11 The acceleration of a particle is given by a = 2.4az m/s2. The initial position of the
particle is r = (0, 0, 0), while its initial velocity is v = — 2a^ + 5az m/s. (a) Find the
position of the particle at time t = 1. (b) Determine the velocity of the particle as a func-
tion of t.

3.12 Find the gradient of the these scalar fields:

(a) U = 4xz2 + 3yz
(b) W = 2p(z2 + 1) cos <t>
(c) H = r2 cos 6 cos <t>

Figure 3.28 For Problem 3.8.
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3.13 Determine the gradient of the following fields and compute its value at the specified point.

(a) V = eax+3y) cos 5z, (0.1, -0 .2 , 0.4)
(b) T = 5pe~2z sin </>, (2, ir/3, 0)

3.14 Determine the unit vector normal to S(x, y, z) — x2 + y2 — z at point (1, 3,0).

3.15 The temperature in an auditorium is given by T = x2 + y2 — z. A mosquito located at
(1, 1, 2) in the auditorium desires to fly in such a direction that it will get warm as soon as
possible. In what direction must it fly?

3.16 Find the divergence and curl of the following vectors:

(a) A = e^ ax + sin xy ay + cos2 xz az

(b) B = pz2 cos 4> ap + z sin2 <$> az

(c) C = r cos 6 ar sin 0 ae + 2r2 sin 8 a^

3.17 Evaluate V X A and V • V X A if:

(a) A = x2yax + y2zay - 2xzaz

(b) A = p2zap + p \ + 3pz\
sin 4> cos <f>

(c) A = —— ar —

3.18 The heat flow vector H = kWT, where T is the temperature and k is the thermal conduc-
tivity. Show that where

•KX x y
T = 50 sin — cosh —

2 2

then V • H = 0.

3.19 (a) Prove that

V • (VA) = VV • A + A • VV

where V is a scalar field and A is a vector field,

(b) Evaluate V • (VA) when A = 2xay + 3yay - 4zaz and V = xyz.

3.20 (a) Verify that

V X (VA) = V(V X A) + VV X A

where V and A are scalar and vector fields, respectively.

(b) Evaluate V X (VA) when V = - r and A = r cos 8 ar + r sin 8 ae + sin 8 cos </> a0.
r

3.21 lfU = xz — x2y + y V , evaluate div grad U.
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3.22 Show that V In p = V X <j>az.

( r V 0 \
3.23 Prove that V0 = V X .

\sin 8J

3.24 Evaluate VV, V • W , and V X VV if:

(a) V = 3x2y + xz

(b) V = pz cos 0

(c) V = Ar2 cos d sin 0

3.25 If r = xax + yay + zaz and T = 2zyax + xy2ay + x2yzaz, determine

(a) (V • r)T

(b) (r • V)T

(c) V-r (r -T)

(d) (r • V)r2

3.26 If r = xax + yay + zaz is the position vector of point (x, y, z), r = |r|, and n is an integer,
show that:

(a) V • r"r = (n + 3)r"

(b) V X r"r = 0

3.27 If r and r are as defined in the previous problem, prove that:

(a) V (In r) = -r

(b) V2 (In r) = \

3.28 For each of the following scalar fields, find V2V

(a) Vi = x3 + y3 + z3

(b) V2 = pz2 sin 20

(c) V3 = r\\ + cos 6 sin <j>)

3.29 Find the Laplacian of the following scalar fields and compute the value at the specified
point.

(a) U = x3y2exz, (1, - 1 , 1 )

(b) V = p2z(cos 4> + sin 0), (5, TT/6, - 2 )

(c) W = e~r sin 6 cos 0, (1, TT/3, TT/6)

3.30 If V = x2y2z2 and A = x2y ax + xz3 ay - y2z2 az, find: (a) V2V, (b) V2A, (c) grad div A,
(d) curl curl A.

J
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Figure 3.29 For Problem 3.31.

*3.31 Given that F = x2y ax - y ay, find

(a) <f>L F • d\ where L is shown in Figure 3.29.

(b) J s ( V x F ) ' ( f i where S is the area bounded by L.

(c) Is Stokes's theorem satisfied?

3.32 Let D = 2pz\ + p cos2 <j>az. Evaluate

(a) &D-dS

(b) /„ V • Ddv

over the region defined by 0 s p < 5, - 1 < z :£ 1, 0 < <£ < 2TT.

3.33 If F = x \ + y \ + (z2 - 1) a,, find $ F • dS, where S is defined by p = 2, 0 < z <

2, 0 < <t> < 2TT.

3.34 (a) Given that A = xyax + yzay + xzaz, evaluate cf>s A • dS, where S is the surface of the
cube defined b y O < x < l , 0 < v < l , 0 < z < 1.

(b) Repeat part (a) if S remains the same but A = yzax + xzay + xyaz.

3.35 Verify the divergence theorem

A-.rfS = V- Adv

for each of the following cases:

(a) A = xy2ax + y3ay + y2zaz and S is the surface of the cuboid defined by 0 < x < 1,
0 <y < 1,0 < z < 1

(b) A = 2pzap + 3z sin 4> a^ - Ap cos 4> az and S is the surface of the wedge 0 < p < 2,
0 < 0 < 45°, 0 < z < 5

(c) A = r2ar + r sin 6 cos <£ a# and S is the surface of a quarter of a sphere defined by
0 < r < 3 , 0 < <t> < TT/2, 0 < 0 < x/2.
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(a)

Figure 3.30 For Problem 3.37.

3.36 The moment of inertia about the z-axis of a rigid body is proportional to

(x2 + y2) dx dy dz

Express this as the flux of some vector field A through the surface of the body.

*3.37 Let A = p sin </> ap + p2 a0. Evaluate §L A • d\ given that

(a) L is the contour of Figure 3.30(a)

(b) L is the contour of Figure 3.3O(b)

3.38 Calculate the total outward flux of vector

F = p2 sin 0 ap + z cos <f> a0 + pz&z

through the hollow cylinder defined b y 2 < p < 3 , 0 ^ z ^ 5 .

3.39 Find the flux of the curl of field

T = - r cos 6 a r + r sin 6 cos </>a( + cos 6 su
r

through the hemisphere r = 4, z ^ 0.

**3.40 A vector field is given by

Q =
Vx2

• [(x - y)ax + (x + y)ay

Evaluate the following integrals:

(a) JL Q ' d\ where L is the circular edge of the volume in the form of an ice-cream cone
shown in Figure 3.31.

(b) Jj , (V X Q) • ^S where S\ is the top surface of the volume

(c) Js2 (V X Q) • dS where S2 is the slanting surface of the volume

**Double asterisks indicate problems of highest difficulty.

J
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Figure 3.31 Volume in form of ice-cream
cone for Problem 3.40.

— y

(d) JSl Q • dS

(e) fs2Q-dS
(f) J"v V • Q dv

How do your results in parts (a) to (f) compare?

*3.41 A rigid body spins about a fixed axis through its center with angular velocity to. If u is the
velocity at any point in the body, show that to = 1/2 V X u.

3.42 Let U and V be scalar fields, show that

UVV-dl = -<t> VVU-dl

3.43 Show that

f i c
rnx • dr

n + 3

where r, r, and n are as defined in Problem 3.26.

3.44 Given the vector field

G = (16xy -

(a) Is G irrotational (or conservative)?

T = (axy + 0z3)ax + (3x2 -

is irrotational, determine a, 0, and y. Find V • T at (2, — 1, 0).

(b) Find the net flux of G over the cube 0 < x, y, z < 1.
(c) Determine the circulation of G around the edge of the square z = 0, 0 < x, y < 1.

Assume anticlockwise direction.

(3xZ
2 - y)az



PART 2

ELECTROSTATICS



Chapter 4

ELECTROSTATIC FIELDS

Take risks: if you win, you will be happy; if you lose you will be wise.

—PETER KREEFT

4.1 INTRODUCTION

Having mastered some essential mathematical tools needed for this course, we are now
prepared to study the basic concepts of EM. We shall begin with those fundamental con-
cepts that are applicable to static (or time-invariant) electric fields in free space (or
vacuum). An electrostatic field is produced by a static charge distribution. A typical
example of such a field is found in a cathode-ray tube.

Before we commence our study of electrostatics, it might be helpful to examine briefly
the importance of such a study. Electrostatics is a fascinating subject that has grown up in
diverse areas of application. Electric power transmission, X-ray machines, and lightning
protection are associated with strong electric fields and will require a knowledge of elec-
trostatics to understand and design suitable equipment. The devices used in solid-state
electronics are based on electrostatics. These include resistors, capacitors, and active
devices such as bipolar and field effect transistors, which are based on control of electron
motion by electrostatic fields. Almost all computer peripheral devices, with the exception
of magnetic memory, are based on electrostatic fields. Touch pads, capacitance keyboards,
cathode-ray tubes, liquid crystal displays, and electrostatic printers are typical examples.
In medical work, diagnosis is often carried out with the aid of electrostatics, as incorpo-
rated in electrocardiograms, electroencephalograms, and other recordings of organs with
electrical activity including eyes, ears, and stomachs. In industry, electrostatics is applied
in a variety of forms such as paint spraying, electrodeposition, electrochemical machining,
and separation of fine particles. Electrostatics is used in agriculture to sort seeds, direct
sprays to plants, measure the moisture content of crops, spin cotton, and speed baking of
bread and smoking of meat.12

'For various applications of electrostatics, see J. M. Crowley, Fundamentals of Applied Electrostat-
ics. New York: John Wiley & Sons, 1986; A. D. Moore, ed., Electrostatics and Its Applications. New
York: John Wiley & Sons, 1973; and C. E. Jowett, Electrostatics in the Electronics Environment.
New York: John Wiley & Sons, 1976.
2An interesting story on the magic of electrostatics is found in B. Bolton, Electromagnetism and Its
Applications. London: Van Nostrand, 1980, p. 2.

103
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We begin our study of electrostatics by investigating the two fundamental laws gov-
erning electrostatic fields: (1) Coulomb's law, and (2) Gauss's law. Both of these laws are
based on experimental studies and they are interdependent. Although Coulomb's law is ap-
plicable in finding the electric field due to any charge configuration, it is easier to use
Gauss's law when charge distribution is symmetrical. Based on Coulomb's law, the
concept of electric field intensity will be introduced and applied to cases involving point,
line, surface, and volume charges. Special problems that can be solved with much effort
using Coulomb's law will be solved with ease by applying Gauss's law. Throughout our
discussion in this chapter, we will assume that the electric field is in a vacuum or free
space. Electric field in material space will be covered in the next chapter.

4.2 COULOMB'S LAW AND FIELD INTENSITY

Coulomb's law is an experimental law formulated in 1785 by the French colonel, Charles
Augustin de Coulomb. It deals with the force a point charge exerts on another point charge.
By a point charge we mean a charge that is located on a body whose dimensions are much
smaller than other relevant dimensions. For example, a collection of electric charges on a
pinhead may be regarded as a point charge. Charges are generally measured in coulombs
(C). One coulomb is approximately equivalent to 6 X 1018 electrons; it is a very large unit
of charge because one electron charge e = -1.6019 X 10~19C.

Coulomb's law states that the force /•' between two point charges (?, and Q2 is:

1. Along the line joining them
2. Directly proportional to the product QtQ2 of the charges
3. Inversely proportional to the square of the distance R between them.'

Expressed mathematically,

F =
R2

(4.1)

where k is the proportionality constant. In SI units, charges <2i and Q2 are in coulombs (C),
the distance R is in meters (m), and the force F is in newtons (N) so that k = 1/4TTS0. The
constant so is known as the permittivity of free space (in farads per meter) and has the value

8.854 X 10~12 = -^ r -F /m

= 9 X 109 m/F
47T£n

(4.2)

3Further details of experimental verification of Coulomb's law can be found in W. F. Magie, A Source
Book in Physics. Cambridge: Harvard Univ. Press, 1963, pp. 408^20.
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Thus eq. (4.1) becomes

F =
QxQi

4irEoR
2 (4.3)

If point charges Qy and Q2 are located at points having position vectors I"! and r2, then
the force F12 on Q2 due to Qy, shown in Figure 4.1, is given by

(4.4)

(4.5a)

(4.5b)

(4.5c)

(4.6a)

(4.6b)

where

Rl2 = r2 ~

R = |R12

aR,2 - R

By substituting eq. (4.5) into eq. (4.4), we may write eq. (4.4) as

*12 -

or

It is worthwhile to note that

Q1Q2 (r2 - r,)

4xeo|r2 -

1. As shown in Figure 4.1, the force F2, on Qy due to Q2 is given by

F2i = |F,2|aR21 = |F12|(-aRi2)

or

F2] = - F 1 2

since

(4.7)

Figure 4.1 Coulomb vector force on point
changes Qy and Q2.

Origin
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(a) (b) (c)

Figure 4.2 (a), (b) Like charges repel;
(c) unlike charges attract.

2. Like charges (charges of the same sign) repel each other while unlike charges
attract. This is illustrated in Figure 4.2.

3. The distance R between the charged bodies 2i and Q2 must be large compared with
the linear dimensions of the bodies; that is, 2i and Q2 must be point charges.

4. Qx and Q2 must be static (at rest).
5. The signs of Qx and Q2 must be taken into account in eq. (4.4).

If we have more than two point charges, we can use the principle of superposition to
determine the force on a particular charge. The principle states that if there are N charges
2i> 62. • • •. QN located, respectively, at points with position vectors r1; r2 , . . . , r^, the
resultant force F on a charge Q located at point r is the vector sum of the forces exerted on
Q by each of the charges Qu Q2,. . . , QN. Hence:

QQdX ~ rn)

or

ee,(r - r
47reo|r - r

,)

17
r —

4ireo

2

( r -
r -

N

-2

r2)

r2|3

G*(
|r

+ • • • +

r-r,)
(4.8)

We can now introduce the concept of electric field intensity.

The electric field intensity (or electric field strength) K is the force per unit charge
when placed in the electric field.

Thus

or simply

F
E = lim —

0^o Q
(4.9)

E =
Q

(4.10)

The electric field intensity E is obviously in the direction of the force F and is measured in
newtons/coulomb or volts/meter. The electric field intensity at point r due to a point charge
located at r ' is readily obtained from eqs. (4.6) and (4.10) as

E =
Q ~ r')

r - r '
(4.11)
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For N point charges Qu Q2,. . . , QN located at r b r2,. . . , rN, the electric field in-
tensity at point r is obtained from eqs. (4.8) and (4.10) as

or

t, —
6i(r -

4xejr -
fepr - r)2

4irso|r - r2

A 2J
4TT£O £TX r -

- rN)

4TT£O r -

(4.12)

EXAMPLE 4.1
Point charges 1 mC and - 2 mC are located at (3, 2, -1 ) and (—1, —1,4), respectively.
Calculate the electric force on a 10-nC charge located at (0, 3, 1) and the electric field in-
tensity at that point.

Solution:

QQk - rk)

A=i,247reo|r - rk\

Q / 10"3[(0, 3, 1) - (3,2,-1)] 2.10'3[(0, 3, 1) - (-1,-1,4)]

47re0 I |(0,3, 1 ) - ( 3 , 2 , - 1 ) | 3

10"3 • 10 • 10"9 r (-3,1,2)
- ( - 1 , - 1 , 4)|3

4TT

= 9 - 1 0

F = - i

At that point,

10 - 9

2(1,4,-3)

(9 + 1 + 4yu (1 + 16 + 9)3/2

36TT
- 2 [ ( - 3 , 1,2) + ( -2 , -8 ,6)

14Vl4 26V26
- 3.817ay + 7.506azmN

E =
Q

= (-6.507, -3.817, 7.506)
10

10 • 10"9

E = -650.7ax - 381.7a. + 750.6azkV/m

PRACTICE EXERCISE 4.1

Point charges 5 nC and —2 nC are located at (2,0, 4) and ( -3 ,0 , 5), respectively.

(a) Determine the force on a 1-nC point charge located at (1, —3, 7).

(b) Find the electric field E at (1, - 3 , 7).

Answer: (a) -1.004a* - 1.284a,, + 1.4aznN,
(b) -1.004ax - 1.284a,+1.4a2V/m.
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EXAMPLE 4.2
Two point charges of equal mass m, charge Q are suspended at a common point by two
threads of negligible mass and length t. Show that at equilibrium the inclination angle a of
each thread to the vertical is given by

Q = 16x eomg£ sin a tan a

If a is very small, show that

Solution:

Consider the system of charges as shown in Figure 4.3 where Fe is the electric or coulomb
force, T is the tension in each thread, and mg is the weight of each charge. At A or B

T sin a = Fe

T cos a = mg

Hence,

But

Hence,

or

sin a _ Fe 1 Q2

cos a mg mg 4ireor

r = 2€ sin a

Q cos a = I6irejng€2 sin3 a

Q2 = I6irsomg(2 sin2 a tan a

as required. When a is very small

tan a — a — sin a.

Figure 4.3 Suspended charged particles; for
Example 4.2.
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and so

or

'2_3Q2 = I6wsomgtla

a =
Ql

16ireomg€

PRACTICE EXERCISE 4.2

Three identical small spheres of mass m are suspended by threads of negligible
masses and equal length € from a common point. A charge Q is divided equally
between the spheres and they come to equilibrium at the corners of a horizontal equi-
lateral triangle whose sides are d. Show that

Q2 =

where g = acceleration due to gravity.

Answer: Proof.

r21-l/2

EXAMPLE 4.3
A practical application of electrostatics is in electrostatic separation of solids. For example,
Florida phosphate ore, consisting of small particles of quartz and phosphate rock, can be
separated into its components by applying a uniform electric field as in Figure 4.4. Assum-
ing zero initial velocity and displacement, determine the separation between the particles
after falling 80 cm. Take E = 500 kV/m and Qlm = 9 /xC/kg for both positively and neg-
atively charged particles.

Figure 4.4 Electrostatic separation of solids; for
Example 4.3.

Phosphate Quartz
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Solution:

Ignoring the coulombic force between particles, the electrostatic force is acting horizon-
tally while the gravitational force (weight) is acting vertically on the particles. Thus,

or

Integrating twice gives

dt2

Q
2m c2

where C\ and c2 are integration constants. Similarly,

or

dt2

Integrating twice, we get

y =

Since the initial displacement is zero,

x(t ~-

y(f-

Also, due to zero initial velocity,

dx

~dt

dy

dt

-\l2gt2

= 0) =

= 0) =

(=0

*—n

= 0

0

0

+ c,t

- > c 4

+ c4

= 0

= 0

= 0

= 0

Thus

QE 2

2m



4.3 ELECTRIC FIELDS DUE TO CONTINUOUS CHARGE DISTRIBUTIONS

Wheny = - 8 0 cm = -0 .8 m

f2 = ̂  = ° ' 1 6 3 3

and

111

x = 1/2 X 9 X 10"6 X 5 X 105 X 0.1633 = 0.3673 m

The separation between the particles is 2x = 73.47 cm.

PRACTICE EXERCISE 4.3

An ion rocket emits positive cesium ions from a wedge-shape electrode into the region
described by* > |y|. The electric field is E = -400a, + 200a>, kV/m. The ions have
single electronic charges e = -1.6019 X 10"19 C and mass m = 2.22 X 10~25 kg
and travel in a vacuum with zero initial velocity. If the emission is confined to
—40 cm < v < 40 cm, find the largest value of x which can be reached.

Answer: 0.8 m.

4.3 ELECTRIC FIELDS DUE TO CONTINUOUS
CHARGE DISTRIBUTIONS

So far we have only considered forces and electric fields due to point charges, which are es-
sentially charges occupying very small physical space. It is also possible to have continuous
charge distribution along a line, on a surface, or in a volume as illustrated in Figure 4.5.

It is customary to denote the line charge density, surface charge density, and volume
charge density by pL (in C/m), ps (in C/m2), and pv (in C/m3), respectively. These must not
be confused with p (without subscript) used for radial distance in cylindrical coordinates.

The charge element dQ and the total charge Q due to these charge distributions are ob-
tained from Figure 4.5 as

= \pLdl (line charge) (4.13a)

Point
charge

Line
charge

+ Ps +
+ + +

Surface
charge

Volume
charge

Figure 4.5 Various charge distributions
and charge elements.
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dQ = psdS^Q = psdS (surface charge)
4

dQ = pv dv —> Q = \ pv dv (volume charge)

(4.13b)

(4.13c)

The electric field intensity due to each of the charge distributions pL, ps, and pv may be
regarded as the summation of the field contributed by the numerous point charges making
up the charge distribution. Thus by replacing Q in eq. (4.11) with charge element dQ =
pL dl, ps dS, or pv dv and integrating, we get

E =

E =

E =

PLdl

4-jrsJt2

PsdS

A-weJi2

pvdv

(line charge)

(surface charge)

(volume charge)

(4.14)

(4.15)

(4.16)

It should be noted that R2 and a^ vary as the integrals in eqs. (4.13) to (4.16) are evaluated.
We shall now apply these formulas to some specific charge distributions.

A. A Line Charge

Consider a line charge with uniform charge density pL extending from A to B along the
z-axis as shown in Figure 4.6. The charge element dQ associated with element dl = dz of
the line is

dQ = pLdl = pL dz

(0,0,2)7-^

(0,0, z')

dEz dE

Figure 4.6 Evaluation of the E field due to i
l i n e
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and hence the total charge Q is

Q = (4.17)

The electric field intensity E at an arbitrary point P(x, y, z) can be found using
eq. (4.14). It is important that we learn to derive and substitute each term in eqs. (4.14) to
(4.15) for a given charge distribution. It is customary to denote the field point4 by (x, y, z)
and the source point by (x', y', z'). Thus from Figure 4.6,

dl = dz'

R = (x, y, Z) - (0, 0, z') = xax + yay + (z - z')az

or

R = pap + (z - z') az

= 2

R (z - z')az

R2 R (z~ z'f]213/2

Substituting all this into eq. (4.14), we get

PL
E = N 213/24ireo J [p2 + (Z - z'

To evaluate this, it is convenient that we define a, au and a2 as in Figure 4.6.

R = [p2 + (z - z'f]m = p sec a

z' = OT - p tan a, dz' = —p sec2 a da

Hence, eq. (4.18) becomes

—pL [ai p sec2 a [cos a a,, + sin a az] daE =
4iren p2 sec2 a

PL [cos a a , + sin a a j da

Thus for a finite line charge,

E =
PL [- (sin a2 - sin aOa,, + (cos a2 - cos a{)az]

(4.18)

(4.19)

(4.20)

4The field point is the point at which the field is to be evaluated.
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As a special case, for an infinite line charge, point B is at (0, 0, °°) and A at (0, 0, -co) so
that al = x/2, a2 = —x/2; the z-component vanishes and eq. (4.20) becomes

E = PL (4.21)

Bear in mind that eq. (4.21) is obtained for an infite line charge along the z-axis so that p
and ap have their usual meaning. If the line is not along the z-axis, p is the perpendicular
distance from the line to the point of interest and ap is a unit vector along that distance di-
rected from the line charge to the field point.

B. A Surface Charge

Consider an infinite sheet of charge in the xy-plane with uniform charge density ps. The
charge associated with an elemental area dS is

dQ = Ps dS

and hence the total charge is

Q= PsdS (4.22)

From eq. (4.15), the contribution to the E field at point P(0, 0, h) by the elemental surface
1 shown in Figure 4.7 is

JE =
dQ

(4.23)

Figure 4.7 Evaluation of the E field due to an infinite sheet of charge.
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From Figure 4.7,

115

. 2 , ,211/2R = p(-ap) + haz, R = |R| = Lc/ + fr

n
aR = —,

K
= Ps dS = psp d<j) dp

Substitution of these terms into eq. (4.23) gives

= pspd<j>dp[-pap + haz]
(4.24)

Due to the symmetry of the charge distribution, for every element 1, there is a correspond-
ing element 2 whose contribution along ap cancels that of element 1, as illustrated in
Figure 4.7. Thus the contributions to Ep add up to zero so that E has only z-component.
This can also be shown mathematically by replacing â  with cos </> ax + sin </> a r Integra-
tion of cos <j> or sin </> over 0 < <j> < 2ir gives zero. Therefore,

E =
Ps hp dp d<j>

13/2 '

trH'2+^'V=
(4.25)

that is, E has only z-component if the charge is in the xy-plane. In general, for an infinite
sheet of charge

(4.26)

where an is a unit vector normal to the sheet. From eq. (4.25) or (4.26), we notice that the
electric field is normal to the sheet and it is surprisingly independent of the distance
between the sheet and the point of observation P. In a parallel plate capacitor, the electric
field existing between the two plates having equal and opposite charges is given by

C. A Volume Charge

Let the volume charge distribution with uniform charge density pv be as shown in
Figure 4.8. The charge dQ associated with the elemental volume dv is

dQ = pv dv



116 • Electrostatic Fields

p,-

dE

\

z

- -

^~

dE2

P(0, 0, z)

V !

„ dv at ( r \ S :, <j>')

\

Figure 4.8 Evaluation of the E field due to a volume charge
distribution.

and hence the total charge in a sphere of radius a is

Q = \ pv dv = pv \ dv

4ira3

(4.28)

The electric field dE at P(0, 0, z) due to the elementary volume charge is

"E = : a s
4xS o^2

where aR = cos a a , + sin a ap. Due to the symmetry of the charge distribution, the con-
tributions to Ex or Ey add up to zero. We are left with only Ez, given by

Ez = E • az = dE cos a =

Again, we need to derive expressions for dv, R2, and cos a.

dv = r'2 sin 6' dr' dd' d<t>'

Applying the cosine rule to Figure 4.8, we have

R2 = z2 + r'2 - 2zr' cos B'

r'2 = z2 + R2 ~ 2zR cos a

dv c o s
(4.29)

(4.30)

w
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It is convenient to evaluate the integral in eq. (4.29) in terms of R and r'. Hence we express
cos d', cos a, and sin 6' dd' in terms of R and r', that is,

cos a =
z2-

2
Z

h R 2 -

2zR

Yr'2-

r'2

R2

2zr'

Differentiating eq. (4.31b) with respect to 0' keeping z and r' fixed, we obtain

RdR
sin 6' dd' =

zr'

Substituting eqs. (4.30) to (4.32) into eq. (4.29) yields

E = d<t>'
4xeo J , , = o J r , = 0 J ^ ^

ra rz+r'

dr'

r'=0 JR = z-r'

r'
ro

£i
1 1 IA

4r'2dr'=- -2 -
47reo z

z V3

or

(4.31a)

(4.31b)

(4.32)

(4.33)

This result is obtained for E at P(0, 0, z). Due to the symmetry of the charge distribution,
the electric field at P(r, 9, <j>) is readily obtained from eq. (4.33) as

E =
Q

ar
(4.34)

which is identical to the electric field at the same point due to a point charge Q located at
the origin or the center of the spherical charge distribution. The reason for this will become
obvious as we cover Gauss's law in Section 4.5.

EXAMPLE 4.4
A circular ring of radius a carries a uniform charge pL C/m and is placed on the xy-plane
with axis the same as the z-axis.

(a) Show that

E(0, 0, h) =
pLah

2eo[h2 + a2}13/2 "z
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(b) What values of h gives the maximum value of E?

(c) If the total charge on the ring is Q, find E as a -> 0.

Solution:

(a) Consider the system as shown in Figure 4.9. Again the trick in finding E using
eq. (4.14) is deriving each term in the equation. In this case,

dl = a d4>,

R = R

R = a ( - haz

= \a2 1.211/2 R
R

or

a« R -aap

/?2 |R|3 [a2 + h2}13/2

Hence

E =
PL (-aa p +

By symmetry, the contributions along ap add up to zero. This is evident from the fact that
for every element dl there is a corresponding element diametrically opposite it that gives
an equal but opposite dEp so that the two contributions cancel each other. Thus we are left
with the z-component. That is,

pLahaz

4vso[h2 + a2]13/2 d<t> =
pLahaz

2so[h2 a2f2

as required.

Figure 4.9 Charged ring; for
Example 4.4.

I
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(b)

dh 2eo

For maximum E, = 0, which implies that
dh

[h2 + a2]3

a2 - 2hz = 0 or h = ±

(c) Since the charge is uniformly distributed, the line charge density is

Q

so that

Asa

or in general

PL =

E =
Qh

213/2 H z

E = —~si
A-KSJI2

4ireor

which is the same as that of a point charge as one would expect.

PRACTICE EXERCISE 4.4

A circular disk of radius a is uniformly charged with ps C/m2. If the disk lies on the
z = 0 plane with its axis along the z-axis,

(a) Show that at point (0, 0, h)

_h \

(b) From this, derive the E field due to an infinite sheet of charge on the z = 0 plane.

(c) If a <3C h, show that E is similar to the field due to a point charge.

Answer: (a) Proof, (b) — a,, (c) Proof
2en
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EXAMPLE 4.5

I

The finite sheet 0 < x < 1, 0 < y < 1 on the z = 0 plane has a charge density
p s = xy(x2 + y2 + 25)3/2 nC/m2. Find

(a) The total charge on the sheet

(b) The electric field at (0, 0, 5)

(c) The force experienced by a — 1 mC charge located at (0, 0, 5)

Solution:

(a) g = I psdS= I [ xy(x2 + y2 + 25)3'2 dx dy nC
J Jo Jo

Since x dx = 1/2 d(x2), we now integrate with respect to x2 (or change variables: x2 = u so
that x dx = dull).

1
Q = j

1 f1

y2 + 25)3/2 d(x2) dy nC

y2 + 25 '2 dy

1 2
\7/21

= 33.15 nC

(b) E =
(r - r')

4ireor
2 J 4?reo|r - r'|3

where r - r' = (0, 0, 5) - (x, y, 0) = (-x, -y, 5). Hence,

E =
o Jo

10" y2 + 25f\-xax - yay + 5az)dxdy

10"9

36TT
+ yz + 25)3/2

r r l r l r 1 rl f l r l

= 9 - x2 dx \ ydyax- x dx \ y2dy ay + 5 xdx \ y dy

6 ' 6 ' 4 ,
= ( - 1 . 5 , - 1 . 5 , 11.25) V/m

(c) F = ^E = (1.5, 1.5, -11.25) mN
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PRACTICE EXERCISE 4.5

A square plate described by — 2 :S A: < 2, — 2^y^2,z = 0 carries a charge
12 \y\ mC/m2. Find the total charge on the plate and the electric field intensity at
(0, 0, 10).

Answer: 192 mC, 16.46 a, MV/m.

EXAMPLE 4.6
Planes x = 2 and y = — 3, respectively, carry charges 10 nC/m2 and 15 nC/m2. If the line
x = 0, z = 2 carries charge lOx nC/m, calculate E at (1, 1, —1) due to the three charge
distributions.

Solution:

Let

E = E, + E2 + E3

where Ej, E2, and E3 are, respectively, the contributions to E at point (1, 1, — 1) due to the
infinite sheet 1, infinite sheet 2, and infinite line 3 as shown in Figure 4.10(a). Applying
eqs. (4.26) and (4.21) gives

-v-9

ar = -1807rar

36?r

15 • 10"

10- 9 = 270TT av

36TT

y = - 3

- l

(b)

Figure 4.10 For Example 4.6: (a) three charge distributions;
(b) finding p and ap on plane y — 1.



122 Electrostatic Fields

and

E3 = PL

2ireop

where ap (not regular ap but with a similar meaning) is a unit vector along LP perpendicu-
lar to the line charge and p is the length LP to be determined from Figure 4.10(b).
Figure 4.10(b) results from Figure 4.10(a) if we consider plane y = 1 on which E3 lies.
From Figure 4.10(b), the distance vector from L to P is

R =

P = = VTo, R

Hence,

lOir • 10 - 9

2 T T -
10- 9 10

Vio"* Vio'

(a, - 3az)

36TT

= 187r(ax - 3a,)

Thus by adding Eu E2, and E3, we obtain the total field as

E = -162Trax + 270ira, - 54x3, V/m

Note that to obtain ar, ap, or a«, which we always need for finding F or E, we must go
from the charge (at position vector r') to the field point (at position vector r); hence ar, ap,
or an is a unit vector along r — r'. Observe this carefully in Figures 4.6 to 4.10.

PRACTICE EXERCISE 4.6

In Example 4.6 if the line x = 0, z = 2 is rotated through 90° about the point
(0, 2, 2) so that it becomes x = 0, y = 2, find E at (1, 1, -1 ) .

Answer: -282.7a.* + 564.5a, V/m.

4.4 ELECTRIC FLUX DENSITY

The flux due to the electric field E can be calculated using the general definition of flux in
eq. (3.13). For practical reasons, however, this quantity is not usually considered as the
most useful flux in electrostatics. Also, eqs. (4.11) to (4.16) show that the electric field in-
tensity is dependent on the medium in which the charge is placed (free space in this
chapter). Suppose a new vector field D independent of the medium is defined by

D = eoE (4.35)

II
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We define electric flux f in terms of D using eq. (3.13), namely,

= \D-dS (4.36)

In SI units, one line of electric flux emanates from +1 C and terminates on - 1 C. There-
fore, the electric flux is measured in coulombs. Hence, the vector field D is called the elec-
tric flux density and is measured in coulombs per square meter. For historical reasons, the
electric flux density is also called electric displacement.

From eq. (4.35), it is apparent that all the formulas derived for E from Coulomb's law
in Sections 4.2 and 4.3 can be used in calculating D, except that we have to multiply those
formulas by eo. For example, for an infinite sheet of charge, eqs. (4.26) and (4.35) give

(4.37)

(4.38)

Note from eqs. (4.37) and (4.38) that D is a function of charge and position only; it is in-
dependent of the medium.

and for a volume charge distribution, eqs. (4.16) and (4.35) give

D = , Pvdv

EXAMPLE 4.7
Determine D at (4, 0, 3) if there is a point charge —5TT mC at (4, 0, 0) and a line charge
3TT mC/m along the y-axis.

Solution:

Let D = DQ + DL where D e and DL are flux densities due to the point charge and line
charge, respectively, as shown in Figure 4.11:

Q (r - r')
= eoE =

Q

4mR/ 47r|r - r '

where r - r ' = (4, 0, 3) - (4, 0, 0) = (0, 0, 3). Hence,

Also

In this case

- 3 /

DQ
-5TT • 10^(0, 0, 3)

4TT|(0,0, 3) |3
2

= -0.138 az mC/m

(4, 0, 3) - (0, 0, 0) (4, 0, 3)

* |(4,0, 3) - (0,0, 0)| 5

p = |(4,0,3) - (0,0,0)| = 5
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= 3?rC/m

--y

Q = -SirC

Figure 4.11 Flux density D due to a point charge and an infinite line
charge.

Hence,

Thus

3TT

2TT(25)
3az) = 0.24ax + 0.18azmC/m2

D = DG + DL

= 240a* + 42a2 /xC/m2

PRACTICE EXERCISE 4.7

A point charge of 30 nC is located at the origin while plane y = 3 carries charge
10nC/m2. Find D at (0,4, 3).

Answer: 5.076a,, + 0.0573az nC/m2.

4.5 GAUSS'S LAW—MAXWELL'S EQUATION

Gauss's5 law constitutes one of the fundamental laws of electromagnetism.

Gauss's law stales thai the loial electric Mux V through any closed surface is equal to
the total charge enclosed by that surface.

Karl Friedrich Gauss (1777-1855), a German mathematician, developed the divergence theorem of
Section 3.6, popularly known by his name. He was the first physicist to measure electric and mag-
netic quantities in absolute units. For details on Gauss's measurements, see W. F. Magie, A Source
Book in Physics. Cambridge: Harvard Univ. Press, 1963, pp. 519-524.

<r if
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Thus

that is,

(4.39)

<T¥ = d> D • dS

= Total charge enclosed Q = I pv dv (4.40)

or

(4.41)

By applying divergence theorem to the middle term in eqs. (4.41)

D • dS = I V • D dv

Comparing the two volume integrals in eqs. (4.41) and (4.42) results in

= V • D

(4.42)

(4.43)

which is the first of the four Maxwell's equations to be derived. Equation (4.43) states that
the volume charge density is the same as the divergence of the electric flux density. This
should "not be surprising to us from the way we defined the divergence of a vector in eq.
(3.32) and from the fact that pv at a point is simply the charge per unit volume at that point.

Note that:

1. Equations (4.41) and (4.43) are basically stating Gauss's law in different ways; eq.
(4.41) is the integral form, whereas eq. (4.43) is the differential or point form of Gauss's
law.

2. Gauss's law is an alternative statement of Coulomb's law; proper application of the
divergence theorem to Coulomb's law results in Gauss's law.

3. Gauss's law provide* an easy means of finding E or D for symmetrical charge dis-
tributions such as a point charge, an infinite line charge, an infinite cylindrical surface
charge, and a spherical distribution of charge. A continuous charge distribution has rectan-
gular symmetry if it depends only on x (or y or z), cylindrical symmetry if it depends only
on p, or spherical symmetry if it depends only on r (independent of 6 and <j>). It must be
stressed that whether the charge distribution is symmetric or not, Gauss's law always
holds. For example, consider the charge distribution in Figure 4.12 where V] and v2 are
closed surfaces (or volumes). The total flux leaving vl is 10 - 5 = 5 nC because only
10 nC and - 5 nC charges are enclosed by vj. Although charges 20 nC and 15 nC outside
Vi do contribute to the flux crossing v1; the net flux crossing vi, according to Gauss's law,
is irrespective of those charges outside vj. Similarly, the total flux leaving v2 is zero
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. 20 nC

Figure 4.12 Illustration of Gauss's
law; flux leaving v{ is 5 nC and that

> 15 nC leaving v2 is 0 C.

because no charge is enclosed by v2. Thus we see that Gauss's law, f = <2enciosed> is still
obeyed even though the charge distribution is not symmetric. However, we cannot use the
law to determine E or D when the charge distribution is not symmetric; we must resort to
Coulomb's law to determine E or D in that case.

4.6 APPLICATIONS OF GAUSS'S LAW

The procedure for applying Gauss's law to calculate the electric field involves first
knowing whether symmetry exists. Once symmetric charge distribution exists, we con-
struct a mathematical closed surface (known as a Gaussian surface). The surface is chosen
such that D is normal or tangential to the Gaussian surface. When D is normal to the
surface, D • dS = D dS because D is constant on the surface. When D is tangential to the
surface, D • dS = 0. Thus we must choose a surface that has some of the symmetry ex-
hibited by the charge distribution. We shall now apply these basic ideas to the following
cases.

A. Point Charge
Suppose a point charge Q is located at the origin. To determine D at a point P, it is easy to
see that choosing a spherical surface containing P will satisfy symmetry conditions. Thus,
a spherical surface centered at the origin is the Gaussian surface in this case and is shown
in Figure 4.13.

Figure 4.13 Gaussian surface about a point charge.

*-y

Gaussian surface
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Since D is everywhere normal to the Gaussian surface, that is, D = D^n applying
Gauss's law (V = genciosed) gives

Q = i> D • dS = Dr $> dS = Dr Aitr (4.44)

where § dS =
surface. Thus

LQ / £ = 0 r
2 sin 6 dd dcf> = 4irr2 is the surface area of the Gaussian

(4.45)11

as expected from eqs. (4.11) and (4.35).

B. Infinite Line Charge

Suppose the infinite line of uniform charge pL C/m lies along the z-axis. To determine D at
a point P, we choose a cylindrical surface containing P to satisfy symmetry condition as
shown in Figure 4.14. D is constant on and normal to the cylindrical Gaussian surface; that
is, D = Dpap. If we apply Gauss's law to an arbitrary length € of the line

PJ = Q = = Dp 2irp€ (4.46)

where § dS = 2irp€ is the surface area of the Gaussian surface. Note that J D • dS evalu-
ated on the top and bottom surfaces of the cylinder is zero since D has no z-component;
that means that D is tangential to those surfaces. Thus

D

as expected from eqs. (4.21) and (4.35).

2irp
(4.47)

Figure 4.14 Gaussian surface about an infinite line

line charge P /C/m

Gaussian surface
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C. Infinite Sheet of Charge

Consider the infinite sheet of uniform charge ps C/m2 lying on the z = 0 plane. To deter-
mine D at point P, we choose a rectangular box that is cut symmetrically by the sheet of
charge and has two of its faces parallel to the sheet as shown in Figure 4.15. As D is normal
to the sheet, D = Dzaz, and applying Gauss's law gives

Ps | dS = Q = <f> D • dS = Dz dS + dS
op ^bottom

(4.48)

Note that D • dS evaluated on the sides of the box is zero because D has no components
along ax and ay. If the top and bottom area of the box each has area A, eq. (4.48) becomes

and thus

PsA = DZ(A+ A)

Ps

(4.49)

or

(4.50)

as expected from eq. (4.25).

D. Uniformly Charged Sphere

Consider a sphere of radius a with a uniform charge pv C/m3. To determine D everywhere,
we construct Gaussian surfaces for eases r < a and r > a separately. Since the charge has
spherical symmetry, it is obvious that a spherical surface is an appropriate Gaussian
surface.

Infinite sheet of
charge ps C/m2

Figure 4.15 Gaussian surface about an
infinite line sheet of charge.

Gaussian surface
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For r < a, the total charge enclosed by the spherical surface of radius r, as shown in
Figure 4.16 (a), is

Gene = \Pvdv = pAdv = pA I I r2 sin 6 drdd d<j> (4.51)

and

V = <P D • dS = Dr $ dS = Dr

= Dr4xr2

Hence, TP = <2enc g i y e s

D r 4x r 2 =

rlsm.6ded<$>

=o
(4.52)

or

0 < r « a (4.53)

For r > a, the Gaussian surface is shown in Figure 4.16(b). The charge enclosed by
the surface is the entire charge in this case, that is,

while

G e n e = \ p v d v = p v \ d v = p

= pv - ira

sinO drdd
=o

= cb D - dS = Dr4irr2

(4.54)

(4.55)

Gaussian surface

I
I
f
I
\

Figure 4.16 Gaussian surface for a uniformly
charged sphere when: (a) r & a and (b) r £ a.

(a) (b)
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IDI Figure 4.17 Sketch of |D| against r for a uniformly
charged sphere.

just as in eq. (4.52). Hence:

or

r 3s a (4.56)

Thus from eqs. (4.53) and (4.56), D everywhere is given by

D =
0 < r s= a

;pvar r> a
(4.57)

and |D| is as sketched in Figure 4.17.

Notice from eqs. (4.44), (4.46), (4.48), and (4.52) that the ability to take D out of the
integral sign is the key to finding D using Gauss's law. In other words, D must be constant
on the Gaussian surface.

EXAMPLE 4.8 Given that D = Zp cos20 az C/m2, calculate the charge density at d , T/4, 3) a nd the total
charge enclosed by the cylinder of radius 1 m with - 2 < z < 2 m .

Solution:

pv = V • D = —z- = p cos2

dZ

At (1, TT/4, 3), Pv = 1 • cos2(7r/4) = 0.5 C/m3. The total charge enclosed by the cylinder
can be found in two different ways.
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Method 1: This method is based directly on the definition of the total volume charge.

Q = \ pv dv = p cos <j> pd<t>dp dz

dz
= - 2

p2dp = 4(TT)(1/3)

Method 2: Alternatively, we can use Gauss 's law.

D

= y, + IP, +

where f „ f „ and !P6 are the flux through the sides, the top surface, and the bottom surface
of the cylinder, respectively (see Figure 3.17). Since D does not have component along ap,
Ys = 0, for ¥*„ dS = pd<j> dp az so

zp cos2 4> p d<t> dp = 2 I p2dp I cos 2

and for Wb, dS = —p d(f> dp az, so

i cos <t> p d<j> dp

_ 2TT

~ T "x

Thus

= 2
= -2 Jo

c o s z 4> d<t>

as obtained previously.

PRACTICE EXERCISE 4.8

If D = (2)»2 + Z)AX + 4xyay + xaz C/m2, find

(a) The volume charge density at (— 1, 0, 3)

(b) The flux through the cube defined b y 0 < J t < l , 0 < . y < l ( 0 < z < l

(c) The total charge enclosed by the cube

Answer: (a) - 4 C/m\ (b) 2 C, (c) 2 C.
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A charge distribution with spherical symmetry has density

'' P°r rv , - — r.

EXAMPLE 4.9

= 1 R '
r> R

Determine E everywhere.

Solution:

The charge distribution is similar to that in Figure 4.16. Since symmetry exists, we can
apply Gauss's law to find E. y

(a) For r < R

So<PE-dS = gene = P

r r IT r 2ir

eoEr 4 x r = Qenc = pv r sin 9 d<t> dB dr
Jo Jo Jo

i . 2 Por , PoT-r4

= 4-Trr — dr =
R R

or

(b) For r > R,

= Qenc =

r rir r2ic

0 J0

pvr sin 6 d<j) dd dr

= I — 4irr2dr+ 0 • 4wr2 dr
Jo R ]R

or

PRACTICE EXERCISE 4.9

A charge distribution in free space has pv = 2r nC/m3 for 0 £ r £ 10 m and zero
otherwise. Determine E at r = 2 m and r = 12 m.

Answer: 226ar V/m, 3.927ar kV/m.
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4.7 ELECTRIC POTENTIAL

From our discussions in the preceding sections, the electric field intensity E due to a charge
distribution can be obtained from Coulomb's law in general or from Gauss's law when the
charge distribution is symmetric. Another way of obtaining E is from the electric scalar po-
tential V to be defined in this section. In a sense, this way of rinding E is easier because it
is easier to handle scalars than vectors.

Suppose we wish to move a point charge Q from point A to point B in an electric field
E as shown in Figure 4.18. From Coulomb's law, the force on Q is F = QE so that the
work done in displacing the charge by d\ is

dW = - F • d\ = -QE • d\ (4.58)

The negative sign indicates that the work is being done by an external agent. Thus the total
work done, or the potential energy required, in moving Q from A to B is

(4.59)

Dividing W by Q in eq. (4.59) gives the potential energy per unit charge. This quantity,
denoted by VAB, is known as the potential difference between points A and B. Thus

(4.60)

Note that

1. In determining VAB, A is the initial point while B is the final point.
2. If VAB is negative, there is a loss in potential energy in moving Q from A to B;

this implies that the work is being done by the field. However, if VAB is positive,
there is a gain in potential energy in the movement; an external agent performs
the work.

3. VAB is independent of the path taken (to be shown a little later).
4. VAB is measured in joules per coulomb, commonly referred to as volts (V).

Origin

Figure 4.18 Displacement of point charge Q in
an electrostatic field E.
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As an example, if the E field in Figure 4.18 is due to a point charge Q located at the
origin, then

E

so eq. (4.60) becomes

4iren

Q

Q
2

rA 4ireor

Q [ l

d r &r

(4.61)

(4.62a)

or

vAB = vB-vA
(4.62b)

where VB and VA are the potentials (or absolute potentials) at B and A, respectively. Thus
the potential difference VAB may be regarded as the potential at B with reference to A. In
problems involving point charges, it is customary to choose infinity as reference; that is,
we assume the potential at infinity is zero. Thus if VA = 0 as rA —» °° in eq. (4.62), the po-
tential at any point (rB —> r) due to a point charge Q located at the origin is

V =
Q

4irenr
(4.63)

Note from eq. (4.62a) that because E points in the radial direction, any contribution from a
displacement in the 6 or </> direction is wiped out by the dot product
E • d\ = E cos 8 dl = E dr. Hence the potential difference VAB is independent of the path
as asserted earlier.

The potential ;il an\ poim is the pulomial dit'tcrcntx" helwecn thai poim and a chosen
poinl in which the potential is /em.

In other words, by assuming zero potential at infinity, the potential at a distance r from the
point charge is the work done per unit charge by an external agent in transferring a test
charge from infinity to that point. Thus

V = - E • dl (4.64)

If the point charge Q in eq. (4.63) is not located at the origin but at a point whose po-
sition vector is r', the potential V(x, y, z) or simply V(r) at r becomes

V(r) = Q
4iren r — r'

(4.65)
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We have considered the electric potential due to a point charge. The same basic ideas
apply to other types of charge distribution because any charge distribution can be regarded
as consisting of point charges. The superposition principle, which we applied to electric
fields, applies to potentials. For n point charges Qu Q2,. • • ,Qn located at points with po-
sition vectors r b r2 , . . . , rn, the potential at r is

V(r) = Qn

47TE 4ireo|r - r2 4ire0 r -

or

r - r.
(point charges) (4.66)

For continuous charge distributions, we replace Qk in eq. (4.66) with charge element pL dl,
ps dS, or pv dv and the summation becomes an integration, so the potential at r becomes

V(r) =

V(r) =

\/r*\ -

1
4irso

1

47Tfio

1

r - r

Ps(r')dS'

4TTS O

r - rr

Pv(r')dV

r - r'

(line charge)

(surface charge)

(volume charge)

(4.67)

(4.68)

(4.69)

where the primed coordinates are used customarily to denote source point location and the
unprimed coordinates refer to field point (the point at which Vis to be determined).

The following points should be noted:

1. We recall that in obtaining^qs. (4.63) to (4.69), the zero potential (reference) point
has been chosen arbitrarily to be at infinity. If any other point is chosen as reference,
eq. (4.65), for example, becomes

V =
Q

+ C (4.70)

where C is a constant that is determined at the chosen point of reference. The same idea
applies to eqs. (4.63) to (4.69).

2. The potential at a point can be determined in two ways depending on whether the
charge distribution or E is known. If the charge distribution is known, we use one of eqs.
(4.65) to (4.70) depending on the charge distribution. If E is known, we simply use

V = - E • dl + C

The potential difference VAB can be found generally from

fB

vAB = vB-vA =
w
-

(4.71)

(4.72)
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EXAMPLE 4.10

Electrostatic Fields

Two point charges - 4 juC and 5 jtC are located at ( 2 , - 1 , 3) and (0, 4, -2 ) , respectively.
Find the potential at (1, 0, 1) assuming zero potential at infinity.

Solution:

Let

6i = - 4

V(r) =

Q2 = 5

4vreo r - r. 4Treo|r - r2
C0

If = 0, Co = 0,

r - r, = |(1, 0, 1) - (2, - 1 , 3)| = | ( -1 , 1, -2) | = V6

r - r2| = |(1, 0, 1) - (0, 4, -2) | = |(1, -4 , 3)| = V26

Hence

V(l,0, 1) =
4TT X

- 4

1OV6 V26J
36TT

= 9 X 103 (-1.633 + 0.9806)
= -5.872 kV

PRACTICE EXERCISE 4.10

If point charge 3 fiC is located at the origin in addition to the two charges of example
4.10, find the potential at ( - 1 , 5, 2) assuming V(o°) = 0.

Answer: 10.23 kV.

EXAMPLE 4.11
A point charge 5 nC is located at ( - 3 , 4, 0) while line y = 1, z = 1 carries uniform charge
2 nC/m.

(a) If V = 0 V at O(0, 0, 0), find V at A(5, 0, 1).

(b) If V = 100 V at 5(1, 2, 1), find Vat C(-2, 5, 3).

(c) If V = - 5 V at O, find VBC.

Solution:

Let the potential at any point be

V = VQ + VL



4.7 ELECTRIC POTENTIAL 137

where VQ and VL are the contributions to V at that point due to the point charge and the line
charge, respectively. For the point charge,

VQ= -SE-d\= ~
Q

ar • dr ar

Q
+ c,4xeor

For the infinite line charge,

VL = - I E • d\ = -
PL

2?r£op
dp ap

PL

2irsc

In p + C2

Hence,

V = -
PL

2ireo
lnp +

Q
4irenr

+ C

where C = Cx + C2 = constant, p is the perpendicular distance from the line y = 1,
z = 1 to the field point, and r is the distance from the point charge to the field point.

(a) If V = 0 at O(0, 0, 0), and V at A(5, 0, 1) is to be determined, we must first determine
the values of p and r at O and A. Finding r is easy; we use eq. (2.31). To find p for any point
(x, y, z), we utilize the fact that p is the perpendicular distance from (x, y, z) to line y = 1,
z = 1, which is parallel to the x-axis. Hence p is the distance between (x, y, z) and (x, 1, 1)
because the distance vector between the two points is perpendicular to ax. Thus

p = |(x, y, z) ~ (x, 1, 1)| = V(y - I)2 + (z - I)2

Applying this for p and eq. (2.31) for r at points O and A, we obtain

P o = | ( 0 , 0 , 0 ) - (0,l

r o = |(0,0,0) - ( - 3

pA= |(5,0, 1 ) - ( 5 , 1

rA = |(5,0, 1) - ( - 3

= \Tl
)| = 5

= 1

)| = 9

Hence,

0 PA

- 2 • 10"9 \fl
-In +

J 1
ro r/

5 • 10~9

2TT
10- 9 1

4TT
10- 9

36TT " 36TT

0 - V, = - 3 6 In V 2 + 45 ( - - -
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or

VA = 36 In V 2 - 4 = 8.477 V

fnote H T I T ! g Stant C by Subtracti"g one

another and that it does not matter which one is subtracted from which.
(b) If V = 100 at 5(1, 2, 1) and Vat C(-2, 5, 3) is to be determined, we find

PB= 1(1,2,1) - (1,1,1)| = 1

rB = |(1, 2, 1) - (-3, 4, 0)| = V2T

Pc= K-2,5,3) - (-2,1,1)| = V20

rc= |(-2,5,3) - (-3,4,0)| =

2xeo

or

361n

= -50.175 V

Vc = 49.825 V

21 J

(c) To find the potential difference between two points, we do not need a potential refer-
ence if a common reference is assumed.

= Vc - VB = 49.825 - 100
= -50.175 V

as obtained in part (b).

PRACTICE EXERCISE 4.11

A point charge of 5 nC is located at the origin. If V = 2 V at (0, 6, -8 ) , find

(a) The potential at A(-3, 2,6)

(b) The potential at B(\, 5, 7)

(c) The potential difference VAB

Answer: (a) 3.929 V, (b) 2.696 V, (c) -1.233 V.
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4.8 RELATIONSHIP BETWEEN E AND V—
MAXWELL'S EQUATION

As shown in the previous section, the potential difference between points A and B is inde-
pendent of the path taken. Hence,

VAB

that is, VBA + VAB = $ E • d\ = 0

or

(4.73)

This shows that the line integral of E along a closed path as shown in Figure 4.19 must be
zero. Physically, this implies that no net work is done in moving a charge along a closed
path in an electrostatic field. Applying Stokes's theorem to eq. (4.73) gives

E • d\ = (V X E) • dS = 0

or

V X E = 0 (4.74)

Any vector field that satisfies eq. (4.73) or (4.74) is said to be conservative, or irrotational,
as discussed in Section 3.8. Thus an electrostatic field is a conservative field. Equation
(4.73) or (4.74) is referred to as Maxwell's equation (the second Maxwell's equation to be
derived) for static electric fields. Equation (4.73) is the integral form, and eq. (4.74) is the
differential form; they both depict the conservative nature of an electrostatic field.

From the way we defined potential, V = — / E • d\, it follows that

dV = -Edl= -Ex dx - Eydy - Ez dz

Figure 4.19 Conservative nature of an electrosta-
tic field.
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But

dV dV dV
dV= — dx + — dy + — dz

dx dy dz

Comparing the two expressions for dV, we obtain

dV
Ex=-

dV

dx'
= E =

dy' z dz

Thus:

E = - V V

(4.75)

(4.76)

that is, the electric field intensity is the gradient of V. The negative sign shows that the di-
rection of E is opposite to the direction in which V increases; E is directed from higher to
lower levels of V. Since the curl of the gradient of a scalar function is always zero
(V X V V = 0), eq. (4.74) obviously implies that E must be a gradient of some scalar func-
tion. Thus eq. (4.76) could have been obtained from eq. (4.74).

Equation (4.76) shows another way to obtain the E field apart from using Coulomb's
or Gauss's law. That is, if the potential field V is known, the E can be found using
eq. (4.76). One may wonder how one function V can possibly contain all the information
that the three components of E carry. The three components of E are not independent of
one another: They are explicitly interrelated by the condition V X E = 0. What the poten-
tial formulation does is to exploit this feature to maximum advantage, reducing a vector
problem to a scalar one.

EXAMPLE 4.12 Given the potential V = —^ sin 6 cos 0,

(a) Find the electric flux density D at (2, TT/2, 0).

(b) Calculate the work done in moving a 10-/*C charge from point A(l, 30°, 120°) to
B(4, 90°, 60°).

Solution:

(a) D = eoE

But

1 dV
dr r dd rsind ari

20 . 10
= —r sin 0 cos <p ar r- cos d cos

10
H—r- sin i

r
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At (2, TT/2, 0),

/20 \
D = eoE (r = 2, 6 = TT/2, 0 = 0) = so( — ar - 0ae + 0a* I

= 2.5eoarC/m2 = 22.1 arpC/m2

(b) The work done can be found in two ways, using either E or V.

Method 1:

W
or = I E • dlW = -Q E- dl

and because the electrostatic field is conservative, the path of integration is immaterial.
Hence the work done in moving Q from A(l, 30°, 120°) to 5(4, 90°, 60°) is the same as
that in moving Q from A to A', from A' to B', and from B' to B where

A(l, 30°

i dl

A'(4, 30°

, 120°)

= drar

, 120°)
dl = rddag

—>

B(4, 90°,

B'(4, 90°,

60°)

120°).

: r s in 6 d<f>

That is, instead of moving Q directly from A and B, it is moved from A —> A', A' -* B',
B' —» B so that only one variable is changed at a time. This makes the line integral a lot
easier to evaluate. Thus

-W

~Q

1

'AA' A'B' B'B

Edl

20 sin 6 cos <j>
dr

= 3 0 ° , <t> = 120°
90° - 1 0 cos 6 cos <(>

= 30°
60° 10 sin

rdd

r s in 6 d<t>

r = 4, 4 > = 1

10 (-1) . .
"l6^S m e

- 7 5 ^ _ _ K)
32 + 32 16

10
- cos 0

60°

120°
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or

45
W = — Q = 28.125

Method 2:
Since Vis known, this method is a lot easier.

W=-Q

- VA)

= 1 0 ( j ^ sin 90° cos 60° - y sin 30° cos 120°) • 1(T6

- 28.125 ̂ J as obtained before

PRACTICE EXERCISE 4.12

Given that E = (3*2 + v) a, + Aa, W/m, find the work done in moving a - 2 MC
charge from (0, 5, 0) to (2, - 1 , 0) by taking the path

(a) (0,5,0) ~>(2, 5,0) -> (2, - 1 , 0 )
(b) y = 5 - 3x

Answer: (a) 12 mJ, (b) 12 mJ.

4.9 AN ELECTRIC DIPOLE AND FLUX LINES

An electric dipole is formed when two poim charges of equal magnitude but oppo-
site sign are separated by a small distance.

The importance of the field due to a dipole will be evident in the subsequent chapters
Consider the dipole shown in Figure 4.20. The potential at point P(r, 6, 0) is given by

r2\ 4TTEO
(4.77)

where r, and r2 are the distances between P and +Q and P and -Q, respectively If
r » d,r2- r, = d cos 6, r2rx - r2, and eq. (4.77) becomes

V =
Q dcosd

(4.78)
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Figure 4.20 An electric dipole.

dcosd

Since d cos 6 = d • ar, where d = daz, if we define

as the dipole moment, eq. (4.78) may be written as

(4.79)

(4.80)

Note that the dipole moment p is directed from — Q to +Q. If the dipole center is not at the
origin but at r', eq. (4.80) becomes

V(r) =
p (r - r')

47ren|r - r '
(4.81)

The electric field due to the dipole with center at the origin, shown in Figure 4.20, can
be obtained readily from eqs. (4.76) and (4.78) as

E = - V V = -

_ Qd cos 0

27T£nr3

ay l ay

QJ sin 6

or

E = (2 cos 6 ar + sin 6 ae) (4.82)

where p = |p| = Qd.
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Notice that a point charge is a monopole and its electric field varies inversely as r2

while its potential field varies inversely as r [see eqs. (4.61) and (4.63)]. From eqs. (4.80)
and (4.82), we notice that the electric field due to a dipole varies inversely as r3 while its
potential varies inversely as r2. The electric fields due to successive higher-order multi-
poles (such as a quadrupole consisting of two dipoles or an octupole consisting of two
quadrupoles) vary inversely as r4, r5, r6,. . . while their corresponding potentials vary in-
versely as r3, r4, r5, . . . .

The idea of electric flux lines (or electric lines of force as they are sometimes called)
was introduced by Michael Faraday (1791-1867) in his experimental investigation as a
way of visualizing the electric field.

An electric flux line is an imaginary path or line drawn in such a way thai its direc-
tion at any poinl is the direction of Ihc electric field at that point.

In other words, they are the lines to which the electric field density D is tangential at
every point.

Any surface on which the potential is the same throughout is known as an equipoten-
tial surface. The intersection of an equipotential surface and a plane results in a path or line
known as an equipotential line. No work is done in moving a charge from one point to
another along an equipotential line or surface (VA - VB = 0) and hence

E-dl (4.83)

on the line or surface. From eq. (4.83), we may conclude that the lines of force or flux
lines (or the direction of E) are always normal to equipotential surfaces. Examples of
equipotential surfaces for point charge and a dipole are shown in Figure 4.21. Note
from these examples that the direction of E is everywhere normal to the equipotential

flux line

Figure 4.21 Equipotential surfaces for (a) a point charge and (b) an electric
dipole.
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lines. We shall see the importance of equipotential surfaces when we discuss conducting
bodies in electric fields; it will suffice to say at this point that such bodies are equipoten-
tial volumes.

A typical application of field mapping (flux lines and equipotential surfaces) is found
in the diagnosis of the human heart. The human heart beats in response to an electric field
potential difference across it. The heart can be characterized as a dipole with the field map
similar to that of Figure 4.2 l(b). Such a field map is useful in detecting abnormal heart po-
sition.6 In Section 15.2, we will discuss a numerical technique for field mapping.

EXAMPLE 4.13
Two dipoles with dipole moments -5a z nC/m and 9az nC/m are located at points
(0, 0, - 2 ) and (0, 0, 3), respectively. Find the potential at the origin.

Solution:

where

Hence,

= -5az ,

t r i 4ireor
3
k

p2 r2

r\ r\

= (0, 0, 0) - (0, 0, -2 ) = 2az, , j = 2

p2 = 9az, r2 = (0, 0, 0) - (0, 0, 3) = -3az , r2 = jr2| = 3

- 1 0 27

10" 9 L 2 3 3 3 10-9

36vr
= -20.25 V

PRACTICE EXERCISE 4.13

An electric dipole of 100 a. pC • m is located at the origin. Find V and E at points

(a) (0,0, 10)

(b) (I,7i73, TT/2)

Answer: (a) 9 mV, 1.8ar mV/m, (b) 0.45 V, 0.9ar + 0.7794a,, V/m.

6For more information on this, see R. Plonsey, Bioelectric Phenomena. New York: McGraw-Hill,
1969.
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4.10 ENERGY DENSITY IN ELECTROSTATIC FIELDS

To determine the energy present in an assembly of charges, we must first determine the
amount of work necessary to assemble them. Suppose we wish to position three point
charges Qx, Q2, and Q3 in an initially empty space shown shaded in Figure 4.22. No work
is required to transfer Qx from infinity to Pl because the space is initially charge free and
there is no electric field [from eq. (4.59), W = 0]. The work done in transferring Q2 from
infinity to P2 is equal to the product of Q2 and the potential V2i

 a t P2 due to Qx. Similarly,
the work done in positioning Q3 at P3 is equal to Q3(V32 + V31), where V32 and V31 are the
potentials at P3 due to Q2 and Qu respectively. Hence the total work done in positioning
the three charges is

W3

= 0 + Q2V2l +

If the charges were positioned in reverse order,

WE = W3 + W2 + 1
= 0 -

v3 2)

V1 3)

(4.84)

(4.85)

where V23 is the potential at P2 due to Q3, Vl2 and Vl3 are, respectively, the potentials at Pi
due to Q2 and Q3. Adding eqs. (4.84) and (4.85) gives

2WE = + V13) + Q2(V2l + V23) + Q3(V3]

Q2V2 + Q3V3

V32)

or

Q2V2 + Q3V3) (4.86)

where Vu V2, and V3 are total potentials at Pu P2, and P3, respectively. In general, if there
are n point charges, eq. (4.86) becomes

(in joules) (4.87)

Figure 4.22 Assembling of charges.



4.10 ENERGY DENSITY IN ELECTROSTATIC FIELDS 147

If, instead of point charges, the region has a continuous charge distribution, the sum-
mation in eq. (4.87) becomes integration; that is,

WE = -\pLVdl (line charge)

W£ = - | psV dS (surface charge)

WE = — I pvV dv (volume charge)

Since pv = V • D, eq. (4.90) can be further developed to yield

WE = ~ j(V-D)Vdv

But for any vector A and scalar V, the identity

V • VA = A • VV + V(V • A)

or

(V • A)V = V • VA - A • VV

holds. Applying the identity in eqs. (4.92) to (4.91), we get

WE = - (V • VD) dv (D • VV) dv

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)

(4.93)

By applying divergence theorem to the first term on the right-hand side of this equation, we
have \

1
WE = - 4> (VD) • dS (D • VV) dv (4.94)

From Section 4.9, we recall that V varies as 1/r and D as 1/r2 for point charges; V varies
as 1/r2 and D as 1/r3 for dipoles; and so on. Hence, VD in the first term on the right-hand
side of eq. (4.94) must vary at least as 1/r3 while dS varies as r2. Consequently, the first
integral in eq. (4.94) must tend to zero as the surface S becomes large. Hence, eq. (4.94)
reduces to

(4.95)WE= - - (D • VV) dv = | | (D • E) dv

and since E = - VV and D = eoE

(4.96)
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From this, we can define electrostatic energy density wE (in J/m ) as

dW* 1 _ „ 1 i _ D2

wE = dv 2 2eo

(4.97)

so eq. (4.95) may be written as

WE = wE dv (4.98)

EXAMPLE 4.14
Three point charges - 1 nC, 4 nC, and 3 nC are located at (0, 0, 0), (0, 0, 1), and (1, 0, 0),
respectively. Find the energy in the system.

Solution:

w = w, + w2 + w3
= 0 + Q2V21 + G3

V32)

-a-
4TT£O

Q\
1(1,0,0) - (0,0,0)| |(l,0,0) - (0,0,l)|

4ir
10"

- 4 - 3

36TT

= 91-^= - 7 | nJ = 13.37 nJ

Alternatively,

W = 2 •

2
Qi
2

2 L4TS O ( 1 )

= 9( ^= - 7 ) nJ = 13.37 nJ

as obtained previously.
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PRACTICE EXERCISE 4.14

Point charges <2, = 1 nC, Q2 = - 2 nC, Q3 = 3 nC, and Q4 = - 4 nC are posi-
tioned one at a time and in that order at (0, 0, 0), (1,0, 0), (0, 0, -1 ) , and (0, 0, 1),
respectively. Calculate the energy in the system after each charge is positioned.

Answer: 0, - 1 8 nJ, -29.18 nJ, -68.27 nJ.

EXAMPLE 4.15
A charge distribution with spherical symmetry has density

"po, 0 < r < R
Pv = 0, r>R

Determine V everywhere and the energy stored in region r < R.

Solution:
The D field has already been found in Section 4.6D using Gauss's law.

(a) Forr » R,E = -^^ar.
3e</

Once E is known, V is determined as

3eor
+ C,, R

Since V(r = oo) = o,Ci = 0.

(b) For r =£ /?, E = — ar.
3eo

Hence,

por
6eo

From part (a) V(r = R) = . Hence,
3e0

d\= -— | rdr
3eo

+ C,

6eo 2en
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and

6eo

Thus from parts (a) and (b)

V =

(c) The energy stored is given by

3e</'

^(3R2-r2), r

W = | I D • E dv = - eo | E2 dv

Forr =S R,

Hence,

2ir
- I ô

W ~ 2 S e 2 J J J
r2 • r2 sin 0

2 D 5

45eo

PRACTICE EXERCISE 4.15

If V = x — y + xy + 2z V, find E at (1, 2, 3) and the electrostatic energy stored in a
cube of side 2 m centered at the origin.

Answer: -3ax - 2a, V/m, 0.2358 nJ.

SUMMARY 1. The two fundamental laws for electrostatic fields (Coulomb's and Gauss's) are pre-
sented in this chapter. Coulomb's law of force states that

Aireji2

2. Based on Coulomb's law, we define the electric field intensity E as the force per unit
charge; that is,

T? Q
4-ireJi R

(point charge only)
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3. For a continuous charge distribution, the total charge is given by

Q = \ pLdl for line charge

Q = \ ps dS for surface charge

Q = \ pv dv for volume charge

The E field due to a continuous charge distribution is obtained from the formula for
point charge by replacing Q with dQ = pL dl, dQ = ps dS or dQ = pv dv and integrat-
ing over the line, surface, or volume respectively.

4. For an infinite line charge,

and for an infinite sheet of charge,

F -
2e0

5. The electric flux density D is related to the electric field intensity (in free space) as

D = eoE

The electric flux through a surface S is

/ y = I D - d s
's

6. Gauss's law states that the net electric flux penetrating a closed surface is equal to the
total charge enclosed, that is, f = Qenc. Hence,

or

Pv = V D

= 2 e n c = Pvdv

(first Maxwell's equation to be derived)

When charge distribution is symmetric so that a Gaussian surface (where D = Dnan is
constant) can be found, Gauss's law is useful in determining D; that is,

Dn*dS= gene or Dn =
Gene
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7. The total work done, or the electric potential energy, to move a point charge Q from
point A to B in an electric field E is

W = - Q \ E - d l

8. The potential at r due to a point charge Q at r ' is

V(r) = Q
47rso|r - r ' |

C

where C is evaluated at a given reference potential point; for example C = 0 if
V(r —> oo) = 0. To determine the potential due to a continuous charge distribution, we
replace Q in the formula for point charge by dQ = pL dl, dQ = ps dS, or dQ = pv dv
and integrate over the line, surface, or volume, respectively.

9. If the charge distribution is not known, but the field intensity E is given, we find the
potential using

V=-\E-dl

W

10. The potential difference VAB, the potential at B with reference to A, is

VAB= - J W
-dl = -=VB-VA

11. Since an electrostatic field is conservative (the net work done along a closed path in a
static E field is zero),

E • dl = 0

or

V X E = 0 (second Maxwell's equation to be derived)

12. Given the potential field, the corresponding electric field is found using

. E = -VV

13. For an electric dipole centered at r ' with dipole moment p, the potential at r is given
by

V(r) =
P • (r - r')

47rco|r - r ' |3

14. D is tangential to the electric flux lines at every point. An equipotential surface (or
line) is one on which V = constant. At every point, the equipotential line is orthogonal
to the electric flux line.



REVIEW QUESTIONS ^ 153

15. The electrostatic energy due to n point charges is

WE = ~ 2 QkVk
1

For a continuous volume charge distribution,

= - \D-Edv = - | eo\E\zdv

REVIEW QUESTIONS

4.1 Point charges Q, = 1 nC and Q2 = 2 nC are at a distance apart. Which of the following
statements are incorrect?

(a) The force on Ql is repulsive.
(b) The force on Q2 is the same in magnitude as that on Qx.

(c) As the distance between them decreases, the force on Ql increases linearly.

(d) The force on Q2 is along the line joining them.

(e) A point charge Q3 = — 3 nC located at the midpoint between Q{ and Q2 experiences
no net force.

4.2 Plane z = 10 m carries charge 20 nC/m2. The electric field intensity at the origin is

(a) -10a ,V/m

(b) -187razV/m

(c) -727razV/m

(d) -360irazV/m

4.3 Point charges 30 nC, -20 nC, and 10 nC are located at ( -1 ,0 ,2) , (0,0,0), and
(1,5, — 1), respectively. The total flux leaving a cube of side 6 m centered at the origin is:

(a) - 2 0 nC

(b) 10 nC

(c) 20 nC

(d) 30 nC

(e) 60 nC

4.4 The electric flux density on a spherical surface r = b is the same for a point charge Q
located at the origin and for charge Q uniformly distributed on surface r = a(a < b).

(a) Yes

(b) No
(c) Not necessarily
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4.5 The work done by the force F = 4ax - 3ay + 2az N in giving a 1 nC charge a displace-
f lO + 2 7 i+ 2ay - 7az m isment of

(a) 103 nJ
(b) 60 nJ
(c) 64 nJ

(d) 20 nJ

4.6 By saying that the electrostatic field is conservative, we do not mean that

(a) It is the gradient of a scalar potential.
(b) Its circulation is identically zero.
(c) Its curl is identically zero.

(d) The work done in a closed path inside the field is zero.

(e) The potential difference between any two points is zero.

4.7 Suppose a uniform electric field exists in the room in which you are working, such that the
lines of force are horizontal and at right angles to one wall. As you walk toward the wall
from which the lines of force emerge into the room, are you walking toward

(a) Points of higher potential?

(b) Points of lower potential?

(c) Points of the same potential (equipotential line)?

4.8 A charge Q is uniformly distributed throughout a sphere of radius a. Taking the potential
at infinity as zero, the potential at r = b < a is

(a) -

(b) -

(c) -

(d) -

Q

0 4irsor
2

a Q

= 4ireor
2

" Q

dr

dr -
Qr

4irena
dr

dr

4.9 A potential field is given by V = 3x2y - yz- Which of the following is not true?

(a) At point (1, 0, - 1), V and E vanish.

(b) x2y = 1 is an equipotential line on the xy-plane.

(c) The equipotential surface V = — 8 passes through point P(2, —1,4).

(d) The electric field at P is 12a^ - 8a,, - az V/m.

(e) A unit normal to the equipotential surface V = —8 at P is —0.83a^ + 0.55aj,+
0.07a7.
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4.10 An electric potential field is produced by point charges 1 juC and 4 /*(
( -2 , 1, 5) and (1, 3, -1 ) , respectively. The energy stored in the field is

(a) 2.57 mJ
(b) 5.14 mJ
(c) 10.28 mJ

(d) None of the above

Answers: 4.1c,e, 4.2d, 4.3b, 4.4a, 4.5d, 4.6e, 4.7a, 4.8c, 4.9a, 4.10b.
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located at

PROBLEMS
4.1 Point charges Qx = 5 jtC and Q2 = - 4 /xC are placed at (3, 2, 1) and ( -4 , 0, 6), re-

spectively. Determine the force on Qx.

4.2 Five identical 15-/*C point charges are located at the center and corners of a square
defined by - 1 < x, y < 1, z = 0.

(a) Find the force on the 10-/*C point charge at (0, 0, 2).
(b) Calculate the electric field intensity at (0, 0, 2).

4.3 Point charges Qx and Q2 are, respectively, located at (4,0, -3 ) and (2,0, 1). If
Q2 = 4 nC, find Qx such that

(a) The E at (5, 0, 6) has no z-component

(b) The force on a test charge at (5, 0, 6) has no jc-component.

4.4 Charges + Q and + 3Q are separated by a distance 2 m. A third charge is located such that
the electrostatic system is in equilibrium. Find the location and the value of the third
charge in terms of Q.

4.5 Determine the total charge

(a) On line 0 < x < 5 m if pL = \2x2 mC/m
(b) On the cylinder p = 3, 0 < z < 4 m if ps = pz2 nC/m2

10 3

(c) Within the sphere r = 4 m if pv = —:—- C/m

4.6 Calculate the total charge due to the charge distributions labeled A, B, C in Fig. 4.23.

4.7 Find E at (5, 0, 0) due to charge distribution labeled A in Figure 4.23.

4.8 Due to the charge distribution labeled B in Figure 4.23,

(a) Find E at point (0, 0, 3) if ps = 5 mC/m2.

(b) Find E at point (0, 0, 3) if ps = 5 sin </> mC/m2.

4.9 A circular disk of radius a carries charge ps = — C/m2. Calculate the potential at (0, 0, h).
P
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x= - 2

pv = 1 mC/m3

ps = 5 mC/m2

Figure 4.23 For Problem 4.6.

4.10 A ring placed along y2 + z2 = 4, x = 0 carries a uniform charge of 5 /xC/m.

(a) FindDatP(3,0, 0).

(b) If two identical point charges Q are placed at (0, —3, 0) and (0, 3, 0) in addition to
the ring, find the value of Q such that D = 0 at P.

*4.11 (a) Show that the electric field at point (0, 0, h) due to the rectangle described by
— a < x < a, — b •& y < b, z = 0 carrying uniform charge psC/m2 is

ab

(b) If a = 2, b = 5,ps = 10~5, find the total charge on the plate and the electric field in-
tensity at (0, 0, 10).

4.12 A point charge 100 pC is located at ( 4 , 1 , — 3) while the x-axis carries charge 2 nC/m. If
the plane z = 3 also carries charge 5 nC/m2, find E at (1 , 1, 1).

4.13 Linex = 3, z = — 1 carries charge 20 nC/m while plane x = —2 carries charge 4 nC/m2.
Find the force on a point charge - 5 mC located at the origin.

4.14 Point charges are placed at the corners of a square of size 4 m as shown in Figure 4.24. If
Q = 15/tC, find D at (0,0, 6).
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Figure 4.24 For Problem 4.14.
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*4.15 State Gauss's law. Deduce Coulomb's law from Gauss's law thereby affirming that
Gauss's law is an alternative statement of Coulomb's law and that Coulomb's law is im-
plicit in Maxwell's equation V • D = pv.

4.16 Determine the charge density due to each of the following electric flux densities:

(a) D = %xyax + 4x\ C/m2

(b) D = p sin <t> ap + 2p cos + 2z2az C/m2

(c) D =
2 cos 6

ar +
sin 0

C/m2

4.17 Let E = xyax + x2ay, find

(a) Electric flux density D.

(b) The volume charge density pv.

4.18 Plane x + 2y = 5 carries charge ps = 6 nC/m2. Determining E at ( - 1 , 0, 1).

4.19 In free space, D = 2v2a,t + 4xy - az mC/m2. Find the total charge stored in the region
l < x < 2 , l < y < 2 , - 1 < z < 4.

4.20 In a certain region, the electric field is given by

D = 2p(z + l)cos </> ap - p(z + l)sin 0 a0 + p2 cos <t> az /^C/m2

(a) Find the charge density.

\ . (b) Calculate the total charge enclosed by the volume 0 < p < 2, 0 < <t> < x/2,
0 < z < 4.

(c) Confirm Gauss's law by finding the net flux through the surface of the volume in (b).

*4.21 The Thomson model of a hydrogen atom is a sphere of positive charge with an electron (a
point charge) at its center. The total positive charge equals the electronic charge e. Prove
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that when the electron is at a distance r from the center of the sphere of positive charge, it
is attracted with a force

F =

where R is the radius of the sphere.

4.22 Three concentric spherical shells r = 1, r = 2, and r = 3 m, respectively, have charge
distributions 2, - 4 , and 5

(a) Calculate the flux through r = 1.5 m and r = 2.5 m.
(b) Find D at r = 0.5, r = 2.5, and r = 3.5 m.

4.23 Given that

j

Determine D everywhere.

4.24 Let

/ Up nC/m3,
\0,

1 <P < 2
otherwise

mC/m3,

0,

1 < r < 4

r> 0

(a) Find the net flux crossing surface r = 2 m and r = 6 m.
(b) Determine D at r = 1 m and r = 5 m.

4.25 Find the work done in carrying a 5-C charge from P(l, 2, -4 ) to R(3, - 5 , 6) in an elec-
tric field

E = ax + z \ + 2yzaz V/m

4.26 Given that the electric field in a certain region is

E = (z + 1) sin 0 a, + (z + 1) cos a0 + p sin <£ az V/m

determine the work done in moving a 4-nC charge from

(a) A(l,0, 0)toB(4, 0,0)

(b) S(4, 0, 0) to C(4, 30°, 0)
(c) C(4, 30°, 0)toD(4, 30°, -2 )
(d) AtoD

4̂ 27 In an electric field E = 20r sin 6 ar + lOr cos 6 ae V/m, calculate the energy expended
in transferring a 10-nC charge

(a) From A(5, 30°, 0°) to B(5, 90°, 0°)

(b) From A to C( 10, 30°, 0°)
(c) FromAtoD(5,30°, 60°)
(d) From A to £(10, 90°, 60°)
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4.28 Let V = xy2z, calculate the energy expended in transfering a 2-^C point charge from
( 1 , - 1 , 2) to (2, 1,-3).

4.29 Determine the electric field due to the following potentials:

(a) V= x2 + 2y2 + 4z2

(b) V = sin(x2 + y2 + z2)1'2

(c) V = p2(z + l)sin (j>

(d) V = e'r sin 6 cos 2<t>

4.30 Three point charges gi = 1 mC, Q2 = - 2 m C , and Q3 = 3 mC are, respectively,
located at (0, 0, 4), ( -2 , 5, 1), and (3, - 4 , 6).

(a) Find the potential VP at P(-1, 1, 2).
(b) Calculate the potential difference VPQ if Q is (1, 2, 3).

4.31 In free space, V = x2y(z + 3) V. Find

(a) Eat (3, 4, - 6 )
(b) the charge within the cube 0 < x,y,z < 1.

4.32 A spherical charge distribution is given by

r<a
2

j 0, r> a

Find V everywhere.

4.33 To verify that E = yzax + xzay + xyaz V/m is truely an electric field, show that

(a) V X E = 0

(b) j>L E • d\ = 0, where L is the edge of the square defined \ayO<x,y<2,z= 1 •

4.34 (a) A total charge Q = 60 fiC is split into two equal charges located at 180° intervals
around a circular loop of radius 4 m. Find the potential at the center of the loop.

(b) If Q is split into three equal charges spaced at 120° intervals around the loop, find the
potential at the center.

Q
(c) If in the limit pL = — , find the potential at the center.

4.35 For a spherical charge distribution

Pv =
Po(a2 - r2) ,
0,

r < a
r > a

(a) Find E and V for r> a

(b) Find E and V for r < a

(c) Find the total charge
(d) Show that E is maximum when r = 0.145a.
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*4.36 (a) Prove that when a particle of constant mass and charge is accelerated from rest in an
electric field, its final velocity is proportional to the square root of the potential dif-
ference through which it is accelerated.

(b) Find the magnitude of the proportionality constant if the particle is an electron.

(c) Through what voltage must an electron be accelerated, assuming no change in its mass,
to require a velocity one-tenth that of light? (At such velocities, the mass of a body
becomes appreciably larger than its "rest mass" and cannot be considered constant.)

*4.37 An electron is projected with an initial velocity uo = 107 m/s into the uniform field
between the parallel plates of Figure 4.25. It enters the field at the midway between the
plates. If the electron just misses the upper plate as it emerges from the field.

(a) Find the electric field intensity.

(b) Calculate its velocity as it emerges from the field. Neglect edge effects.

4.38 An electric dipole with p = paz C • m is placed at (x, z) = (0, 0). If the potential at
(0, 1) nm is 9 V, find the potential at (1, 1) nm.

4.39 Point charges Q and -Q are located at (0, d/2, 0) and (0, -d/2, 0). Show that at point
(r, 6, <t>), where r » d,

Qd sin 6 sin 4>
V =

Find the corresponding E field.

4.40 Determine the work necessary to transfer charges Q\ = \ mC and Q2 = —2 mC from
infinity to points ( — 2, 6, 1) and (3, —4, 0), respectively.

4.41 A point charge Q is placed at the origin. Calculate the energy stored in region r > a.

4.42 Find the energy stored in the hemispherical region r < 2 m , 0 < 6 < it, where

E = 2r sin 8 cos <j> a r + r cos 6 cos <f> ae — r sin <j> a^ V/m

exists.

4.43 If V = p2z sin <£, calculate the energy within the region defined by 1 < p < 4,
- 2 < z < 2 , 0 < <f> < 7i73.

2 cm

-10 cm -

Figure 4.25 For Problem 4.37.



Chapter 5

ELECTRIC FIELDS IN
MATERIAL SPACE

The 12 Principles of character: (1) Honesty, (2) Understanding, (3) Compassion,

(4) Appreciation, (5) Patience, (6) Discipline, (7) Fortitude, (8) Perseverance,

(9) Humor, (10) Humility, (11) Generosity, (12) Respect.

—KATHRYN B. JOHNSON

J.1 INTRODUCTION

In the last chapter, we considered electrostatic fields in free space or a space that has no
materials in it. Thus what we have developed so far under electrostatics may be regarded
as the "vacuum" field theory. By the same token, what we shall develop in this chapter may
be regarded as the theory of electric phenomena in material space. As will soon be evident,
most of the formulas derived in Chapter 4 are still applicable, though some may require
modification.

Just as electric fields can exist in free space, they can exist in material media. Materi-
als are broadly classified in terms of their electrical properties as conductors and noncon-
ductors. Nonconducting materials are usually referred to as insulators or dielectrics. A
brief discussion of the electrical properties of materials in general will be given to provide
a basis for understanding the concepts of conduction, electric current, and polarization.
Further discussion will be on some properties of dielectric materials such as susceptibility,
permittivity, linearity, isotropy, homogeneity, dielectric strength, and relaxation time. The
concept of boundary conditions for electric fields existing in two different media will be
introduced.

2 PROPERTIES OF MATERIALS

In a text of this kind, a discussion on electrical properties of materials may seem out of
place. But questions such as why an electron does not leave a conductor surface, why a
current-carrying wire remains uncharged, why materials behave differently in an electric
field, and why waves travel with less speed in conductors than in dielectrics are easily an-
swered by considering the electrical properties of materials. A thorough discussion on this
subject is usually found in texts on physical electronics or electrical engineering. Here, a
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brief discussion will suffice to help us understand the mechanism by which materials influ-
ence an electric field.

In a broad sense, materials may be classified in terms of their conductivity a, in mhos
per meter (U/m) or Siemens per meter (S/m), as conductors and nonconductors, or techni-
cally as metals and insulators (or dielectrics). The conductivity of a material usually
depends on temperature and frequency. A material with high conductivity ( a » 1) is re-
ferred to as a metal whereas one with low conductivity (a <sC 1) is referred to as an insu-
lator. A material whose conductivity lies somewhere between those of metals and insula-
tors is called a semiconductor. The values of conductivity of some common materials as
shown in Table B. 1 in Appendix B. From this table, it is clear that materials such as copper
and aluminum are metals, silicon and germanium are semiconductors, and glass and
rubber are insulators.

The conductivity of metals generally increases with decrease in temperature. At tem-
peratures near absolute zero (T = 0°K), some conductors exhibit infinite conductivity and
are called superconductors. Lead and aluminum are typical examples of such metals. The
conductivity of lead at 4°K is of the order of 1020 mhos/m. The interested reader is referred
to the literature on superconductivity.1

We shall only be concerned with metals and insulators in this text. Microscopically,
the major difference between a metal and an insulator lies in the amount of electrons avail-
able for conduction of current. Dielectric materials have few electrons available for con-
duction of current in contrast to metals, which have an abundance of free electrons. Further
discussion on the presence of conductors and dielectrics in an electric field will be given in
subsequent sections.

5.3 CONVECTION AND CONDUCTION CURRENTS

Electric voltage (or potential difference) and current are two fundamental quantities in
electrical engineering. We considered potential in the last chapter. Before examining how

\ electric field behaves in a conductor or dielectric, it is appropriate to consider electric
current. Electric current is generally caused by the motion of electric charges.

The current (in amperes) through a given area is the electric charge passing through
the area per unit time.

That is,

, dQ
I = — (5.1)

dt
Thus in a current of one ampere, charge is being transferred at a rate of one columb per
second.

'The August 1989 issue of the Proceedings of IEEE was devoted to "Applications of Superconduc-
tivity."
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We now introduce the concept of current density J. If current A/ flows through a
surface AS, the current density is

_ ^L
Jn~Js

or

A/ = JnAS (5.2)

assuming that the current density is perpendicular to the surface. If the current density is
not normal to the surface,

A/ = J • AS

Thus, the total current flowing through a surface S is

/ = [ 3-dS
's

(5.3)

(5.4)

Depending on how / is produced, there are different kinds of current densities: convection
current density, conduction current density, and displacement current density. We will con-
sider convection and conduction current densities here; displacement current density will
be considered in Chapter 9. What we need to keep in mind is that eq. (5.4) applies to any
kind of current density. Compared with the general definition of flux in eq. (3.13), eq. (5.4)
shows that the current / through S is merely the flux of the current density J.

Convection current, as distinct from conduction current, does not involve conductors
and consequently does not satisfy Ohm's law. It occurs when current flows through an in-
sulating medium such as liquid, rarefied gas, or a vacuum. A beam of electrons in a vacuum
tube, for example, is a convection current.

Consider a filament of Figure 5.1. If there is a flow of charge, of density pv, at velocity
y, from eq. (5.1), the current through the filament isu =

At— (5.5)

I he current densilj m a given point i» ihc current through a unit normal area at that
point.

AS

A A A.
Figure 5.1 Current in a filament.

' '
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The v-directed current density Jy is given by

A/
(5.6)

Hence, in general

J = (5.7)

The current / is the convection current and J is the convection current density in
amperes/square meter (A/m2).

Conduction current requires a conductor. A conductor is characterized by a large
amount of free electrons that provide conduction current due an impressed electric field.
When an electric field E is applied, the force on an electron with charge —e is

F = -eE (5.8)

Since the electron is not in free space, it will not be accelerated under the influence of the
electric field. Rather, it suffers constant collision with the atomic lattice and drifts from one
atom to another. If the electron with mass m is moving in an electric field E with an
average drift velocity u, according to Newton's law, the average change in momentum of
the free electron must match the applied force. Thus,

mxx
— = - e E

T

or

m
(5.9)

where T is the average time interval between collisions. This indicates that the drift veloc-
ity of the electron is directly proportional to the applied field. If there are n electrons per
unit volume, the electronic charge density is given by

pv = -ne (5.10)

Thus the conduction current density is

J = pvu = — E = aE
m

or

J = aE (5.11)

where a - ne2r/m is the conductivity of the conductor. As mentioned earlier, the values of
a for common materials are provided in Table B.I in Appendix B. The relationship in
eq. (5.11) is known as the point form of Ohm's law.
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5.4 CONDUCTORS

A conductor has abundance of charge that is free to move. Consider an isolated conductor,
such as shown in Figure 5.2(a). When an external electric field Ee is applied, the positive
free charges are pushed along the same direction as the applied field, while the negative
free charges move in the opposite direction. This charge migration takes place very
quickly. The free charges do two things. First, they accumulate on the surface of the con-
ductor and form an induced surface charge. Second, the induced charges set up an internal
induced field E,, which cancels the externally applied field Ee. The result is illustrated in
Figure 5.2(b). This leads to an important property of a conductor:

A perfect conductor cannot contain an electrostatic field within it.

A conductor is called an equipotential body, implying that the potential is the same every-
where in the conductor. This is based on the fact that E = - W = 0.

Another way of looking at this is to consider Ohm's law, J = oE. To maintain a finite
current density J, in a perfect conductor (a —> °°), requires that the electric field inside the
conductor must vanish. In other words, E —> 0 because a —»°° in a perfect conductor. If
some charges are introduced in the interior of such a conductor, the charges will move to
the surface and redistribute themselves quickly in such a manner that the field inside the
conductor vanishes. According to Gauss's law, if E = 0, the charge density pv must be
zero. We conclude again that a perfect conductor cannot contain an electrostatic field
within it. Under static conditions,

E = 0, pv = 0, Vab = 0 inside a conductor (5.12)

-

-

-

E,-

E;

+

+

+

+

+

+

(a) (b)

Figure 5.2 (a) An isolated conductor under the influence of an applied field; (b) a conductor has
zero electric field under static conditions.



166 • Electric Fields in Material Space

We now consider a conductor whose ends are maintained at a potential difference V,
as shown in Figure 5.3. Note that in this case, E + 0 inside the conductor, as in Figure 5.2.
What is the difference? There is no static equilibrium in Figure 5.3 since the conductor is
not isolated but wired to a source of electromotive force, which compels the free charges to
move and prevents the eventual establishment of electrostatic equilibrium. Thus in the case
of Figure 5.3, an electric field must exist inside the conductor to sustain the flow of current.
As the electrons move, they encounter some damping forces called resistance. Based on
Ohm's law in eq. (5.11), we will derive the resistance of the conducting material. Suppose
the conductor has a uniform cross section S and is of length €. The direction of the electric
field E produced is the same as the direction of the flow of positive charges or current /.
This direction is opposite to the direction of the flow of electrons. The electric field applied
is uniform and its magnitude is given by

V
(5.13)

Since the conductor has a uniform cross section,

/
(5.14)

Substituting eqs. (5.11) and (5.13) into eq. (5.14) gives

/ oV
— = oE = —
S t

(5.15)

Hence

I ~ aS

or

(5.16)

Figure 5.3 A conductor of uniform cross section
under an applied E field.

v -
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where pc = I/a is the resistivity of the material. Equation 5.16 is useful in determining the
resistance of any conductor of uniform cross section. If the cross section of the conductor
is not uniform, eq. (5.16) is not applicable. However, the basic definition of resistance R as
the ratio of the potential difference V between the two ends of the conductor to the current
/through the conductor still applies. Therefore, applying eqs. (4.60) and (5.4) gives the re-
sistance of a conductor of nonuniform cross section; that is,

(5.17)

Note that the negative sign before V = -fE-dl is dropped in eq. (5.17) because
/ E • d\ < 0 if / > 0. Equation (5.17) will not be utilized until we get to Section 6.5.

Power P (in watts) is defined as the rate of change of energy W (in joules) or force
times velocity. Hence,

pv dv E • u = E • pvu dv

or

(5.18)

which is known as Joule's law. The power density wP (in watts/m3) is given by the inte-
grand in eq. (5.18); that is,

wP f EJ <j\E\
dv

For a conductor with uniform cross section, dv = dS dl, so eq. (5.18) becomes

(5.19)

P = Edl JdS = VI
' 'S

or

P = I2R

which is the more common form of Joule's law in electric circuit theory.

(5.20)

EXAMPLE 5.1
If J = —7 (2 cos 6 ar + sin 0 ae) A/m2, calculate the current passing through

r

(a) A hemispherical shell of radius 20 cm

(b) A spherical shell of radius 10 cm
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Solution:

/ = / J • dS, where dS = r2 sin 0 d<j> dd ar in this case.
fT/2 rl-K 1

(a) / = -; 2 cos 0 r2 sin 0 J<A d0
4=0 ^=0 r r = 0 2

= - 2TT sin 6 d(sin 0)
0=0 r=0.2

4TT sin2

0.2 2

x/2

= 10x = 31.4A

(b) The only difference here is that we have 0 =£ 6 < -w instead of 0 < 0 < 7r/2 and
r = 0.1. Hence,

4TT sin2

0.1 2
= 0

Alternatively, for this case

since V • J = 0.

/ = $ J • JS = JV • J dv = 0

PRACTICE EXERCISE 5.1

For the current density J = \0z sin2 <£ ap A/m2, find the current through the cylindri-
cal surface p = 2, 1 < z 5 5 m.

Answer: 754 A.

EXAMPLE 5.2
A typical example of convective charge transport is found in the Van de Graaff generator
where charge is transported on a moving belt from the base to the dome as shown in
Figure 5.4. If a surface charge density 10~7 C/m2 is transported at a velocity of 2 m/s, cal-
culate the charge collected in 5 s. Take the width of the belt as 10 cm.

Solution:
If ps = surface charge density, u = speed of the belt, and w = width of the belt, the
current on the dome is

I = psuw

The total charge collected in t = 5 s is

Q = It = psuwt = 1 0 7 X 2 X 0.1 X 5
= 100 nC
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charge
removal

charge placement

conducting dome

- insulating support

motor

Figure 5.4 Van de Graaff generator, for
Example 5.2.

conducting
base

PRACTICE EXERCISE 5.2

In a Van de Graaff generator, w = 0.1 m, u = 10 m/s, and the leakage paths have re-
sistance 1014 Q. If the belt carries charge 0.5 jtC/m2, find the potential difference
between the dome and the base.

Answer: 50 MV.

EXAMPLE 5.3
A wire of diameter 1 mm and conductivity 5 X 107 S/m has 1029 free electrons/m3 when
an electric field of 10 mV/m is applied. Determine

(a) The charge density of free electrons

(b) The current density

(c) The current in the wire

(d) The drift velocity of the electrons. Take the electronic charge as e = -1.6 X 10 C.

Solution:

(In this particular problem, convection and conduction currents are the same.)

(a) pv = ne = (1029)(-1.6 X 10~19) = -1.6 X 1010 C/m3

(b) J = oE = (5 X 107)(10 X 10~3) = 500 kA/m2

(c) / = JS = (5 X 105)
ltd'

= — • 10~6 • 105 = 0.393 A

J 5 X 105

(d) Since/ = pvu, u = — = ^ = 3.125 X 10"5 m/s.
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PRACTICE EXERCISE 5.3

The free charge density in copper is 1.81 X 10loC/m3. For a current density of
8 X 105 A/m2, find the electric field intensity and the drift velocity.

Answer: 0.138 V/m, 4.42 X 1 (T4 m/s.

EXAMPLE 5.4 A lead (a = 5 X 106 S/m) bar of square cross section has a hole bored along its length of
4 m so that its cross section becomes that of Figure 5.5. Find the resistance between the
square ends.

Solution:

Since the cross section of the bar is uniform, we may apply eq. (5.16); that is,

aS

where S = d2 - ntr2 = 32 - T T Q J = 9 - - cm2.

Hence,

R =
5 X 106(9 - TT/4) X 10"

= 91A j

PRACTICE EXERCISE 5.4

If the hole in the lead bar of Example 5.4 is completely filled with copper (a =
5.8 X 106 mhos/m), determine the resistance of the composite bar.

Answer: 876.7 /xQ

1 cm

Figure 5.5 Cross section of the lead bar of Example 5.4.

3 cm

3 cm
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5.5 POLARIZATION IN DIELECTRICS

In Section 5.2, we noticed that the main difference between a conductor and a dielectric
lies in the availability of free electrons in the atomic outermost shells to conduct current.
Although the charges in a dielectric are not able to move about freely, they are bound by
finite forces and we may certainly expect a displacement when an external force is applied.

To understand the macroscopic effect of an electric field on a dielectric, consider an
atom of the dielectric as consisting of a negative charge - Q (electron cloud) and a positive
charge +Q (nucleus) as in Figure 5.6(a). A similar picture can be adopted for a dielectric
molecule; we can treat the nuclei in molecules as point charges and the electronic structure
as a single cloud of negative charge. Since we have equal amounts of positive and negative
charge, the whole atom or molecule is electrically neutral. When an electric field E is
applied, the positive charge is displaced from its equilibrium position in the direction of E
by the force F + = QE while the negative charge is displaced in the opposite direction by
the force F_ = QE. A dipole results from the displacement of the charges and the dielec-
tric is said to be polarized. In the polarized state, the electron cloud is distorted by the
applied electric field E. This distorted charge distribution is equivalent, by the principle of
superposition, to the original distribution plus a dipole whose moment is

p = QA (5.21)

where d is the distance vector from —Q to +Q of the dipole as in Figure 5.6(b). If there are
N dipoles in a volume Av of the dielectric, the total dipole moment due to the electric
field is

(5.22)

As a measure of intensity of the polarization, we define polarization P (in coulombs/meter
square) as the dipole moment per unit volume of the dielectric; that is,

(5.23)

Thus we conclude that the major effect of the electric field E on a dielectric is the cre-
ation of dipole moments that align themselves in the direction of E. This type of dielectric

Figure 5.6 Polarization of a nonpolar atom or molecule.
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Figure 5.7 Polarization of a polar molecule:
(a) permanent dipole (E = 0), (b) alignment of
permanent dipole (E + 0).

(a) (b)

is said to be nonpolar. Examples of such dielectrics are hydrogen, oxygen, nitrogen, and
the rare gases. Nonpolar dielectric molecules do not possess dipoles until the application of
the electric field as we have noticed. Other types of molecules such as water, sulfur
dioxide, and hydrochloric acid have built-in permanent dipoles that are randomly oriented
as shown in Figure 5.7(a) and are said to be polar. When an electric field E is applied to a
polar molecule, the permanent dipole experiences a torque tending to align its dipole
moment parallel with E as in Figure 5.7(b).

Let us now calculate the field due to a polarized dielectric. Consider the dielectric ma-
terial shown in Figure 5.8 as consisting of dipoles with dipole moment P per unit» volume.
According to eq. (4.80), the potential dV at an exterior point O due to the dipole moment
P dv' is

P • as dv'

4-irsJi2
(5.24)

where R2 = (x — x')2 + (y — y')2 + (z — z')2 and R is the distance between the volume
element dv' at (x\ y', z') and the field point O (x, y, z). We can transform eq. (5.24) into a
form that facilitates physical interpretation. It is readily shown (see Section 7.7) that the
gradient of \IR with respect to the primed coordinates is

R Rz

Thus,

R2

O(x,y,z)

Figure 5.8 A block of dielectric material
with dipole moment p per unit volume.
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Applying the vector identity V - / A = / V • A + A • V'/,

P a R = P V P
2 /? fl

(5.25)

Substituting this into eq. (5.24) and integrating over the entire volume v' of the dielectric,
we obtain

V =
'v, 47reoL R R

Applying divergence theorem to the first term leads finally to

- V P
V =

, 4-ireJi'
-dS' + dv' (5.26)

where a'n is the outward unit normal to surface dS' of the dielectric. Comparing the two
terms on the right side of eq. (5.26) with eqs. (4.68) and (4.69) shows that the two terms
denote the potential due to surface and volume charge distributions with densities (upon
dropping the primes) *

PPs = P- an

P P V = - V - P
(5.27a)
(5.27b)

In other words, eq. (5.26) reveals that where polarization occurs, an equivalent
volume charge density ppv is formed throughout the dielectric while an equivalent surface
charge density pps is formed over the surface of the dielectric. We refer to pps and ppv as
bound (or polarization) surface and volume charge densities, respectively, as distinct from
free surface and volume charge densities ps and pv. Bound charges are those that are not
free to move within the dielectric material; they are caused by the displacement that occurs
on a molecular scale during polarization. Free charges are those that are capable of moving
over macroscopic distance as electrons in a conductor; they are the stuff we control. The
total positive bound charge on surface S bounding the dielectric is

(5.28a)

(5.28b)

Qb= <|>P-dS= j PpsdS

while the charge that remains inside S is

-Qb= I Ppvdv= - | V - P J v

Thus the total charge of the dielectric material remains zero, that is,

Total charge = 4> p dS + ppv dv = Qb - Qb = 0

This is expected because the dielectric was electrically neutral before polarization.
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We now consider the case in which the dielectric region contains free charge. If pv is
the free charge volume density, the total volume charge density p, is given by

P, = Pv + Ppv = V • s o E (5.29)

Hence

pv = V • eoE - ppv

= V • (8OE + P)
= V D

where

D = + P

(5.30)

(5.31)

We conclude that the net effect of the dielectric on the electric field E is to increase D
inside it by amount P. In other words, due to the application of E to the dielectric material,
the flux density is greater than it would be in free space. It should be noted that the defini-
tion of D in eq. (4.35) for free space is a special case of that in eq. (5.31) because P = 0 in
free space. 4

We would expect that the polarization P would vary directly as the applied electric
field E. For some dielectrics, this is usually the case and we have

P = (5.32)

where \e, known as the electric susceptibility of the material, is more or less a measure of
how susceptible (or sensitive) a given dielectric is to electric fields.

5.6 DIELECTRIC CONSTANT AND STRENGTH

By substituting eq. (5.32) into eq. (5.31), we obtain

D = eo(l + x e ) E = eoe,E

or

where

D = eE

e = eoer

(5.33)

(5.34)

(5.35)

and

er = 1 + Xe = (5.36)
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In eqs. (5.33) to (5.36), s is called the permittivity of the dielectric, so is the permittiv-
ity of free space, defined in eq. (4.2) as approximately 10~9/36TT F/m, and sr is called the
dielectric constant or relative permittivity.

The dielectric constant (or relative permittivity) e, is the ratio of the permittivity
of the dielectric to that of free space.

It should also be noticed that er and \e are dimensionless whereas e and so are in
farads/meter. The approximate values of the dielectric constants of some common materi-
als are given in Table B.2 in Appendix B. The values given in Table B.2 are for static or
low frequency (<1000 Hz) fields; the values may change at high frequencies. Note from
the table that er is always greater or equal to unity. For free space and nondielectric mate-
rials (such as metals) er = 1.

The theory of dielectrics we have discussed so far assumes ideal dielectrics. Practi-
cally speaking, no dielectric is ideal. When the electric field in a dielectric is sufficiently
large, it begins to pull electrons completely out of the molecules, and the dielectric
becomes conducting. Dielectric breakdown is said to have occurred when a dielectric
becomes conducting. Dielectric breakdown occurs in all kinds of dielectric materials
(gases, liquids, or solids) and depends on the nature of the material, temperature, humid-
ity, and the amount of time that the field is applied. The minimum value of the electric
field at which dielectric breakdown occurs is called the dielectric strength of the dielec-
tric material.

The dielectric strength is the maximum electric field that a dielectric can tolerate or
withstand without breakdown.

Table B.2 also lists the dielectric strength of some common dielectrics. Since our theory of
dielectrics does not apply after dielectric breakdown has taken place, we shall always
assume ideal dielectric and avoid dielectric breakdown.

5.7 LINEAR, ISOTROPIC, AND HOMOGENEOUS
DIELECTRICS

Although eqs. (5.24) to (5.31) are for dielectric materials in general, eqs. (5.32 to 5.34) are
only for linear, isotropic materials. A material is said to be linear if D varies linearly with
E and nonlinear otherwise. Materials for which s (or a) does not vary in the region being
considered and is therefore the same at all points (i.e., independent of x, y, z) are said to be
homogeneous. They are said to be inhomogeneous (or nonhomogeneous) when e is depen-
dent of the space coordinates. The atmosphere is a typical example of an inhomogeneous
medium; its permittivity varies with altitude. Materials for which D and E are in the same
direction are said to be isotropic. That is, isotropic dielectrics are those which have the
same properties in all directions. For anisotropic (or nonisotropic) materials, D, E, and P
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are not parallel; e or xe has nine components that are collectively referred to as a tensor.
For example, instead of eq. (5.34), we have

Dy

D,
yy Ey

E,
(5.37)

for anisotropic materials. Crystalline materials and magnetized plasma are anisotropic.

A dielectric material (in which I) — EK applies) is linear if E does noi change with
llie applied E tield. homogeneous if e does mil change from point lo point, and
isolropic if i: does not change with direction.

The same idea holds for a conducting material in which J = oE applies. The material is
linear if a does not vary with E, homogeneous if a is the same at all points, and isotropic if
a does not vary with direction.

For most of the time, we will be concerned only with linear, isotropic, and homoge-
neous media. For such media, all formulas derived in Chapter 4 for free space can be applied
by merely replacing eo with eoer. Thus Coulomb's law of eq. (4.4), for example, becomes

F =

and eq. (4.96) becomes

W=- dv

(5.38)

(5.39)

when applied to a dielectric medium.

EXAMPLE 5.5
A dielectric cube of side L and center at the origin has a radial polarization given by
P = av, where a is a constant and r = xax + yay + zaz. Find all bound charge densities
and show explicitly that the total bound charge vanishes.

Solution:

For each of the six faces of the cube, there is a surface charge pps. For the face located at
x = L/2, for example,

PPS = P • a,

The total bound surface charge is

= ax = ahll

Q,= j PpsdS = 6

= 3aL3

L/2

-L/2 J-U2

, , 6aL 2ppsdydz = —L
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The bound volume charge density is given by

ppv = - V • P = -(a + a + a) = - 3 a

and the total bound volume charge is
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Qv= Ppvdv= -3a dv = -3aL

Hence the total charge is

Q, = Qs + Gv = 3aL3 - 3aL3 = 0

PRACTICE EXERCISE 5.5

A thin rod of cross section A extends along the *-axis from x = 0 to x = L. The
polarization of the rod is along its length and is given by Px = ax2 + b. Calcu-
late ppv and pps at each end. Show explicitly that the total bound charge vanishes in
this case.

Answer: 0, ~2aL, -b, aL1 + b, proof.

EXAMPLE 5.6
The electric field intensity in polystyrene (er = 2.55) filling the space between the plates
of a parallel-plate capacitor is 10 kV/m. The distance between the plates is 1.5 mm. Calcu-
late:

(a) D

(b) P

(c) The surface charge density of free charge on the plates

(d) The surface density of polarization charge

(e) The potential difference between the plates

Solution:

(a) D = eoe,E =
10"

(b) P =

36TT

= (1-55)

(2.55) • 104 = 225.4 nC/m2

10- 9

36ir
104 = 137 nC/m2

(c) Ps = D • an = Dn = 225 A nC/m2

(d) pps = P • an = Pn = 137 nC/m2

(e) V = Ed = 104 (1.5 X 10"3) = 15 V
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PRACTICE EXERCISE 5.6

A parallel-plate capacitor with plate separation of 2 mm has a 1-kV voltage applied
to its plates. If the space between its plates is filled with polystyrene (er = 2.55), find
E, P, and pps.

Answer: 500a* kV/m, 6.853a, j«C/m2,6.853 /*C/m2.

EXAMPLE 5.7 A dielectric sphere (er = 5.7) of radius 10 cm has a point charge 2 pC placed at its center.
Calculate:

(a) The surface density of polarization charge on the surface of the sphere

(b) The force exerted by the charge on a -4-pC point charge placed on the sphere

Solution:

(a) We apply Coulomb's or Gauss's law to obtain

Q
E =

4ireo8rr

P =

Pps — " ' <ir ~~

4irsrr

(er - 1) Q (4.7) 2 X

= 13.12 pC/m2

(b) Using Coulomb's law, we have

47rerr
2 4ir(5.7) 100 X

(-4)(2) X 10 - 2 4

4ireoerr

= -1.263 arpN

10" 9

36TT
(5.7) 100 X 10"

PRACTICE EXERCISE 5.7

In a dielectric material, Ex = 5 V/m and P = (33^ - ay + 43̂ ,) nC/m2.

Calculate:

(a)Xe

(b )E

(c) D
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Answer: (a) 2.16, (b) 5a, - 1.67a,, + 6.67azV/m, (c) 139.7a^ - 46.6ay +
186.3a; pC/m2.

EXAMPLE 5.8
Find the force with which the plates of a parallel-plate capacitor attract each other. Also de-
termine the pressure on the surface of the plate due to the field.

Solution:
From eq. (4.26), the electric field intensity on the surface of each plate is

where an is a unit normal to the plate and ps is the surface charge density. The total force on
each plate is

oer

or

F =
P2

SS _ Q2

2e 2eS

PsThe pressure of force/area is
2eoer

PRACTICE EXERCISE 5.8

Shown in Figure 5.9 is a potential measuring device known as an electrometer. It is
basically a parallel-plate capacitor with the guarded plate being suspended from a
balance arm so that the force F on it is measurable in terms of weight. If S is the area
of each plate, show that

- V2 =
2Fd2 112

Answer: Proof.
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Figure 5.9 An electrometer; for Practice
Exercise 5.8.

5.8 CONTINUITY EQUATION AND RELAXATION TIME

Due to the principle of charge conservation, the time rate of decrease of charge within a
given volume must be equal to the net outward current flow through the closed surface of
the volume. Thus current /out coming out of the closed surface is

'out T J
~dQin

dt
(5.40)

where Qin is the total charge enclosed by the closed surface. Invoking divergence theorem

But

~dQm

J • dS = V • J dv

d
rdt

dp

dt dt J dt

Substituting eqs. (5.41) and (5.42) into eq. (5.40) gives

dv

(5.41)

(5.42)

J a v = — dv
dt

or

dt
(5.43)

which is called the continuity of current equation. It must be kept in mind that the continu-
ity equation is derived from the principle of conservation of charge and essentially states
that there can be no accumulation of charge at any point. For steady currents, dpv/dt = 0
and hence V • J = 0 showing that the total charge leaving a volume is the same as the total
charge entering it. Kirchhoff's current law follows from this.

Having discussed the continuity equation and the properties a and e of materials, it is
appropriate to consider the effect of introducing charge at some interior point of a given
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material (conductor or dielectric). We make use of eq. (5.43) in conjunction with Ohm's
law

J = aE

and Gauss's law

(5.44)

(5.45)

Substituting eqs. (5.44) and (5.45) into eq. (5.43) yields

e dt

or

(5.46)

This is a homogeneous linear ordinary differential equation. By separating variables in
eq. (5.46), we get

and integrating both sides gives

^ = -°-dt
Pv B

at
In pv = 1- In pvo

where In pvo is a constant of integration. Thus

Pv = Pvoe
-tlTr

where

(5.47)

(5.48)

(5.49)

In eq. 5.48, pm is the initial charge density (i.e., pv at t = 0). The equation shows that as a
result of introducing charge at some interior point of the material there is a decay of
volume charge density pv. Associated with the decay is charge movement from the interior
point at which it was introduced to the surface of the material. The time constant Tr (in
seconds) is known as the relaxation time or rearrangement time.

Relaxation time is the lime it takes u charge placed in the interior of a material to
drop to e l — 36.8 percent ofils initial value.
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It is short for good conductors and long for good dielectrics. For example, for copper
a = 5.8 X 107 mhos/m, er = 1, and

10" 1

o 36TT

= 1.53 X 10~19s
5.8 X 107 (5.50)

showing a rapid decay of charge placed inside copper. This implies that for good conduc-
tors, the relaxation time is so short that most of the charge will vanish from any interior
point and appear at the surface (as surface charge). On the other hand, for fused quartz, for
instance, a = 10~17 mhos/m, sr = 5.0,

10- 9 1
36TT 10"17

51.2 days
(5.51)

showing a very large relaxation time. Thus for good dielectrics, one may consider the in-
troduced charge to remain wherever placed.

5.9 BOUNDARY CONDITIONS

So far, we have considered the existence of the electric field in a homogeneous medium. If
the field exists in a region consisting of two different media, the conditions that the field
must satisfy at the interface separating the media are called boundary conditions. These con-
ditions are helpful in determining the field on one side of the boundary if the field on the
other side is known. Obviously, the conditions will be dictated by the types of material the
media are made of. We shall consider the boundary conditions at an interface separating

• dielectric (sr]) and dielectric (er2)

• conductor and dielectric

• conductor and free space

To determine the boundary conditions, we need to use Maxwell's equations:

and

E-dl =

D-dS = Qenc

(5.52)

(5.53)

Also we need to decompose the electric field intensity E into two orthogonal components:

E = Et + En (5.54)

where E, and En are, respectively, the tangential and normal components of E to the inter-
face of interest. A similar decomposition can be done for the electric flux density D.
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A. Dielectric-Dielectric Boundary Conditions

Consider the E field existing in a region consisting of two different dielectrics character-
ized by E, - £ o s r l and e2 = eoer2 as shown in Figure 5.10(a). E1 and E2 in media 1 and 2,
respectively, can be decomposed as

E, = E,, + ElB

E2 = E2, + E2n

We apply eq. (5.52) to the closed path abcda of Figure 5.10(a) assuming that the path i
very small with respect to the variation of E. We obtain

(5.55a)

(5.55b)

is

where E, = |Er| and En = |EB|. As Ah -> 0, eq. (5.56) becomes

Ey = E2

u— (5.56)

(5.57)

Thus the tangential components of E are the same on the two sides of the boundary In
other words, E, undergoes no change on the boundary and it is said to be continuous across
the boundary. Since D = eE = D, + Dn, eq. (5.57) can be written as

^•-F -F -°2>
ei e2

or

D

£2
(5.58)

that is, D, undergoes some change across the interface. Hence D, is said to be discontinu-
ous across the interface.

/ • • ,

(a)

Figure 5.10 Dielectric-dielectric boundary.
(b)
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Similarly, we apply eq. (5.53) to the pillbox (Gaussian surface) of Figure 5.10(b). Al-
lowing Ah —> 0 gives

AQ = Ps AS = Du AS - D2n AS

or

D2n = ps (5.59)

where ps is the free charge density placed deliberately at the boundary. It should be borne
in mind that eq. (5.59) is based on the assumption that D is directed from region 2 to region
1 and eq. (5.59) must be applied accordingly. If no free charges exist at the interface (i.e.,
charges are not deliberately placed there), ps = 0 and eq. (5.59) becomes

Dm = D2n (5.60)

Thus the normal component of D is continuous across the interface; that is, Dn undergoes
no change at the boundary. Since D = eE, eq. (5.60) can be written as

E\EXn = s2E2n (5.61)

showing that the normal component of E is discontinuous at the boundary. Equations
(5.57) and (5.59), or (5.60) are collectively referred to as boundary conditions; they must
be satisfied by an electric field at the boundary separating two different dielectrics.

As mentioned earlier, the boundary conditions are usually applied in finding the elec-
tric field on one side of the boundary given the field on the other side. Besides this, we can
use the boundary conditions to determine the "refraction" of the electric field across the in-
terface. Consider D1 or E, and D2 or E2 making angles 6X and d2 with the normal to the in-
terface as illustrated in Figure 5.11. Using eq. (5.57), we have

Ex sin 0! = Eu = E2t = E2 sin 62

Figure 5.11 Refraction of D or E
at a dielectric-dielectric boundary.
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or

Ei sin di = E2 sin 62

Similarly, by applying eq. (5.60) or (5.61), we get

eiEi cos di = £>ln = D2n = s2E2 cos d2

or

ExEi COS 6y = B2E2
 c o s $2

Dividing eq. (5.62) by eq. (5.63) gives

tan 61 _ tan d2

ei e2

Since ei = eoen and e2 = eoer2, eq. (5.64) becomes

(5.62)

tan 91 _ erl

tan

(5.63)

(5.64)

(5.65)

This is the law of refraction of the electric field at a boundary free of charge (since ps = 0
is assumed at the interface). Thus, in general, an interface between two dielectrics pro-
duces bending of the flux lines as a result of unequal polarization charges that accumulate
on the sides of the interface.

B. Conductor-Dielectric Boundary Conditions

This is the case shown in Figure 5.12. The conductor is assumed to be perfect (i.e., a —> oo
or pc —> 0). Although such a conductor is not practically realizable, we may regard con-
ductors such as copper and silver as though they were perfect conductors.

dielectric

(e = eoet)

conductor (E = 0) conductor (E = 0)

(a) (b)

Figure 5.12 Conductor-dielectric boundary.
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To determine the boundary conditions for a conductor-dielectric interface, we follow
the same procedure used for dielectric-dielectric interface except that we incorporate the
fact that E = 0 inside the conductor. Applying eq. (5.52) to the closed path abcda of
Figure 5.12(a) gives

0 = 0-Aw + 0-^L + En~-Et-Aw-En-^
L-0-^: (5.66)

As Ah -> 0,

E, = 0 (5.67)

Similarly, by applying eq. (5.53) to the pillbox of Figure 5.12(b) and letting Ah —> 0, we
get

AQ = Dn • AS - 0 • AS

because D = eE = 0 inside the conductor. Equation (5.68) may be written as

n AQ

D = = P

(5.68)

or

n = Ps
(5.69)

Thus under static conditions, the following conclusions can be made about a perfect
conductor:

1. No electric field may exist within a conductor; that is,

pv = 0, E = 0 (5.70)

2. Since E = - W = 0, there can be no potential difference between any two points
in the conductor; that is, a conductor is an equipotential body.

3. The electric field E can be external to the conductor and normal to its surface; that is

D, = eoe,Et = 0, Dn = E O G ^ = ps (5.71)

An important application of the fact that E = 0 inside a conductor is in electrostatic
screening or shielding. If conductor A kept at zero potential surrounds conductor B as
shown in Figure 5.13, B is said to be electrically screened by A from other electric systems,
such as conductor C, outside A. Similarly, conductor C outside A is screened by A from B.
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Figure 5.13 Electrostatic screening.
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Thus conductor A acts like a screen or shield and the electrical conditions inside and
outside the screen are completely independent of each other.

C. Conductor-Free Space Boundary Conditions
This is a special case of the conductor-dielectric conditions and is illustrated in
Figure 5.14. The boundary conditions at the interface between a conductor and free space
can be obtained from eq. (5.71) by replacing er by 1 (because free space may be regarded
as a special dielectric for which er = 1). We expect the electric field E to be external to the
conductor and normal to its surface. Thus the boundary conditions are

D, = saEt = 0, Dn = eoEn = ps (5.72)

It should be noted again that eq. (5.72) implies that E field must approach a conducting
surface normally.

Figure 5.14 Conductor-free space
boundary.

tree »pacc

iKinr ih - 0i
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EXAMPLE 5.9 Two extensive homogeneous isotropic dielectrics meet on plane z = 0. For z ^ 0, erl = 4
and for z < 0, sr2 = 3. A uniform electric field E, = 5a, - 2ay + 3az kV/m exists for
z > 0. Find

(a) E2 for z £ 0

(b) The angles E{ and E2 make with the interface

(c) The energy densities in J/m3 in both dielectrics

(d) The energy within a cube of side 2 m centered at (3, 4, -5 )

Solution:

Let the problem be as illustrated in Figure 5.15.

(a) Since az is normal to the boundary plane, we obtain the normal components as

Eln = Ej • an = Ej • az = 3

EiB = 3a,

E2n = (E2 • az)az

Also

Hence,

E = En + E,

E l r = E! - E l B = 5a, - 2ay

Figure 5.15 For Example 5.9.
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Thus

Similarly,

or

E2t = Ei, = 5a, - 2a>,

D2« = Din -» £r2E2n = ErlEln

= — ElB = J(3az) = 4az
6 3

Thus

E2 = E2r + E2n

= 5ax - 2a,, + 4az kV/m

(b) Let «i and a2 be the angles E! and E2 make with the interface while 0; and 02 are the
angles they make with the normal to the interface as shown in Figures 5.15; that is,

ai = 90 - 0,

a2 = 90 - 02

Since Eln = 3 and Elt = V 2 5 + 4 =

Elt
tan 0i = = 1.795 -> 0j = 60.9

Hence,

Alternatively,

or

a, = 29.1C

an = lEj • 1 -cos0i

Similarly,

Hence,

cos 0t = -^= = 0.4867 -> 0! = 60.9°
V38

= 4 £2/ = £ l r = V29

E v 2 9
tan 02 = — = = 1.346 -> 62 = 53.4°

E2n 4

a2 = 36.6°
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tan 0! erl .
Note that = — is satisfied.

tan 02
 er2

(c) The energy densities are given by

2~"~" 2
= 672

106

1= r2

= 597

1 - 9

= - • 3 • ^ — (25 + 4 + 16) X 106

2 36x

(d) At the center (3, 4, - 5 ) of the cube of side 2 m, z = - 5 < 0; that is, the cube is in
region 2 with 2 < x < 4, 3 < y < 5, - 6 < z < - 4 . Hence

= w£2(2)(2)(2)= w£2 dv = w£2

^ 4 = 2 4=3 4=-6
= 597 X 8juJ = 4.776 mJ

PRACTICE EXERCISE 5.9

A homogeneous dielectric (er = 2.5) fills region 1 (x ^ 0) while region 2 (x ^ 0) is
free space.

(a) I fD, = 12a, - 10ay + 4a, nC/m2, find D2 and 02.

(b) If E2 = 12 V/m and 02 = 60°, find £ , and 0j. Take 0j and 02 as defined in the
previous example.

Answer: (a) 12a* - 4ay + 1.6az nC/m2,19.75°, (b) 10.67 V/m, 77°

EXAMPLE 5.10
Region y < 0 consists of a perfect conductor while region y > 0 is a dielectric medium
(e l r = 2) as in Figure 5.16. If there is a surface charge of 2 nC/m2 on the conductor, deter-
mine E and D at

(a) A(3,-2,2)

(b) B(-4, 1, 5)

Solution:

(a) Point A(3, - 2 , 2) is in the conductor since y = - 2 < 0 at A. Hence,

E = 0 = D

(b) Point fi(-4, 1,5) is in the dielectric medium since y = 1 > 0 at B.

Dn = p s = 2 nC/m2
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Hence,

and

• A

-t—+•

D = 2av nC/m2

SUMMARY • 191

Figure 5.16 See Example 5.10.

E = — = 2 X 10"9 X ~ X 109a, = 36™

= 113.1a, V/m

PRACTICE EXERCISE 5.10

It is found that E = 60ax + 20ay - 30az mV/m at a particular point on the interface
between air and a conducting surface. Find D and ps at that point.

Answer: 0.531a* + 0.177ay - 0.265az pC/m2, 0.619 pC/m2.

SUMMARY 1. Materials can be classified roughly as conductors (a ^> 1, sr = 1) and dielectrics
(a <sC 1, er > 1) in terms of their electrical properties a and en where a is the con-
ductivity and sr is the dielectric constant or relative permittivity.

2. Electric current is the flux of electric current density through a surface; that is,

/ - I 3-dS

3. The resistance of a conductor of uniform cross section is

aS
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4. The macroscopic effect of polarization on a given volume of a dielectric material is to
"paint" its surface with a bound charge Qh = j>s pps dS and leave within it an accumu-
lation of bound charge Qb = fvppv dv where pps = P • an and pp V P.

5. In a dielectric medium, the D and E fields are related as D = sE, where e = eosr is the
permittivity of the medium.

6. The electric susceptibility xe( = er ~ 1) of a dielectric measures the sensitivity of the
material to an electric field.

7. A dielectric material is linear if D = eE holds, that is, if s is independent of E. It is ho-
mogeneous if e is independent of position. It is isotropic if s is a scalar.

8. The principle of charge conservation, the basis of Kirchhoff's current law, is stated in
the continuity equation

dt

9. The relaxation time, Tr = elo, of a material is the time taken by a charge placed in its
interior to decrease by a factor of e~' — 37 percent.

10. Boundary conditions must be satisfied by an electric field existing in two different
media separated by an interface. For a dielectric-dielectric interface

C1 ~p

D^ ~ D2n = ps or Dln = D2r

For a dielectric-conductor interface,

E, = 0 Dn = eEn = ps

because E = 0 inside the conductor.

if ps = 0

REVIEW QUESTIONS

5.1 Which is not an example of convection current?

(a) A moving charged belt

(b) Electronic movement in a vacuum tube

(c) An electron beam in a television tube

(d) Electric current flowing in a copper wire

5.2 When a steady potential difference is applied across the ends of a conducting wire,

(a) All electrons move with a constant velocity.

(b) All electrons move with a constant acceleration.

(c) The random electronic motion will, on the average, be equivalent to a constant veloc-
ity of each electron.

(d) The random electronic motion will, on the average, be equivalent to a nonzero con-
stant acceleration of each electron.
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5.3 The formula R = €/ (oS) is for thin wires.

(a) True

(b) False

(c) Not necessarily

5.4 Sea water has er = 80. Its permittivity is

(a) 81

(b) 79

(c) 5.162 X 10~ l uF/m

(d) 7.074 X 10~10F/m

5.5 Both eo and xe are dimensionless.

(a) True

(b) False

5.6 If V • D = 8 V • E and V - J = < jV-E ina given material, the material is said to be

(a) Linear

(b) Homogeneous

(c) Isotropic

(d) Linear and homogeneous

(e) Linear and isotropic

(f) Isotropic and homogeneous

5.7 The relaxation time of mica (a = 10 mhos/m, er = 6) is

(a) 5 X 10" 1 0 s

(b) 10~6s

(c) 5 hours

(d) 10 hours

(e) 15 hours

5.8 The uniform fields shown in Figure 5.17 are near a dielectric-dielectric boundary but on
opposite sides of it. Which configurations are correct? Assume that the boundary is charge
free and that e2 > e^

5.9 Which of the following statements are incorrect?

(a) The conductivities of conductors and insulators vary with temperature and fre-
quency.

(b) A conductor is an equipotential body and E is always tangential to the conductor.

(c) Nonpolar molecules have no permanent dipoles.

(d) In a linear dielectric, P varies linearly with E.
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© -

(a)

O -

X.

(b) (c)

© . .,

(d) (e)

Figure 5.17 For Review Question 5.8.

(0

PROBLEMS

5.10 The electric conditions (charge and potential) inside and outside an electric screening are
completely independent of one another.

(a) True

(b) False

Answers: 5.Id, 5.2c, 5.3c, 5.4d, 5.5b, 5.6d, 5.7e, 5.8e, 5.9b, 5.10a.

5.1 In a certain region, J = 3r2 cos 6 ar - r2 sin d as A/m, find the current crossing the
surface defined by 6 = 30°, 0 < 0 < 2TT, 0 < r < 2 m.

500a,
5.2 Determine the total current in a wire of radius 1.6 mm if J = A/m2.

P

5.3 The current density in a cylindrical conductor of radius a is

J = l0e-(1~pla}azA/m2

Find the current through the cross section of the conductor.
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5.4 The charge 10 4e 3( C is removed from a sphere through a wire. Find the current in the
wire at t'= 0 and t = 2.5 s.

5.5 (a) Let V = x2y2z in a region (e = 2eo) defined by — 1 < x, y, z < 1. Find the charge
density pv in the region.

(b) If the charge travels at \(fyay m/s, determine the current crossing surface

0 < x, z < 0.5, y = 1.

5.6 If the ends of a cylindrical bar of carbon (a = 3 X 104) of radius 5 mm and length 8 cm
are maintained at a potential difference of 9 V, find: (a) the resistance of the bar, (b) the
current through the bar, (c) the power dissipated in the bar.

5.7 The resistance of round long wire of diameter 3 mm is 4.04 fi/km. If a current of 40 A
flows through the wire, find

(a) The conductivity of the wire and identify the material of the wire

(b) The electric current density in the wire

5.8 A coil is made of 150 turns of copper wire wound on a cylindrical core. If the mean radius
of the turns is 6.5 mm and the diameter of the wire is 0.4 mm, calculate the resistance of
the coil.

5.9 A composite conductor 10 m long consists of an inner core of steel of radius 1.5 cm and
an outer sheath of copper whose thickness is 0.5 cm.

(a) Determine the resistance of the conductor.

(b) If the total current in the conductor is 60 A, what current flows in each metal?

(c) Find the resistance of a solid copper conductor of the same length and cross-sectional
areas as the sheath. Take the resistivities of copper and steel as 1.77 X 10"8 and
11.8 X 10"8 0 • m, respectively.

5.10 A hollow cylinder of length 2 m has its cross section as shown in Figure 5.18. If the cylin-
der is made of carbon (a = 105 mhos/m), determine the resistance between the ends of
the cylinder. Take a — 3 cm, b = 5 cm.

5.11 At a particular temperature and pressure, a helium gas contains 5 X 1025 atoms/m3. If a
10-kV/m field applied to the gas causes an average electron cloud shift of 10" '8 m, find
the dielectric constant of helium.

Figure 5.18 For Problems 5.10 and 5.15.
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5.12 A dielectric material contains 2 X 1019 polar molecules/m3, each of dipole moment
1.8 X 10~27C/m. Assuming that all the dipoles are aligned in the direction of the electric
field E = 105 ax V/m, find P and sr.

5.13 In a slab of dielectric material for which e = 2.48O and V = 300z2 V, find: (a) D and pv,
(b)Pandppv.

5.14 For x < 0, P = 5 sin (ay) ax, where a is a constant. Find pps and ppv.

5.15 Consider Figure 5.18 as a spherical dielectric shell so that 8 = eoer for a < r < b and
e = eo for 0 < r < a. If a charge Q is placed at the center of the shell, find

(a) P for a < r < b

(b) ppvfora <r<b

(c) pps at r = a and r = b

5.16 Two point charges when located in free space exert a force of 4.5 /uN on each other. When
the space between them is filled with a dielectric material, the force changes to 2 /xN. Find
the dielectric constant of the material and identify the material.

5.17 A conducting sphere of radius 10 cm is centered at the origin and embedded in a dielectric
material with e = 2.5eo. If the sphere carries a surface charge of 4 nC/m2, find E at
( — 3 cm, 4 cm, 12 cm).

5.18 At the center of a hollow dielectric sphere (e = eoer) is placed a point charge Q. If the
sphere has inner radius a and outer radius b, calculate D, E, and P.

5.19 A sphere of radius a and dielectric constant er has a uniform charge density of po.

(a) At the center of the sphere, show that

(b) Find the potential at the surface of the sphere.

5.20 For static (time-independent) fields, which of the following current densities are possible?

(a) J = 2x3yax 4x2z\ - 6x2yzaz

(b) J = xyax + y(z + l)ay

(c) J = — ap + z cos 4> az

5.21 For an anisotropic medium

Obtain D for: (a) E = 10a., + 10a,, V/m, (b) E = 10a^ + 203 ,̂ - 30az V/m.

V
Dy

Dz

= so

4
1
1

1
4
1

1
1
4

Ex

Ey

Ez
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100 . . 25.22 If J = — Y ap A/m , find: (a) the rate of increase in the volume charge density, (b) the
P

t o t a l c u r r e n t p a s s i n g t h r o u g h s u r f a c e d e f i n e d b y p = 2 , 0 < z < \ , 0 < <f> < 2 i r .

5 e - io 4 »
5.23 Given that J = ar A/m2, at t = 0.1 ms, find: (a) the amount of current passing

r
surface r = 2 m, (b) the charge density pv on that surface.

5.24 Determine the relaxation time for each of the following medium:

(a) Hard rubber (a = 10~15 S/m, e = 3.1eo)
(b) Mica (ff = 10"15 S/m, e = 6eo)
(c) Distilled water (a = 10~4 S/m, e = 80eo)

5.25 The excess charge in a certain medium decreases to one-third of its initial value in 20 /xs.
(a) If the conductivity of the medium is 10 4 S/m, what is the dielectric constant of the
medium? (b) What is the relaxation time? (c) After 30 [is, what fraction of the charge will
remain?

5.26 Lightning strikes a dielectric sphere of radius 20 mm for which er = 2.5, a =
5 X 10~6 mhos/m and deposits uniformly a charge of 10 /JLC. Determine the initial
charge density and the charge density 2 ps later.

5.27 Region 1 (z < 0) contains a dielectric for which er = 2.5, while region 2 (z > 0) is char-
acterized by er = 4. Let E, = -30a^ + 50a,, + 70az V/m and find: (a) D2, (b) P2,
(c) the angle between Ei and the normal to the surface.

5.28 Given that E, = 10a^ - 6a,, + 12a, V/m in Figure 5.19, find: (a) Pu (b) E2 and the
angle E2 makes with the y-axis, (c) the energy density in each region.

5.29 Two homogeneous dielectric regions 1 (p < 4 cm) and 2 (p > 4 cm) have dielectric
constants 3.5 and 1.5, respectively. If D2 = 12ap - 6a0 + 9az nC/m2, calculate: (a) Ei
and D,, (b) P2 and ppv2, (c) the energy density for each region.

5.30 A conducting sphere of radius a is half-embedded in a liquid dielectric medium of per-
mittivity s, as in Figure 5.20. The region above the liquid is a gas of permittivity e2. If the
total free charge on the sphere is Q, determine the electric field intensity everywhere.

*5.31 Two parallel sheets of glass (er = 8.5) mounted vertically are separated by a uniform air
gap between their inner surface. The sheets, properly sealed, are immersed in oil
(er = 3.0) as shown in Figure 5.21. A uniform electric field of strength 2000 V/m in the
horizontal direction exists in the oil. Calculate the magnitude and direction of the electric
field in the glass and in the enclosed air gap when (a) the field is normal to the glass sur-
faces, and (b) the field in the oil makes an angle of 75° with a normal to the glass surfaces.
Ignore edge effects.

5.32 (a) Given that E = 15a^ - 8az V/m at a point on a conductor surface, what is the
surface charge density at that point? Assume e = e0.

(b) Region y > 2 is occupied by a conductor. If the surface charge on the conductor is
— 20 nC/m2, find D just outside the conductor.
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© e, = 3E0

Ei = 4.5B

Figure 5.19 For Problem 5.28.

Figure 5.20 For Problem 5.30.

glass Figure 5.21 For Problem 5.31.

oil oil

5.33 A silver-coated sphere of radius 5 cm carries a total charge of 12 nC uniformly distributed
on its surface in free space. Calculate (a) |D| on the surface of the sphere, (b) D external
to the sphere, and (c) the total energy stored in the field.



Chapter 6

ELECTROSTATIC BOUNDARY-
VALUE PROBLEMS

Our schools had better get on with what is their overwhelmingly most important
task: teaching their charges to express themselves clearly and with precision in
both speech and writing; in other words, leading them toward mastery of their
own language. Failing that, all their instruction in mathematics and science is a
waste of time.

—JOSEPH WEIZENBAUM, M.I.T.

b.1 INTRODUCTION

The procedure for determining the electric field E in the preceding chapters has generally
been using either Coulomb's law or Gauss's law when the charge distribution is known, or
using E = — W when the potential V is known throughout the region. In most practical
situations, however, neither the charge distribution nor the potential distribution is known.

In this chapter, we shall consider practical electrostatic problems where only electro-
static conditions (charge and potential) at some boundaries are known and it is desired to
find E and V throughout the region. Such problems are usually tackled using Poisson's1 or
Laplace's2 equation or the method of images, and they are usually referred to as boundary-
value problems. The concepts of resistance and capacitance will be covered. We shall use
Laplace's equation in deriving the resistance of an object and the capacitance of a capaci-
tor. Example 6.5 should be given special attention because we will refer to it often in the
remaining part of the text.

.2 POISSON'S AND LAPLACE'S EQUATIONS

Poisson's and Laplace's equations are easily derived from Gauss's law (for a linear mater-
ial medium)

V • D = V • eE = pv (6.1)

'After Simeon Denis Poisson (1781-1840), a French mathematical physicist.
2After Pierre Simon de Laplace (1749-1829), a French astronomer and mathematician.

199
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and

E = -VV

Substituting eq. (6.2) into eq. (6.1) gives

V-(-eVV) = pv

for an inhomogeneous medium. For a homogeneous medium, eq. (6.3) becomes

V2y = - ^

(6.2)

(6.3)

(6.4)

This is known as Poisson's equation. A special case of this equation occurs when pv = 0
(i.e., for a charge-free region). Equation (6.4) then becomes

V2V= 0 (6.5)

which is known as Laplace's equation. Note that in taking s out of the left-hand side of
eq. (6.3) to obtain eq. (6.4), we have assumed that e is constant throughout the region in
which V is defined; for an inhomogeneous region, e is not constant and eq. (6.4) does not
follow eq. (6.3). Equation (6.3) is Poisson's equation for an inhomogeneous medium; it
becomes Laplace's equation for an inhomogeneous medium when pv = 0.

Recall that the Laplacian operator V2 was derived in Section 3.8. Thus Laplace's equa-
tion in Cartesian, cylindrical, or spherical coordinates respectively is given by

(6.6)

(6.7)

(6.8)

depending on whether the potential is V(x, y, z), V(p, 4>, z), or V(r, 6, 4>). Poisson's equation
in those coordinate systems may be obtained by simply replacing zero on the right-hand
side of eqs. (6.6), (6.7), and (6.8) with —pv/e.

Laplace's equation is of primary importance in solving electrostatic problems involv-
ing a set of conductors maintained at different potentials. Examples of such problems
include capacitors and vacuum tube diodes. Laplace's and Poisson's equations are not only
useful in solving electrostatic field problem; they are used in various other field problems.

1
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For example, V would be interpreted as magnetic potential in magnetostatics, as tempera-
ture in heat conduction, as stress function in fluid flow, and as pressure head in seepage.

6.3 UNIQUENESS THEOREM

Since there are several methods (analytical, graphical, numerical, experimental, etc.) of
solving a given problem, we may wonder whether solving Laplace's equation in different
ways gives different solutions. Therefore, before we begin to solve Laplace's equation, we
should answer this question: If a solution of Laplace's equation satisfies a given set of
boundary conditions, is this the only possible solution? The answer is yes: there is only one
solution. We say that the solution is unique. Thus any solution of Laplace's equation which
satisfies the same boundary conditions must be the only solution regardless of the method
used. This is known as the uniqueness theorem. The theorem applies to any solution of
Poisson's or Laplace's equation in a given region or closed surface.

The theorem is proved by contradiction. We assume that there are two solutions V\ and
V2 of Laplace's equation both of which satisfy the prescribed boundary conditions. Thus

V 2 ^ = 0,

v, = v7

V2V2 = 0

on the boundary

We consider their difference

vd = v2 - v,
which obeys

v2yrf = v2y2 - v2y, = o

Vd = 0 on the boundary

according to eq. (6.9). From the divergence theorem.

V • A dv = I A • dS
^s

We let A = Vd VVd and use a vector identity

V • A = V • (VdWd) = VdV
2Vd + Wd • VVd

But V2Vd = 0 according to eq. (6.11), so

V • A = VVd • VVd

Substituting eq. (6.13) into eq. (6.12) gives

VVd- VVddv= <j) VdWd-dS

(6.9a)

(6.9b)

(6.10)

(6.11a)

(6.11b)

(6.12)

(6.13)

(6.14)

From eqs. (6.9) and (6.11), it is evident that the right-hand side of eq. (6.14) vanishes.
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Hence:

VVJ2dv = 0

Since the integration is always positive.

or

W r f = 0

Vd — V2 — V\ = constant everywhere in v

(6.15a)

(6.15b)

But eq. (6.15) must be consistent with eq. (6.9b). Hence, Vd = 0 or V, = V2 everywhere,
showing that Vx and V2 cannot be different solutions of the same problem.

This is the uniqueness theorem: If a solution lo Laplace's equation can be found
liii.it salisties the boundary conditions, ihcn the solution is unique.

Similar steps can be taken to show that the theorem applies to Poisson's equation and to
prove the theorem for the case where the electric field (potential gradient) is specified on
the boundary.

Before we begin to solve boundary-value problems, we should bear in mind the three
things that uniquely describe a problem:

1. The appropriate differential equation (Laplace's or Poisson's equation in this
chapter)

2. The solution region
3. The prescribed boundary conditions

A problem does not have a unique solution and cannot be solved completely if any of the
three items is missing.

6.4 GENERAL PROCEDURE FOR SOLVING POISSON'S
OR LAPLACE'S EQUATION

The following general procedure may be taken in solving a given boundary-value problem
involving Poisson's or Laplace's equation:

1. Solve Laplace's (if pv = 0) or Poisson's (if pv =£ 0) equation using either (a) direct
integration when V is a function of one variable, or (b) separation of variables if V
is a function of more than one variable. The solution at this point is not unique but
expressed in terms of unknown integration constants to be determined.

2. Apply the boundary conditions to determine a unique solution for V. Imposing the
given boundary conditions makes the solution unique.

3. Having obtained V, find E using E = - VV and D from D = eE.
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4. If desired, find the charge Q induced on a conductor using Q = J ps dS where
ps — Dn and Dn is the component of D normal to the conductor. If necessary, the
capacitance between two conductors can be found using C = Q/V.

Solving Laplace's (or Poisson's) equation, as in step 1, is not always as complicated as
it may seem. In some cases, the solution may be obtained by mere inspection of the
problem. Also a solution may be checked by going backward and finding out if it satisfies
both Laplace's (or Poisson's) equation and the prescribed boundary conditions.

EXAMPLE 6.1
Current-carrying components in high-voltage power equipment must be cooled to carry
away the heat caused by ohmic losses. A means of pumping is based on the force transmit-
ted to the cooling fluid by charges in an electric field. The electrohydrodynamic (EHD)
pumping is modeled in Figure 6.1. The region between the electrodes contains a uniform
charge p0, which is generated at the left electrode and collected at the right electrode. Cal-
culate the pressure of the pump if po = 25 mC/m3 and Vo = 22 kV.

Solution:

Since p,, # 0, we apply Poisson's equation

V2V = - ^
8

The boundary conditions V(z = 0) = Vo and V(z = d) = 0 show that V depends only on z
(there is no p or <j> dependence). Hence

d2v -
dz2

Integrating once gives

Integrating again yields

dV _ ~
dz

V = -— + Az + B
2e

AreaS

Figure 6.1 An electrohydrodynamic pump; for
Example 6.1.
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where A and B are integration constants to be determined by applying the boundary condi-
tions. When z = 0, V = Vo,

Vo = - 0 + 0 + B -> B = Vo

When z = d, V = 0,

2e

or

A =
2e d

The electric field is given by

The net force is

F = | pvE dv = p0 | dS \ Edz

F = PoSVoaz

The force per unit area or pressure is

p =- = poVo = 25 X 1(T3 X 22 X 103 = 550N/m2

PRACTICE EXERCISE 6.1

In a one-dimensional device, the charge density is given by pv =
x = 0 and V = 0 at x = a, find V and E.

. If E = 0 at

Answer: - ^ (a3 - A ^
tea 2ae

EXAMPLE 6.2
The xerographic copying machine is an important application of electrostatics. The surface
of the photoconductor is initially charged uniformly as in Figure 6.2(a). When light from
the document to be copied is focused on the photoconductor, the charges on the lower
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photoconductor

light

:'.:'.T- '. recombination

(a)

I- T - i - ^ •> t r - - + 1- J- - + » + - - -

(b)

Figure 6.2 For Example 6.2.

surface combine with those on the upper surface to neutralize each other. The image is de-
veloped by pouring a charged black powder over the surface of the photoconductor. The
electric field attracts the charged powder, which is later transferred to paper and melted to
form a permanent image. We want to determine the electric field below and above the
surface of the photoconductor.

Solution:

Consider the modeled version of Figure 6.2(a) as in Figure 6.2(b). Since pv = 0 in this
case, we apply Laplace's equation. Also the potential depends only on x. Thus

= 0
dx2

Integrating twice gives

V = Ax + B

Let the potentials above and below be Vx and V2, respectively.

V1 = Axx + Bu x > a

V2 = A2x + B2, x<a

(6.2.1a)

(6.2.1b)
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The boundary conditions at the grounded electrodes are

V,(* = d) = 0

V2(x = 0) = 0

At the surface of the photoconductor,

Vx(x = a) = V2(x = a)

Dln ~ D2n = ps

(6.2.2.a)

(6.2.2b)

(6.2.3a)

(6.2.3b)

We use the four conditions in eqs. (6.2.2) and (6.2.3) to determine the four unknown con-
stants Ai,A2, B1; andB2. From eqs. (6.2.1) and 6.2.2),

0 = A,d + B, -> B, = -Axd

0 = 0 + B2-^B2 = 0

From eqs. (6.2.1) and (6.2.3a),

A{a + B, = A2a

To apply eq. (6.2.3b), recall that D = eE = - e W so that

Ps = Din - D2n = £,£,„ - e2E2n = - e , —— + e2——
ax ax

or

Ps = ~eiAi + e2A2

Solving for Aj and A2 in eqs. (6.2.4) to (6.2.6), we obtain

E, = -A,ax =

S |
s7 d B7

e, a s.

7 = -A7a r =
I , , s2 d s2

(6.2.4a)

(6.2.4b)

(6.2.5)

(6.2.6)

PRACTICE EXERCISE 6.2

For the model of Figure 6.2(b), if ps — 0 and the upper electrode is maintained at Vo

while the lower electrode is grounded, show that

d — a -\ a

E,
-Voax \.

£2 A £ 2
a a
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Semiinfinite conducting planes <j> = 0 and <f> = TT/6 are separated by an infinitesimal insu-
lating gap as in Figure 6.3. If V(<£ = 0) = 0 and V(<t> = TT/6) = 100 V, calculate V and E
in the region between the planes.

Solution:

As V depends only on </>, Laplace's equation in cylindrical coordinates becomes

Since p = 0 is excluded due to the insulating gap, we can multiply by p2 to obtain

d2V

d<p2 = 0

which is integrated twice to give

V = Acf> + B

We apply the boundary conditions to determine constants A and B. When 4> — 0, V = 0,

0 = 0 + B^B = 0

W h e n 4> = <f>o, V = Vo,

'-, Hence:

gap

Figure 6.3 Potential V(<j>) due to semi-
infinite conducting planes.

— y



208 B Electrostatic Boundary-Value Problems

and

Substituting Vo = 100 and <j>0 = TT/6 gives

600
V = and

Check: = 0, V(</> = 0) = 0, V(</> = TT/6) = 100.

PRACTICE EXERCISE 6.3

Two conducting plates of size 1 X 5 m are inclined at 45° to each other with a gap of
width 4 mm separating them as shown in Figure 6.4. Determine an approximate
value of the charge per plate if the plates are maintained at a potential difference of
50 V. Assume that the medium between them has er = 1.5.

Answer: 22.2 nC.

EXAMPLE 6.4
Two conducting cones (6 = TT/10 and 6 = x/6) of infinite extent are separated by an infin-
itesimal gap at r = 0. If V(6 = TT/10) = 0 and V(6 = TT/6) = 50 V, find V and E between
the cones.

Solution:

Consider the coaxial cone of Figure 6.5, where the gap serves as an insulator between the
two conducting cones. V depends only on 6, so Laplace's equation in spherical coordinates
becomes

r2sin 6

gap of width 4 mm

Figure 6.4 For Practice Exercise 6.3.

1 m
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Figure 6.5 Potential V(4>) due to conducting cones.

Since r = 0 and 0 = 0, it are excluded, we can multiply by r2sin 0 to get

Integrating once gives

or

dV
- = A

dV A

dd sin 0

Integrating this results in

d9
V = A \ - F T = A

= A

= A

dd

sin 9 " J 2 cos 0/2 sin 9/2
1/2 sec2 (9/2 dd

tan 0/2
J(tan 0/2)

tan 9/2
= A In (tan 0/2) + B

We now apply the boundary conditions to determine the integration constants A and B.

V{9 = 00 = 0 -> 0 = A In (tan 0,/2) + B

or

B = -A In (tan 0,/2)
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Hence

Also

or

Thus

V = A In
tan 0/2
tan 0,/2

V{9 = 62) = Vo -» Vo = A In
tan 02/2
tan 0,/2

A =

In
tan 02/2

V =

tan 0/2

tan 0,/2

In
tan 02/2
tan 0,/2

r sin 0

r sin 0 In

Taking 0, = TT/10, 02 = ir/6, and Vo = 50 gives

tan 02/2

tan 0,/2

50 In

V =

tan 0/2 j
Ltan7r/2oJ

In
tan TT/12

tan TT/20

tan 0/2]

and

E =
r sin 0

Check: V2V = 0, V(9 = TT/10) = 0, V(0 = TT/6) = Vo.



6.4 GENERAL PROCEDURE FOR SOLVING POISSON'S OR LAPLACE'S EQUATION 211

50 V

gap

For Practice Exercise 6.4.

1

PRACTICE EXERCISE 6.4

A large conducting cone (d = 45°) is placed on a conducting plane with a tiny gap
separating it from the plane as shown in Figure 6.6. If the cone is connected to a
50-V source, find V and E at ( - 3 , 4, 2).

Answer: 22.13 V, 11.36 a» V/m.

(a) Determine the potential function for the region inside the rectangular trough of infinite
length whose cross section is shown in Figure 6.7.

(b) For Vo = 100 V and b = 2a, find the potential at x = a/2, y = 3a/4.

Solution:

(a) The potential V in this case depends on x and y. Laplace's equation becomes

v2y =
dx- dr

T = 0 (6.5.1)

Potential V(x, y) due to a con-
ducting rectangular trough.
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We have to solve this equation subject to the following boundary conditions:

V(x = 0, 0 < y < a) = 0 (6.5.2a)

V(x = b, 0 < y < a) = 0 (6.5.2b)

V(0 < A: < b, y = 0) = 0 (6.5.2c)

V{0<x<b,y = a) = Vo (6.5.2d)

We solve eq. (6.5.1) by the method of separation of variables; that is, we seek a product
solution of V. Let

V(x, y) = X(x) Y(y) (6.5.3)

when X is a function of x only and y is a function of >• only. Substituting eq. (6.5.3) into
eq. (6.5.1) yields

X"Y + Y"X = 0

Dividing through by XY and separating X from Y gives

X" Y"
-J = y (6.5.4a)

Since the left-hand side of this equation is a function of x only and the right-hand side is a
function of y only, for the equality to hold, both sides must be equal to a constant X; that is

r
Y

(6.5.4b)

The constant X is known as the separation constant. From eq. (6.5.4b), we obtain

X" + XX = 0 (6.5.5a)

and

Y" - \Y = 0 (6.5.5b)

Thus the variables have been separated at this point and we refer to eq. (6.5.5) as separated
equations. We can solve for X(x) and Y(y) separately and then substitute our solutions into
eq. (6.5.3). To do this requires that the boundary conditions in eq. (6.5.2) be separated, if
possible. We separate them as follows:

V(0, y) = X(0)Y(y) = 0 -> X(0) = 0

V(b, y) = X(b)Y(y) = 0 -* X(b) = 0

V(x, 0) = X(x)Y(0) = 0 -> Y(0) = 0

V(x, a) = X(0)Y(a) = Vo (inseparable)

(6.5.6a)

(6.5.6b)

(6.5.6c)

(6.5.6d)

To solve for X(;c) and Y(y) in eq. (6.5.5), we impose the boundary conditions in eq. (6.5.6).
We consider possible values of X that will satisfy both the separated equations in eq. (6.5.5)
and the conditions in eq. (6.5.6).
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CASE A.

If X = 0, then eq. (6.5.5a) becomes

X" = 0 or
dx2

(6.5.7)

which, upon integrating twice, yields

X = Ax + B

The boundary conditions in eqs. (6.5.6a) and (6.5.6b) imply that

XQt = 0) = 0 ^ 0 = 0 + fi or 5 = 0

and

X(x = b) = 0-^0 = A- b + 0 or A = 0

because b # 0. Hence our solution for X in eq. (6.5.7) becomes

X(x) = 0

which makes V = 0 in eq. (6.5.3). Thus we regard X(x) = 0 as a trivial solution and we
conclude that A # 0.

CASE B.

If X < 0, say X = — or, then eq. (6.5.5a) becomes

X" - aX = 0 or (D2 - a2)X = 0

where D = —
dx

that is,

DX = ±aX

showing that we have two possible solutions corresponding to the plus and minus signs.
For the plus sign, eq. (6.5.8) becomes

dX dX
— = aX or — = a dx
dx X

(6.5.S

= a dx or In X = ax + In A,

where In /i, is a constant of integration. Thus

X = Axe
ax (6.5.9a)
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Similarly, for the minus sign, solving eq. (6.5.8) gives

X = A2e~ax (6.5.9b)

The total solution consists of what we have in eqs. (6.5.9a) and (6.5.9b); that is,

X(x) = A,eax + A2e~ax (6.5.10)

Since cosh ax = (eax + <Tajr)/2 and sinh ax = (eax ~ e~ax)l2 or eax = cosh ax +
sinh ax and e ax = cosh ax — sinh ax, eq. (6.5.10) can be written as

X(x) = B] cosh ax + B2 sinh ax (6.5.11)

where Bx = A, + A2 and B2 = A, — A2. In view of the given boundary conditions, we
prefer eq. (6.5.11) to eq. (6.5.10) as the solution. Again, eqs. (6.5.6a) and (6.5.6b) require
that

X(x = 0) = 0 ^ 0 = S, • (1) + B2 • (0) or 5, = 0

and

X(x = 6) = , sinh ab

Since a ¥= 0 and & # 0, sinh a£> cannot be zero. This is due to the fact that sinh x = 0 if
and only if x = 0 as shown in Figure 6.8. Hence B2 = 0 and

X(x) = 0

This is also a trivial solution and we conclude that X cannot be less than zero.

CASE C.

If X > 0, say X = /32, then eq. (6.5.5a) becomes

X" + (32X = 0

cosh x~

2 - 1

- sinh x

Sketch of cosh x and sinh x
showing that sinh x = 0 if and only if
.« = 0.
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that is,

(D1 + (32)X = 0 or DX = ±j(SX (6.5.12)

where / = V — 1. From eqs. (6.5.8) and (6.5.12), we notice that the difference between
Cases 2 and 3 is replacing a by/'j3. By taking the same procedure as in Case 2, we obtain
the solution as

X(x) = t > / f a + e V - " i l (6.5.13a)

Since eliix = cos (3x + j sin fix and e~-itix = cos (3x — j sin /3.v, eq. (6.5.13a) can be written

X(.x) = ga cos /3.v + '̂i sin fix

where g() = Co + C, and ^, = Co - ,/C,.
In view of the given boundary conditions, we prefer to use eq. (6.5.13b). Imposing the

conditions in eqs. (6.5.6a) and (6.5.6b) yields

X(x = 0) = 0 -> 0 = #o • (1) + 0

and

X(x = b) = 0 - > 0 = 0 + £, sin/3/?

Suppose #, ¥= 0 (otherwise we get a trivial solution), then

sin (3b = 0 = sin nir

& = —. H = 1,2, 3,4, . . .

(6.5.13b)

J?., = 0

(6.5.14)

Note that, unlike sinh .v, which is zero only when ,v = 0. sin .v is zero at an infinite number
of points as shown in Figure 6.9. It should also be noted that n + 0 because (3 + 0; we
have already considered the possibility /3 = 0 in Case 1 where we ended up with a trivial
solution. Also we do not need to consider n = — 1, —2, —3. —4, . . . because X = j32

^ 1-
2 ix 3 jr i

( :-;isf, c..v Sketch of sin x showing that sin x = 0 at infinite n u m b e r

of points .
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would remain the same for positive and negative values of n. Thus for a given n,
eq. (6.5.13b) becomes

Xn(x) = gn sin —

Having found X(x) and

(6.5.15)

(6.5.16)

we solve eq. (6.5.5b) which is now

Y" - (32Y = 0

The solution to this is similar to eq. (6.5.11) obtained in Case 2 that is,

Y(y) = h0 cosh /3y + hx sinh j3y

The boundary condition in eq. (6.5.6c) implies that

Y(y = 0) = 0 - > 0 = V ( l ) + 0 or ho = 0

Hence our solution for Y(y) becomes

Yn(y) = K sinh —— (6.5.17)

Substituting eqs. (6.5.15) and (6.5.17), which are the solutions to the separated equations
in eq. (6.5.5), into the product solution in eq. (6.5.3) gives

Vn(x, y) = gnhn sin —— sinh ——
b b

This shows that there are many possible solutions Vb V2, V3, V4, and so on, for n =
1, 2, 3, 4, and so on.

By the superposition theorem, if V,, V2, V3, . . . ,Vn are solutions of Laplace's equa-
tion, the linear combination

v = c2v2 + c3v3 +• cnvn

(where cu c2, c 3 . . . , cn are constants) is also a solution of Laplace's equation. Thus the
solution to eq. (6.5.1) is

V(x, y) = 2J cn sin - — sinh ——
«=i b b

(6.5.18)

where cn = gnhn are the coefficients to be determined from the boundary condition in
eq. (6.5.6d). Imposing this condition gives

V(x, y = a) = Vo = 2J cn sin —— smh ——
« = i b b

(6.5.19)
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which is a Fourier series expansion of Vo. Multiplying both sides of eq. (6.5.19) by
sin m-KxIb and integrating over 0 < x < b gives

mirx -̂-, mra mirx mrx
VnSin dx = >, cn S l n h sin sin dx

Jo b n-e, b }0 b b

By the orthogonality property of the sine or cosine function (see Appendix A.9).

'0, m + n

(6.5.20)

sin mx sin nx dx =
TT/2, m = n

Incorporating this property in eq. (6.5.20) means that all terms on the right-hand side of
eq. (6.5.20) will vanish except one term in which m = n. Thus eq. (6.5.20) reduces to

b rb
mrx mra , mrx

Vosin dx = cn sinh | sin —r~ dx

or

that is,

o o

n-wx
— cos ——
n-K b

= cn sinh mra 1 — cos

Vob mra b
(1 — cos mr) = cn sinh • —

n-K b 2

. mra 2VO
cn smh = (I — cos rnr)

b nic

b J
dx

^ , n = 1,3,5,-

[ 0, n = 2 , 4 , 6 , . . .

cn = \ mr sinh

0,

mra
n = odd

n = even

Substituting this into eq. (6.5.18) gives the complete solution as

V(x,y) =

mrx niry
sin sinh

b b

n sinh
n-K a

(6.5.21)

(6.5.22)

Check: V2V = 0, V(x = 0, y) = 0 = V(x = b, y) = V(x, y, = 0), V(x, y = a) = Vo. The
solution in eq. (6.5.22) should not be a surprise; it can be guessed by mere observation of
the potential system in Figure 6.7. From this figure, we notice that along x, V varies from
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0 (at x = 0) to 0 (at x = b) and only a sine function can satisfy this requirement. Similarly,
along y, V varies from 0 (at y = 0) to Vo (at y = a) and only a hyperbolic sine function can
satisfy this. Thus we should expect the solution as in eq. (6.5.22).

To determine the potential for each point (x, y) in the trough, we take the first few
terms of the convergent infinite series in eq. (6.5.22). Taking four or five terms may be suf-
ficient,
(b) For x = a/2 and y = 3a/4, where b = 2a, we have

2' 4

4V
2

n= 1,3,5

sin «7r/4 sinh 3«TT/8

n sinh rnr/2
sin ir/4 sinh 3TT/8 sin 3TT/4 sinh 9TT/8

3 sinh 3TT/2T [ sinh x/2
sin 5x/4 sinh 15ir/4

5 sinh 5TT/4

4V
= —£(0.4517 + 0.0725 - 0.01985 - 0.00645 + 0.00229 + • • •)

IT

= 0.6374Vo

It is instructive to consider a special case when A = b = Ira and Vo = 100 V. The poten-
tials at some specific points are calculated using eq. (6.5.22) and the result is displayed in
Figure 6.10(a). The corresponding flux lines and equipotential lines are shown in Figure
6.10(b). A simple Matlab program based on eq. (6.5.22) is displayed in Figure 6.11. This
self-explanatory program can be used to calculate V(x, y) at any point within the trough. In
Figure 6.11, V(x = b/A, y = 3a/4) is typically calculated and found to be 43.2 volts.

1.0

100 V
Equipotential line

Flux line

43.2 54.0 43.2

18.2 25.0 18.2

6.80 9.54 6.80

(a)

1.0 0

Figure 6.10 For Example 6.5: (a) V(x, y) calculated at some points, (b) sketch of flux lines
and equipotential lines.
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% SOLUTION OF LAPLACE'S EQUATION
%

% THIS PROGRAM SOLVES THE TWO-DIMENSIONAL
% BOUNDARY-VALUE PROBLEM DESCRIBED IN FIG. 6.7
% a AND b ARE THE DIMENSIONS OF THE TROUGH
% x AND y ARE THE COORDINATES OF THE POINT
% OF INTEREST

P = [ ] ;
Vo = 100.0;
a = 1.0;
b = a;
x = b/4;
y= 3.*a/4.;
c = 4.*Vo/pi
sum = 0.0;
for k=l:10

n = 2*k - 1
al = sin(n*pi*x/b);
a2 = sinh(n*pi*y/b);
a3 = n*sinh(n*pi*a/b);
sum = sum + c*al*a2/a3;
P = [n, sum]

end
diary test.out
P
diary off

Figure 6.11 Matlab program for Example 6.5.

PRACTICE EXERCISE 6.5

For the problem in Example 6.5, take Vo = 100 V, b = 2a = 2 m, find V and E at

(a) (x,y) = (a,a/2)

(b) (x,y) = (3a/2,a/4)

Answer: (a) 44.51 V, -99.25 ay V/m, (b) 16.5 V, 20.6 ax - 70.34 ay V/m.

EXAMPLE 6.6
In the last example, find the potential distribution if Vo is not constant but

(a) Vo = 10 s in 3irx/b, y = a, Q<x<b

( b ) VQ = 2 sin y + — sin - y , y = a,0<x<b
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Solution:

(a) In the last example, every step before eq. (6.5.19) remains the same; that is, the solu-
tion is of the form

^ , nirx niry
V(x, y) = 2J cn sin —— sinh ——

t^x b b

as per eq. (6.5.18). But instead of eq. (6.5.19), we now have

V(y = a) = Vo = 10 sin —— = X cn sin —— sinh
b n=i b b

By equating the coefficients of the sine terms on both sides, we obtain

For n = 3,

10 = c3 sinh
3ira

or

10

sinh
3ira

Thus the solution in eq. (6.6.1) becomes

V(x,y) = 10 sin
3TTX

sinh

sinh

(b) Similarly, instead of eq. (6.5.19), we have

Vo = V(y = a)

or

5-KX•KX 1
2 sin 1 sinh

b 10 b

Equating the coefficient of the sine terms:

«7TX
cn sinh sinh

cn = 0, n * 1,5

(6.6.1)
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Forn = 1,

2 = cx sinh — or
b

221

For n = 5,

Hence,

sinh-ira

1 5ira
- = c5sinh — or c5 =

10 sinh
5ira

V(x,y) =

. irx . Try 5irx 5iry
2 sm — sinh — sin sinh

b b b b
+

sinh —
b

10 sinh
5ira

PRACTICE EXERCISE 6.6

In Example 6.5, suppose everything remains the same except that Vo is replaced by

Vo sin ——, 0 < x < b, y = a. Find V(JC, y).

Answer:
Vn sin sinh

sinh
7ra

EXAMPLE 6.7 Obtain the separated differential equations for potential distribution V(p, </>, z) in a charge-
free region.

Solution:

This example, like Example 6.5, further illustrates the method of separation of variables.
Since the region is free of charge, we need to solve Laplace's equation in cylindrical coor-
dinates; that is,

a / dv\ 1
P — I + —

d2V d2V

We let

P dp \ dp) p2 d(j>-

V(p, 4>, z) = R{P) Z(Z)

(6.7.1)

(6.7.2)
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where R, <P, and Z are, respectively, functions of p, (j>, and z. Substituting eq. (6.7.2) into

eq. (6.7.1) gives

*?
p dp\dp

We divide through by R<PZ to obtain

p2 d<t>2 T = 0

\_±(pdR\ 1 d2t>
pR dp\ dp ) P

2<P d<t>

dz

1 d2Z

Z dz2

(6.7.3)

(6.7.4)

The right-hand side of this equation is solely a function of z whereas the left-hand side
does not depend on z. For the two sides to be equal, they must be constant; that is,

J_d_(pdR\ +J_d*±
pR dp\dp) p

2(p dct>2

1 d2Z

Z dz2
= - A 2 (6.7.5)

where -X2 is a separation constant. Equation (6.7.5) can be separated into two parts:

1 d2Z

Zdz
_ 2
— A

or

and

Z" - X2Z = 0

Rdp\ dp

Equation (6.7.8) can be written as

^£R_ p^dR

R dp2 R dp
2_ 1 d24>

where fx2 is another separation constant. Equation (6.7.9) is separated as

<P" = fo = o

and

p2R" + pR' + (p2X2 - VL2)R = 0

(6.7.6)

(6.7.7)

(6.7.8)

(6.7.9)

(6.7.10)

(6.7.11)

Equations (6.7.7), (6.7.10), and (6.7.11) are the required separated differential equations.
Equation (6.7.7) has a solution similar to the solution obtained in Case 2 of Example 6.5;
that is,

Z(z) = cx cosh \z + c2 sinh Xz (6.7.12)
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The solution to eq. (6.7.10) is similar to the solution obtained in Case 3 of Example 6.5;
that is,

<P(4>) = c 3 co s fi<t> + c4 s in (6.7.13)

Equation (6.7.11) is known as the Bessel differential equation and its solution is beyond
the scope of this text.

PRACTICE EXERCISE 6.7

Repeat Example 6.7 for V(r, 6, (f>).

Answer: If V(r, 0, <t>) = R(r) F(6) <£(0), <P" + \2<P = 0, R" + -R' - ^R

F + cot 6 F' + (ju2 - X2 cosec2 0) F = 0.

= 0,

6.5 RESISTANCE AND CAPACITANCE

In Section 5.4 the concept of resistance was covered and we derived eq. (5.16) for finding
the resistance of a conductor of uniform cross section. If the cross section of the conductor
is not uniform, eq. (5.16) becomes invalid and the resistance is obtained from eq. (5.17):

= V = jE-dl
I §aE-dS

(6.16)

The problem of finding the resistance of a conductor of nonuniform cross section can be
treated as a boundary-value problem. Using eq. (6.16), the resistance R (or conductance
G = l/R) of a given conducting material can be found by following these steps:

1. Choose a suitable coordinate system.
2. Assume Vo as the potential difference between conductor terminals.
3. Solve Laplace's equation V2V to obtain V. Then determine E from E =

/ f r o m / = / CTE- dS.
4. Finally, obtain R as VJI.

- VV and

In essence, we assume Vo, find /, and determine R = VJI. Alternatively, it is possible
to assume current /o, find the corresponding potential difference V, and determine R from
R = V/Io. As will be discussed shortly, the capacitance of a capacitor is obtained using a
similar technique.

For a complete solution of Laplace's equation in cylindrical or spherical coordinates, see, for
example, D. T. Paris and F. K. Hurd, Basic Electromagnetic Theory. New York: McGraw-Hill, 1969,
pp. 150-159.
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Generally speaking, to have a capacitor we must have two (or more) conductors car-
rying equal but opposite charges. This implies that all the flux lines leaving one conductor
must necessarily terminate at the surface of the other conductor. The conductors are some-
times referred to as the plates of the capacitor. The plates may be separated by free space
or a dielectric.

Consider the two-conductor capacitor of Figure 6.12. The conductors are maintained
at a potential difference V given by

V = V, - V? = - d\ (6.17)

where E is the electric field existing between the conductors and conductor 1 is assumed to
carry a positive charge. (Note that the E field is always normal to the conducting surfaces.)

We define the capacitance C of the capacitor as the ratio of the magnitude of the
charge on one of the plates to the potential difference between them; that is,

(6.18)

The negative sign before V = — / E • d\ has been dropped because we are interested in the
absolute value of V. The capacitance C is a physical property of the capacitor and in mea-
sured in farads (F). Using eq. (6.18), C can be obtained for any given two-conductor ca-
pacitance by following either of these methods:

1. Assuming Q and determining V in terms of Q (involving Gauss's law)
2. Assuming Vand determining Q in terms of V(involving solving Laplace's equation)

We shall use the former method here, and the latter method will be illustrated in Examples
6.10 and 6.11. The former method involves taking the following steps:

1. Choose a suitable coordinate system.
2. Let the two conducting plates carry charges + Q and — Q.

Figure 6.12 A two-conductor ca-
pacitor.
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3. Determine E using Coulomb's or Gauss's law and find Vfrom V = — J E • d\. The
negative sign may be ignored in this case because we are interested in the absolute
value of V.

4. Finally, obtain C from C = Q/V.

We will now apply this mathematically attractive procedure to determine the capaci-
tance of some important two-conductor configurations.

A. Parallel-Plate Capacitor
Consider the parallel-plate capacitor of Figure 6.13(a). Suppose that each of the plates has
an area S and they are separated by a distance d. We assume that plates 1 and 2, respec-
tively, carry charges +Q and —Q uniformly distributed on them so that

Ps ~
Q (6.19)

dielectric e plate area S

1 —. . .

Figure 6.13 (a) Parallel-plate capacitor,
(b) fringing effect due to a parallel-plate
capacitor.

(a)

(b)
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An ideal parallel-plate capacitor is one in which the plate separation d is very small com-
pared with the dimensions of the plate. Assuming such an ideal case, the fringing field at
the edge of the plates, as illustrated in Figure 6.13(b), can be ignored so that the field
between them is considered uniform. If the space between the plates is filled with a homo-
geneous dielectric with permittivity e and we ignore flux fringing at the edges of the plates,
from eq. (4.27), D = -psax or

(6.20)

ES

Hence

(6.21)

and thus for a parallel-plate capacitor

(6.22)

This formula offers a means of measuring the dielectric constant er of a given dielectric.
By measuring the capacitance C of a parallel-plate capacitor with the space between the
plates filled with the dielectric and the capacitance Co with air between the plates, we find
er from

_ c_
Er~ co

Using eq. (4.96), it can be shown that the energy stored in a capacitor is given by

(6.23)

(6.24)

To verify this for a parallel-plate capacitor, we substitute eq. (6.20) into eq. (4.96) and
obtain

1
rE — — i E - r — :

2 J e
2S

dv =
2E2S2

Q2 (d\ Q2 1
= — [ — ) = — = -QV

2 \eSj 2C 2^

as expected.
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B. Coaxial Capacitor

This is essentially a coaxial cable or coaxial cylindrical capacitor. Consider length L of two
coaxial conductors of inner radius a and outer radius b (b > a) as shown in Figure 6.14.
Let the space between the conductors be filled with a homogeneous dielectric with permit-
tivity s. We assume that conductors 1 and 2, respectively, carry +Q and -Q uniformly dis-
tributed on them. By applying Gauss's law to an arbitrary Gaussian cylindrical surface of
radius p (a < p < b), we obtain

Q = s <j> E • dS = eEp2irpL

Hence:

Neglecting flux fringing at the cylinder ends,

L 2irspL
ap\-dp ap

Q , b
•In —

2-KEL a

Thus the capacitance of a coaxial cylinder is given by

(6.25)

(6.26)

(6.27a)

(6.27b)

(6.28)

C. Spherical Capacitor

This is the case of two concentric spherical conductors. Consider the inner sphere of radius
a and outer sphere of radius b{b> a) separated by a dielectric medium with permittivity
e as shown in Figure 6.15. We assume charges +Q and -Q on the inner and outer spheres

dielectric

Figure 6.14 Coaxial capacitor.
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Figure 6.15 Spherical capacitor.

dielectric e

respectively. By applying Gauss's law to an arbitrary Gaussian spherical surface of radius
r(a<r<b),

that is,

Q = e *E • dS = sEr4irrz

E =
4-irer2

(6.29)

(6.30)

The potential difference between the conductors is

V= - E
h

Q

• drar

' - 4ire [a b

Thus the capacitance of the spherical capacitor is

(6.31)

(6.32)

By letting b —» t», C = 47rsa, which is the capacitance of a spherical capacitor whose
outer plate is infinitely large. Such is the case of a spherical conductor at a large distance
from other conducting bodies—the isolated sphere. Even an irregularly shaped object of
about the same size as the sphere will have nearly the same capacitance. This fact is useful
in estimating the stray capacitance of an isolated body or piece of equipment.

Recall from network theory that if two capacitors with capacitance C] and C2 are in series
(i.e., they have the same charge on them) as shown in Figure 6.16(a), the total capacitance is

C2

or

C = (6.33)
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Figure 6.16 Capacitors in (a) series, and
(b) parallel.

(a) (b)

If the capacitors arc in parallel (i.e., they have the same voltage across their plates) as
shown in Figure 6.16(b), the total capacitance is

C = C2 (6.34)

Let us reconsider the expressions for finding the resistance R and the capacitance C of
an electrical system. The expressions were given in eqs. (6.16) and (6.18):

V =

/

= Q=

VV fE-dl

(6.16)

(6.18)

The product of these expressions yields

(6.35)

which is the relaxation time Tr of the medium separating the conductors. It should be re-
marked that eq. (6.35) is valid only when the medium is homogeneous; this is easily in-
ferred from eqs. (6.16) and (6.18). Assuming homogeneous media, the resistance of
various capacitors mentioned earlier can be readily obtained using eq. (6.35). The follow-
ing examples are provided to illustrate this idea.

For a parallel-plate capacitor,

Q =
sS

R =
oS

(6.36)

For a cylindrical capacitor,

c = ^k R =
b ' 2-KOL

In —

(6.37)
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• For a spherical capacitor,

Q =
4-rre

1

b

R =
4ira

And finally for an isolated spherical conductor,

C = Airsa, R =
4iroa

(6.38)

(6.39)

It should be noted that the resistance R in each of eqs. (6.35) to (6.39) is not the resistance
of the capacitor plate but the leakage resistance between the plates; therefore, a in those
equations is the conductivity of the dielectric medium separating the plates.

A metal bar of conductivity a is bent to form a flat 90° sector of inner radius a, outer radius
b, and thickness t as shown in Figure 6.17. Show that (a) the resistance of the bar between
the vertical curved surfaces at p = a and p = b is

R =
oitt

and (b) the resistance between the two horizontal surfaces at z = 0 and z = t is

At
R' =

oir(b2 - a2)

Solution:
(a) Between the vertical curved ends located at p = a and p = b, the bar has a nonuni-
form cross section and hence eq. (5.16) does not apply. We have to use eq. (6.16). Let a po-
tential difference Vo be maintained between the curved surfaces at p = a and p = b so that

Figure 6.17 Metal bar of Exam-
ple 6.8.

r
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V(p = a) = 0 and V(p = b) = Vo. We solve for V in Laplace's equation \2V = 0 in cylin-
drical coordinates. Since V = V(p),

2 _\_d_( ^V'

P dp \ dp

As p = 0 is excluded, upon multiplying by p and integrating once, this becomes

o--A

or

dV _ A

; dp P ;

Integrating once again yields ?

V = Alnp + S

where A and 5 are constants of integration to be determined from the boundary conditions.

V(p = a) = 0 -> 0 = A In a + B or 5 = -A In a

V(p = b) = Vo -^ Vo = A In b + B = A In b - A In a = A In - or A = —
a b

l n -

Hence ,

Thus

= A In p - A In a = A I n - = — l n -
a b a
• l n -

a

dp

J = aE, dS = -p

fTT/2

/ = J • dS =
•*=° J -

p In —
. a

dzpd(j> = - — -

In - In -
a a

oirt

as required.
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(b) Let Vo be the potential difference between the two horizontal surfaces so that
V(z = 0) = 0 and V(z = i) = Vo. V = V(z), so Laplace's equation V2V = 0 becomes

dz2 = o

Integrating twice gives

: V = Az + B

We apply the boundary conditions to determine A and B:

V(z = 0) = 0 ^ 0 = 0 + 5 or B = 0

Hence,

V{z = t) = Vo->Vo=At or A =

V =

/ = J • dS =

Voa TT p

t ' 2 2

Thus

J = aE = az, dS = -p d<j> dp a.

p dcp dp

VOGIT (b2 - a2)

At

At

i

I o-K{b2 - a2)

Alternatively, for this case, the cross section of the bar is uniform between the hori-
zontal surfaces at z.= 0 and z = t and eq. (5.16) holds. Hence,

a~(b- a1)

At

- a2)

as required.
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n PRACTICE EXERCISE 6.8 »»SliIS§«8

A disc of thickness t has radius b and a central hole of radius a. Taking the conduc-
;; tivity of the disc as a, find the resistance between
is

I (a) The hole and the rim of the disc
ft
|V (b) The two flat sides of the disc

A coaxial cable contains an insulating material of conductivity a. If the radius of the central
wire is a and that of the sheath is b, show that the conductance of the cable per unit length
is (see eq. (6.37))

- In b/a
: Answer: (a) , (b)

2-Kta oir(b - a )

1= J • dS =

2*LoVo

In b/a

The resistance per unit length is

and the conductance per unit length is

Consider length L of the coaxial cable as shown in Figure 6.14. Let Vo be the potential dif-
ference between the inner and outer conductors so that V(p = a) = 0 and V(p — b) = Vo

V and E can be found just as in part (a) of the last example. Hence:

-aV
J = aE = ° a p , dS = -pd<f> dz a p •

:: pmb/a ; • •

p dz. d(j>
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PRACTICE EXERCISE 6.9

A coaxial cable contains an insulating material of conductivity ax in its upper half
and another material of conductivity a2 in its lower half (similar to the situation in
Figure 6.19b). If the radius of the central wire is a and that of the sheath is b, show
that the leakage resistance of length £ of the cable is

Answer: Proof.

EXAMPLE 6.10
Conducting spherical shells with radii a = 10 cm and b = 30 cm are maintained at a po-
tential difference of 100 V such that V(r = b) = 0 and V(r = a) = 100 V. Determine V
and E in the region between the shells. If sr = 2.5 in the region, determine the total charge
induced on the shells and the capacitance of the capacitor.

Solution: I

Consider the spherical shells shown in Figure 6.18. V depends only on r and hence
Laplace's equation becomes

r2 dry dr

Since r =fc 0 in the region of interest, we multiply through by r2 to obtain

dr dr

Integrating once gives

dr

Figure 6.18 Potential V(r) due to conducting spherical shells.
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or

Integrating again gives

dV _ A
dr r2

V= + B
r

As usual, constants A and B are determined from the boundarv conditions.

When r = b, V = 0 -^ 0 = + B or B = -
b b

Hence

V = A
1 1
b ~ r

Also when r = a, V = Vo -> Vo = A
1 1
b ~ a

or

A =
1 1
b a

Thus

v=vn
r ~ b

1 1
a b

1 1
r - |

ar

= eE • dS =
= 0 J0 =

47TEoS rVo

L-2-^r r2 sin 5 ̂  dd

a b

a b
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The capacitance is easily determined as

Q =

Vo ̂ _ J _
a b

which is the same as we obtained in eq. (6.32); there in Section 6.5, we assumed Q and
found the corresponding Vo, but here we assumed Vo and found the corresponding Q to de-
termine C. Substituting a = 0.1 m, b = 0.3 m, Vo = 100 V yields

V = 100
10 - 10/3 1 5 | r 3

Check: V2V = 0, V(r = 0.3 m) = 0, V(r = 0.1 m) = 100.

E =
100

r2 [10 - 10/3]
ar = —^ ar V/m

Q = ±4TT
10"9 (2.5) • (100)

36?r 10 - 10/3 ' ' '•
= ±4.167 nC

The positive charge is induced on the inner shell; the negative charge is induced on the
outer shell. Also

C =
\Q\ _ 4.167 X 10"

100
= 41.67 pF

PRACTICE EXERCISE 6.10

If Figure 6.19 represents the cross sections of two spherical capacitors, determine
their capacitances. Let a = 1 mm, b = 3 mm, c = 2 mm, srl = 2.5. and er2 = 3.5.

Answer: (a) 0.53 pF, (b) 0.5 pF

Figure 6.19 For Practice Exer-
cises 6.9, 6.10, and 6.12.

(a) (b)
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fcXA.V In Section 6.5, it was mentioned that the capacitance C = Q/V of a capacitor can be found
by either assuming Q and finding V or by assuming V and finding Q. The former approach
was used in Section 6.5 while we have used the latter method in the last example. Using
the latter method, derive eq. (6.22).

Solution:

Assume that the parallel plates in Figure 6.13 are maintained at a potential difference Vo so
that V(x = 0) and V(x = d) = Vo. This necessitates solving a one-dimensional boundary-
value problem; that is, we solve Laplace's equation

dx'

Integrating twice gives

where A and B are integration constants to be determined from the boundary conditions. At
x = 0, V = 0 -> 0 = 0 + B, or B = 0, and at x = d, V = Vo -> Vo = Ad + 0 or

Hence

Notice that this solution satisfies Laplace's equation and the boundary conditions.
We have assumed the potential difference between the plates to be Vo. Our goal is to

find the charge Q on either plate so that we can eventually find the capacitance C = Q/Vo.
The charge on either plate is

Q = As dS

But ps — D • an = eE • an, where

E = -VV= -~ax= -t
dx

On the lower plates, an = ax, so

Ps =
eVn

On the upper plates, an = -ax, so

d

and Q = —
d

sVo sVoS
Ps = " V and Q = —T~
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As expected, Q is equal but opposite on each plate. Thus

Vn d

which is in agreement with eq. (6.22).

N

5 PRACTICE EXERCISE 6.11
H.

§/; Derive the formula for the capacitance C = Q/Vo of a cylindrical capacitor in eq.
| (6.28) by assuming Vo and finding (?.

EXAMPLE <».12 Determine the capacitance of each of the capacitors in Figure 6.20. Take erl = 4, er2 = 6,
d = 5 mm, 51 = 30 cm2.

Solution:

(a) Since D and E are normal to the dielectric interface, the capacitor in Figure 6.20(a) can
be treated as consisting of two capacitors Cx and C2 in series as in Figure 6.16(a).

P p V Op p V Op p C

*~ d/2 ~ d ' 2 ~ d

The total capacitor C is given by

C =
CXC2 2EoS (erl£r2)

= 2

+ C2 d erl + er2

1 0 " 9 3 0 X 1 0 " 4 4 X 6

36TT 5 X 10"3

C = 25.46 pF
10

w/2 w/2

(b)

Figure 6.20 For Example 6.12.

(6.12.1)
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(b) In this case, D and E are parallel to the dielectric interface. We may treat the capacitor
as consisting of two capacitors Cx and C2 in parallel (the same voltage across C\ and C2) as
in Figure 6.16(b).

eos r l5/2 eoerlS _, sosr2S

Id ' Id

The total capacitance is

10"9 30 X 10"

~ 36TT 2 • (5 X 10~3)

C = 26.53 pF

er2)

10 (6.12.2)

Notice that when srl = er2 = er, eqs. (6.12.1) and (6.12.2) agree with eq. (6.22) as ex-
pected.

PRACTICE EXERCISE 6.12

Determine the capacitance of 10 m length of the cylindrical capacitors shown in
Figure 6.19. Take a = 1 mm, b = 3 mm, c = 2 mm, erl = 2.5, and er2 — 3.5.

Answer: (a) 1.41 nF, (b) 1.52 nF.

A cylindrical capacitor has radii a = 1 cm and b = 2.5 cm. If the space between the plates
is filled with an inhomogeneous dielectric with sr = (10 + p)/p, where p is in centimeters,
find the capacitance per meter of the capacitor.

Solution:

The procedure is the same as that taken in Section 6.5 except that eq. (6.27a) now becomes

V = -
Q

2ireQsrpL
dp= -

Q
2iTBoL

dp

10 + p

-Q r dp = -Q
2ire0L )b 10 + p 2irsoL

Q , 10 + b
- m

In (10 + p)

2irsnL 10 +• a
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Thus the capacitance per meter is (L = 1 m)

„ Q
10

C = 434.6 pF/m

= 2TT
10- 9

36TT 12.5

A spherical capacitor with a = 1.5 cm, 6 = 4cm has an inhomogeneous dielectric
jjj|ofe = lOSo/r. Calculate the capacitance of the capacitor.

K: Answer: 1.13 nF.

6.6 METHOD OF IMAGES

The method of images, introduced by Lord Kelvin in 1848, is commonly used to determine
V, E, D, and ps due to charges in the presence of conductors. By this method, we avoid
solving Poisson's or Laplace's equation but rather utilize the fact that a conducting surface
is an equipotential. Although the method does not apply to all electrostatic problems, it can
reduce a formidable problem to a simple one.

lu-orx stales ilmi ti given charge ctinlijnirmion aho\e an inlinik'
ciin-i plane max be replaced bx the charge conliguialioti

surface in place of 11 ' ' ' ,ie.

Typical examples of point, line, and volume charge configurations are portrayed in Figure
6.21(a), and their corresponding image configurations are in Figure 6.21(b).

Equipotential surface V = 0

-Q*

(a)

Figure 6.21 Image system: (a) charge configurations above a perfectly conducting plane;
(b) image configuration with the conducting plane replaced by equipotential surface.
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In applying the image method, two conditions must always be satisfied:

1. The image charge(s) must be located in the conducting region.
2. The image charge(s) must be located such that on the conducting surface(s) the po-

tential is zero or constant.

The first condition is necessary to satisfy Poisson's equation, and the second condition
ensures that the boundary conditions are satisfied. Let us now apply the image theory to
two specific problems.

A. A Point Charge Above a Grounded Conducting Plane
Consider a point charge Q placed at a distance h from a perfect conducting plane of infinite
extent as in Figure 6.22(a). The image configuration is in Figure 6.22(b). The electric field
at point P(x, y, z) is given by

E = E+ + E

The distance vectors r t and r2 are given by

r, = (x, y, z) - (0, 0, h) = (x, j , z - h)

. • ' . . r2 = (x, y> z) - (0, 0, -h) = (x, j , z + h)

so eq. (6.41) becomes

= J2_ f xax + yay + (z - fe)az _ xax + yay + (z + fe)a
:2 + y2 + (z - h)2f2 [x2 + y2 + ( hff12

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

v= o
/

P(x,y,z)

(a)

Figure 6.22 (a) Point charge and grounded conducting plane, (b) image configuration and
field lines.
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It should be noted that when z = 0, E has only the z-component, confirming that E is
normal to the conducting surface.

The potential at P is easily obtained from eq. (6.41) or (6.44) using V = -jE-dl.
Thus

v=v+
Q + ~Q

v =

4ireor1 4irsor2

Q

(6.45)

:o {[x2 + y2 + (z ~ hff2 [x2 + y2 + (z + h)2f

for z a 0 and V = 0 for z < 0 . Note that V(z = 0) = 0.
The surface charge density of the induced charge can also be obtained from eq. (6.44) as

ps - Dn - eJLn

-Qh
(6.46)

h2f2

The total induced charge on the conducting plane is

Qi= PsdS =
-Qhdxdy

By changing variables, p2 = x2 + y2, dx dy = p dp d4>-

Qi = ~ n3/2

(6.47)

(6.48)

Integrating over <j> gives 2ir, and letting p dp = —d (p2), we obtain

,2,1/2
(6.49)

= -Q

as expected, because all flux lines terminating on the conductor would have terminated on
the image charge if the conductor were absent.

B. A Line Charge above a Grounded Conducting Plane

Consider an infinite charge with density pL C/m located at a distance h from the grounded
conducting plane z = 0. The same image system of Figure 6.22(b) applies to the line
charge except that Q is replaced by pL. The infinite line charge pL may be assumed to be at
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x = 0, z = h and the image — pL at x = 0, z = ~A so that the two are parallel to the y-axis.
The electric field at point P is given (from eq. 4.21) by .

(6.50)

(6.51)

(6.52)

(6.53)

(6.54)

The distance vectors p t and

E =

p2 are

E + +

PL

2irsop

given

E_

-PL

Z " 1 ' 27T£0p2

by

p2 = (x, y, z) - (0, y, -h) = (x, 0, z + h)

so eq. (6.51) becomes

E =
pL \xax + (z - h)az xax

27T£O L X2 + (Z - X2 + (z +

Again, notice that when z = 0, E has only the z-component, confirming that E is normal to
the conducting surface.

The potential at P is obtained from eq. (6.51) or (6.54) using V = -jE-dl. Thus

V = V+ + V-

= PL 1
2iT£0

PL , Pi- In —

ft lnp2 (6.55)

. "• • . . ' . ' 2 T T E O P 2

Substituting px = \pi\ and p2 = \p2\ in eqs. (6.52) and (6.53) into eq. (6.55) gives

1/2

(6.56)

for z > 0 and V = 0 for z < 0 . Note that V(z = 0) = 0.
The surface charge induced on the conducting plane is given by

Ps = Dn = soEz

The induced charge per length on the conducting plane is

pLh f°° dx
Pi= psdx = —

, x2 + h2

(6.57)

(6.58)

By letting x = h tan a, eq. (6.58) becomes

\
Pi =

pLh r da
(6.59)

as expected.
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EXAMPLE 6.14 A point charge Q is located at point (a, 0, b) between two semiinfinite conducting planes
intersecting at right angles as in Figure 6.23. Determine the potential at point P(x, y, z) and
the force on Q.

Solution:

The image configuration is shown in Figure 6.24. Three image charges are necessary to
satisfy the conditions in Section 6.6. From Figure 6.24(a), the potential at point P(x, y, z) is
the superposition of the potentials at P due to the four point charges; that is,

V = Q ri
r2 >4

where

r4 = [{x-af

From Figure 6.24(b), the net force on Q

F = F, + F , + F3

n = [(x - a)2 +y2 + (z- b)2]1'2

r2 = [(x + a)2 + y 2 + (z- bf]yl

2 + (z + bf]m

2 + (z + bf]m

r3 = [(x + a)2

F2

Q2 Q2

4wso(2bf

Q2

47reo(2a)2 +

^3/2

Q2(2aax + 2baz)

4Treo[(2a)2 + {Ibfr
2-, 3/2

{a2 + b2),2-v3/2 , 2 I az

The electric field due to this system can be determined similarly and the charge induced on
the planes can also be found.

Figure 6.23 Point charge between two semiinfinite
conducting planes.

o
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" = o ,, »P(x,y,z)

(a) (b)

Figure 6.24 Determining (a) the potential at P, and (b) the force on charge Q.

In general, when the method of images is used for a system consisting of a point
charge between two semiinfinite conducting planes inclined at an angle (/> (in degrees), the
number of images is given by

because the charge and its images all lie on a circle. For example, when <j> = 180°, N = 1
as in the case of Figure 6.22; for 0 = 90°, N = 3 as in the case of Figure 6.23; and for
(j> = 60°, we expect AT = 5 as shown in Figure 6.25.

-Q Figure 6.25 Point charge between two semiinfinite
conducting walls inclined at <j> = 60° to each.

-Q -Q

+Q
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PRACTICE EXERCISE 6.14

If the point charge Q — 10 nC in Figure 6.25 is 10 cm away from point O and along
the line bisecting <t> = 60°, find the magnitude of the force on Q due to the charge
induced on the conducting walls.

A n s w e r : 6 0 . 5 3 / i N . . n ,; :;,.,... ---;•;::• :-iy:;:.-.;••->;;v,.ia:.s>:i,,SESs«i:

1. Boundary-value problems are those in which the potentials at the boundaries of a region
are specified and we are to determine the potential field within the region. They are
solved using Poisson's equation if pv =£ 0 or Laplace's equation if pv = 0.

2. In a nonhomogeneous region, Poisson's equation is

V • e VV = -pv

For a homogeneous region, e is independent of space variables. Poisson'
becomes . ;

's equation

V2V = - ^

In a charge-free region (pv = 0), Poisson's equation becomes Laplace's equation;
that is,

v2y = o

3. We solve the differential equation resulting from Poisson's or Laplace's equation by in-
tegrating twice if V depends on one variable or by the method of separation of variables
if Vis a function of more than one variable. We then apply the prescribed boundary con-
ditions to obtain a unique solution.

4. The uniqueness theorem states that if V satisfies Poisson's or Laplace's equation and the
prescribed boundary condition, V is the only possible solution for that given problem.
This enables us to find the solution to a given problem via any expedient means because
we are assured of one, and only one, solution.

5. The problem of finding the resistance R of an object or the capacitance C of a capacitor
may be treated as a boundary-value problem. To determine R, we assume a potential
difference Vo between the ends of the object, solve Laplace's equation, find
/ = / aE • dS, and obtain R = VJI. Similarly, to determine C, we assume a potential
difference of Vo between the plates of the capacitor, solve Laplace's equation, find
Q = / eE • dS, and obtain C = Q/Vo.

6. A boundary-value problem involving an infinite conducting plane or wedge may be
solved using the method of images. This basically entails replacing the charge configu-
ration by itself, its image, and an equipotential surface in place of the conducting plane.
Thus the original problem is replaced by "an image problem," which is solved using
techniques covered in Chapters 4 and 5. -, • •
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iREVIEW QUESTIONS

6.1 Equation V • ( —sVV) = pv may be regarded as Poisson's equation for an inhomoge-
neous medium.

( a ) T r u e : • • • " ' " " " •

(b) False

6.2 In cylindrical coordinates, equation

+dp P dp + 10 = 0

is called . '•--'• ' l )

(a) Maxwell's equation

(b) Laplace's equation '""'•

(c) Poisson's equation

(d) Helmholtz's equation

(e) Lorentz's equation

6.3 Two potential functions Vi and V2 satisfy Laplace's equation within a closed region and
assume the same values on its surface. Vx must be equal to V2.

(a) True . . ! '

(b) False

(c) Not necessarily

6.4 Which of the following potentials does not satisfy Laplace's equation?

( a ) V = 2x + 5 . . , • • , ; • ..,,.

(b) V= 10 xy ' , :

(c) V = r cos <j> " •

(e) V = p cos <$> + 10 ~ : ' - .-..- • :.' :

6.5 Which of the following is not true?

(a) - 5 cos 3x is a solution to 0"(x) + 90(x) = 0

(b) 10 sin 2x is a solution to <j)"(x) — 4cf>(x) = 0

(c) - 4 cosh 3y is a solution to ^"(y) - 9R(y) = 0

. (d) sinh 2y is a solution to R"(y) - 4R(y) = 0

(e) —-— = ——— = f(z) = - 1 where g(x) = sin x and h(y) = sinhy
g(x) h(y)
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6.6 If Vi = XlY1 is a product solution of Laplace's equation, which of these are not solutions
of Laplace's equation?

(a) -

(b) XyYy + 2xy

(c) X^ - x + y

(d)X1 + Y1

(e) (Xi - 2){YX + 3)

6.7 The capacitance of a capacitor filled by a linear dielectric is independent of the charge on
the plates and the potential difference between the plates.

(a) True

(b) False • . . - i : ; ,. ' -.

6.8 A parallel-plate capacitor connected to a battery stores twice as much charge with a given
dielectric as it does with air as dielectric, the susceptibility of the dielectric is

(a) 0

(b) I •

(c) 2

(d) 3 v

(e) 4

6.9 A potential difference Vo is applied to a mercury column in a cylindrical container. The
mercury is now poured into another cylindrical container of half the radius and the same
potential difference Vo applied across the ends. As a result of this change of space, the re-
sistance will be increased . . .. •• . .

(a) 2 times

(b) 4 times

(c) 8 times , .

(d) 16 times

6.10 Two conducting plates are inclined at an angle 30° to each other with a point charge
between them. The number of image charges is

(a) 12 / ' • " : : V " \

(b) 11

, ^ 6 - • ' " ' • • •

, (d) 5

(e) 3

Answers: 6.1a, 6.2c, 6.3a, 6.4c, 6.5b, 6.6d,e, 6.7a, 6.8b, 6.9d, 6.10b.
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PROBLEMS
6.1 In free space, V = 6xy2z + 8. At point P(\, 2, - 5 ) , find E and pv.

6.2 Two infinitely large conducting plates are located at x = 1 and x = 4. The space between

them is free space with charge distribution — nC/m3. Find Vatx = 2 if V(l) = —50V
• I < O7T

and V(4) = 50 V. ,: - ; . -

6.3 The region between x = 0 and x = d is free space and has pv = po(x — d)ld. If
V(x = 0) = 0 and V(x = d) = Vo, find: (a) V and E, (b) the surface charge densities at
x = 0 and x = d.

6.4 Show that the exact solution of the equation

• • / • • ' ' dx2 ~ m

0 <x < L

subject to

V(x = 0) = Vl V(x = L) = V2

/(/x) d\t, d\
o Jo

(a) V, = x2 + y2 - 2z + 10

(c), V3 = pz sin <j> + p

6.7 Show that the following potentials satisfy Laplace's equation.

(a) V = e ""cos 13y sinh

249

6.5 A certain material occupies the space between two conducting slabs located at y =
± 2 cm. When heated, the material emits electrons such that pv = 50(1 — y2) ^C/m3. If
the slabs are both held at 30 kV, find the potential distribution within the slabs. Take
e = 3en. .

6.6 Determine which of the following potential field distributions satisfy Laplace's equation.
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d = 2 mm

'• = d) = Vn

V(z = 0) = 0

Figure 6.26 For Problem 6.11.

1

6.8 Show that E = (Ex, Ey, Ez) satisfies Laplace's equation.

6.9 Let V = (A cos nx + B sin nx)(Ceny + De~ny), where A, B, C, and £> are constants.
Show that V satisfies Laplace's equation. . >

6.10 The potential field V = 2x2yz — y3z exists in a dielectric medium having e = 2eo.
(a) Does V satisfy Laplace's equation? (b) Calculate the total charge within the unit cube
0 < x,y,z < 1 m.

6.11 Consider the conducting plates shown in Figure 6.26. If V(z = 0) = 0 and
V(z = 2 mm) = 50 V, determine V, E, and D in the dielectric region (er = 1.5) between
the plates and ps on the plates.

6.12 The cylindrical-capacitor whose cross section is in Figure 6.27 has inner and outer radii of
5 mm and 15 mm, respectively. If V(p = 5 mm) = 100 V and V(p = 1 5 mm) = 0 V,
calculate V, E, and D at p = 10 mm and ps on each plate. Take er = 2.0.

6.13 Concentric cylinders p = 2 cm and p = 6 cm are maintained at V = 60 V and
V = - 2 0 V, respectively. Calculate V, E, and D at p = 4 cm.

6.14 The region between concentric spherical conducting shells r = 0.5 m and r = 1 m is
charge free. If V(r = 0.5) = - 5 0 V and V(r = 1) = 50 V, determine the potential dis-
tribution and the electric field strength in the region between the shells.

6.15 Find V and E at (3, 0, 4) due to the two conducting cones of infinite extent shown in
Figure 6.28.

Figure 6.27 Cylindrical capacitor of Problem 6.12.
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V= 100 V

t

Figure 6.28 Conducting cones of Problem
6.15.

*6.16 The inner and outer electrodes of a diode are coaxial cylinders of radii a = 0.6 m and
b = 30 mm, respectively. The inner electrode is maintained at 70 V while the outer elec-
trode is grounded, (a) Assuming that the length of the electrodes € ^> a, b and ignoring
the effects of space charge, calculate the potential at p = 15 mm. (b) If an electron is in-
jected radially through a small hole in the inner electrode with velocity 107 m/s, find its
velocity at p = 15mm.

6.17 Another method of finding the capacitance of a capacitor is using energy considerations,
that is

C =
2WE

vi

Using this approach, derive eqs. (6.22), (6.28), and (6.32).

6.18 An electrode with a hyperbolic shape (xy = 4) is placed above an earthed right-angle
corner as in Figure 6.29. Calculate V and E at point (1, 2, 0) when the electrode is con-
nected to a 20-V source.

*6.19 Solve Laplace's equation for the two-dimensional electrostatic systems of Figure 6.30 and
find the potential V(x, y).

*6.20 Find the potential V(x, y) due to the two-dimensional systems of Figure 6.31.

6.21 By letting V(p, '#) = R(p)4>(4>) be the solution of Laplace's equation in a region where
p # 0, show that the separated differential equations for R and <P are



- xy = 4
Figure 6.29 For Problem 6.18.

•v = o-

v=vo

(a)

Figure 6.30 For Problem 6.19.

(b) (c)

252

(0

Figure 6.31 For Problem 6.20.

• v = o

~v=o

(b)
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and

where X is the separation constant.

4>" + X * = 0

6.22 A potential in spherical coordinates is a function of r and 8 but not <j>. Assuming that
V(r, 6) = R(r)F(6), obtain the separated differential equations for R and F in a region for
which pv = 0.

6.23 Show that the resistance of the bar of Figure 6.17 between the vertical ends located at
4> = 0 and <p = T /2 is

R =
lot In bla

*6.24 Show that the resistance of the sector of a spherical shell of conductivity a, with cross
section shown in Figure 6.32 (where 0 < <$> < 2TT), between its base is

R =
1 1 1

2-7TCT(1 — c o s ex.) i a b

*6.25 A hollow conducting hemisphere of radius a is buried with its flat face lying flush with the
earth surface thereby serving as an earthing electrode. If the conductivity of earth is a,
show that the leakage conductance between the electrode and earth is 2iraa.

6.26 The cross section of an electric fuse is shown in Figure 6.33. If the fuse is made of copper
and of thickness 1.5 mm, calculate its resistance.

6.27 In an integrated circuit, a capacitor is formed by growing a silicon dioxide layer (s r = 4)
of thickness 1 ̂ .m over the conducting silicon substrate and covering it with a metal elec-
trode of area 5. Determine S if a capacitance of 2 nF is desired.

6.28 The parallel-plate capacitor of Figure 6.34 is quarter-filled with mica (e r = 6). Find the
capacitance of the capacitor.

Figure 6.32 For Problem 6.24.
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4 cm 4 cm

3 cm

M •

1 cmT
f

<* •

4 cm

Figure 6.33 For Problem 6.26.

*6.29 An air-filled parallel plate capacitor of length L, width a, and plate separation d has its plates
maintained at constant potential difference Vo. If a dielectric slab of dielectric constant er is
slid between the plates and is withdrawn until only a length x remains between the plates as
in Figure 6.35, show that the force tending to restore the slab to its original position is

F =
eo(er - 1) a Vj

Id

6.30 A parallel-plate capacitor has plate area 200 cm2 and plate separation 3 mm. The charge
density is 1 /xC/m2 with air as dielectric. Find

(a) The capacitance of the capacitor

(b) The voltage between the plates

(c) The force with which the plates attract each other

6.31 Two conducting plates are placed at z = — 2 cm and z = 2 cm and are, respectively,
maintained at potentials 0 and 200 V. Assuming that the plates are separated by a
polypropylene (e = 2.25eo). Calculate: (a) the potential at the middle of the plates,
(b) the surface charge densities at the plates.

6.32 Two conducting parallel plates are separated by a dielectric material with e = 5.6e0 and
thickness 0.64 mm. Assume that each plate has an area of 80 cm2. If the potential field dis-
tribution between the plates is V = 3x + Ay - \2z + 6 kV, determine: (a) the capaci-
tance of the capacitor, (b) the potential difference between the plates.

Figure 6.34 For Problem 6.28.
,10 cm2

2 mm
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Figure 6.35 For Problem 6.29.

6.33 The space between spherical conducting shells r = 5 cm and r = 10 cm is filled with a
dielectric material for which s = 2.25eo. The two shells are maintained at a potential dif-
ference of 80 V. (a) Find the capacitance of the system, (b) Calculate the charge density on
shell r = 5 cm.

6.34 Concentric shells r = 20 cm and r = 30 cm are held at V = 0 and V = 50, respectively.
If the space between them is filled with dielectric material (e = 3.1e0, a = 10~12 S/m),
find: (a) V, E, and D, (b) the charge densities on the shells, (c) the leakage resistance.

6.35 A spherical capacitor has inner radius a and outer radius d. Concentric with the spherical
conductors and lying between them is a spherical shell of outer radius c and inner radius
b. If the regions d < r < c,c < r < b, and b < r < a are filled with materials with per-
mittivites eu e2, and e3, respectively, determine the capacitance of the system.

6.36 Determine the capacitance of a conducting sphere of radius 5 cm deeply immersed in sea
water (er = 80).

6.37 A conducting sphere of radius 2 cm is surrounded by a concentric conducting sphere of
radius 5 cm. If the space between the spheres is filled with sodium chloride (er = 5.9),
calculate the capacitance of the system.

*6.38 In an ink-jet printer the drops are charged by surrounding the jet of radius 20 fim with a
concentric cylinder of radius 600 /jm as in Figure 6.36. Calculate the minimum voltage
required to generate a charge 50 fC on the drop if the length of the jet inside the cylinder
is 100 /xm. Take e = eo.

6.39 A given length of a cable, the capacitance of which is 10 /xF/km with a resistance of insu-
lation of 100 Mil/km, is charged to a voltage of 100 V. How long does it take the voltage
to drop to 50 V?

Liquid
reservior r-

A

\
liquid jet

Figure 6.36 Simplified geometry of an ink-jet
printer; for Problem 6.38.

drop

J
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Figure 6.37 For Problem 6.40.

6.40 The capacitance per unit length of a two-wire transmission line shown in Figure 6.37 is
given by

C =
•we

cosh
2a

Determine the conductance per unit length.

*6.41 A spherical capacitor has an inner conductor of radius a carrying charge Q and maintained
at zero potential. If the outer conductor contracts from a radius b to c under internal
forces, prove that the work performed by the electric field as a result of the contraction is

W =
Q\b - c)

8-irebc

*6.42 A parallel-plate capacitor has its plates at x = 0, d and the space between the plates is

filled with an inhomogeneous material with permittivity e = e0 1 H— I. If the plate at
V dj

x = d is maintained at Vo while the plate at x = 0 is grounded, find:
(a) VandE
(b) P
(c) pps at x = 0, d

6.43 A spherical capacitor has inner radius a and outer radius b and filled with an inhomoge-
neous dielectric with e = eok/r2. Show that the capacitance of the capacitor is

C =
b - a

6.44 A cylindrical capacitor with inner radius a and outer radius b is filled with an inhomoge-
neous dielectric having e = eok/p, where A; is a constant. Calculate the capacitance per
unit length of the capacitor.

6.45 If the earth is regarded a spherical capacitor, what is its capacitance? Assume the radius of
the earth to be approximately 6370 km.
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6.46 A point charge of 10 nC is located at point P(0, 0, 3) while the conducting plane z = 0 is
grounded. Calculate

(a) V and Eat R(6,3,5) '
(b) The force on the charge due to induced charge on the plane.

6.47 Two point charges of 3 nC and - 4 nC are placed, respectively, at (0, 0, 1 m) and
(0, 0, 2 m) while an infinite conducting plane is at z = 0. Determine

(a) The total charge induced on the plane
(b) The magnitude of the force of attraction between the charges and the plane

6.48 Two point charges of 50 nC and - 2 0 nC are located at ( - 3 , 2, 4) and (1, 0, 5) above the
conducting ground plane z = 2. Calculate (a) the surface charge density at (7, —2, 2),
(b) D at (3, 4, 8), and (c) D at (1, 1, 1).

*6.49 A point charge of 10 jttC is located at (1, 1, 1), and the positive portions of the coordinate
planes are occupied by three mutually perpendicular plane conductors maintained at zero
potential. Find the force on the charge due to the conductors.

6.50 A point charge Q is placed between two earthed intersecting conducting planes that are in-
clined at 45° to each other. Determine the number of image charges and their locations.

6.51 Infinite line x = 3, z = 4 carries 16 nC/m and is located in free space above the conduct-
ing plane z = 0. (a) Find E at (2, — 2, 3). (b) Calculate the induced surface charge density
on the conducting plane at (5, — 6, 0).

6.52 In free space, infinite planes y = A and y = 8 carry charges 20 nC/m2 and 30 nC/m2, re-
spectively. If plane y = 2 is grounded, calculate E at P(0, 0, 0) and Q(-4, 6, 2).
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Chapter 7

MAGNETOSTATIC FIELDS

No honest man can be all things to all people.

—ABRAHAM LINCOLN

7.1 INTRODUCTION

In Chapters 4 to 6, we limited our discussions to static electric fields characterized by
E or D. We now focus our attention on static magnetic fields, which are characterized
by H or B. There are similarities and dissimilarities between electric and magnetic fields.
As E and D are related according to D = eE for linear material space, H and B are
related according to B = pR. Table 7.1 further shows the analogy between electric and
magnetic field quantities. Some of the magnetic field quantities will be introduced later
in this chapter, and others will be presented in the next. The analogy is presented here
to show that most of the equations we have derived for the electric fields may be readily
used to obtain corresponding equations for magnetic fields if the equivalent analo-
gous quantities are substituted. This way it does not appear as if we are learning new
concepts.

A definite link between electric and magnetic fields was established by Oersted1 in
1820. As we have noticed, an electrostatic field is produced by static or stationary charges.
If the charges are moving with constant velocity, a static magnetic (or magnetostatic) field
is produced. A magnetostatic field is produced by a constant current flow (or direct
current). This current flow may be due to magnetization currents as in permanent magnets,
electron-beam currents as in vacuum tubes, or conduction currents as in current-carrying
wires. In this chapter, we consider magnetic fields in free space due to direct current. Mag-
netostatic fields in material space are covered in Chapter 8.

Our study of magnetostatics is not a dispensable luxury but an indispensable necessity.
r The development of the motors, transformers, microphones, compasses, telephone bell

ringers, television focusing controls, advertising displays, magnetically levitated high-
speed vehicles, memory stores, magnetic separators, and so on, involve magnetic phenom-
ena and play an important role in our everyday life.2

Hans Christian Oersted (1777-1851), a Danish professor of physics, after 13 years of frustrating
efforts discovered that electricity could produce magnetism.
2Various applications of magnetism can be found in J. K. Watson, Applications of Magnetism. New
York: John Wiley & Sons, 1980.

^ : , '.-."•• 2 6 1
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TABLE 7.1 Analogy between Electric and Magnetic Fields*

Term

Basic laws

Force law

Source element

Field intensity

Flux density

Relationship between fields

Potentials

\ • - • , , * • •

Flux

Energy density

Poisson's equation

F

f
F

dQ

E

D

D

E

v ••

y
y

/ =

wE

V2

Electric

2,22
4ire2 '

D • dS = g e n c

= gE
i

= | ( V / m )

y
= - (C/m 2 )

= sE

= - W
f Pidl

J Airsr

= / D • dS

= Q = CV

- I . . .

E

<P H

F =
gu =

H =

B =

H =

A -

y =

v =

Wm =

V2A

Magnetic

4,r«2

• d\ = / e n c

gu X B

\ (A/m)

y
— (Wb/m2)

- vym (j = o)

f nidi
j 47ri?

J B - d S

L/
L f

i

"A similar analogy can be found in R. S. Elliot, "Electromagnetic theory: a
simplified representation," IEEE Trans. Educ, vol. E-24, no. 4, Nov. 1981,
pp. 294-296.

There are two major laws governing magnetostatic fields: (1) Biot-Savart's law,3 and
(2) Ampere's circuit law.4 Like Coulomb's law, Biot-Savart's law is the general law of
magnetostatics. Just as Gauss's law is a special case of Coulomb's law, Ampere's law is a
special case of Biot-Savart's law and is easily applied in problems involving symmetrical
current distribution. The two laws of magnetostatics are stated and applied first; their
derivation is provided later in the chapter.

3The experiments and analyses of the effect of a current element were carried out by Ampere and by
Jean-Baptiste and Felix Savart, around 1820.
4Andre Marie Ampere (1775-1836), a French physicist, developed Oersted's discovery and intro-
duced the concept of current element and the force between current elements.
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7.2 BIOT-SAVART'S LAW

Biot-Savart's law states that the magnetic field intensity dll produced at a point P,
as shown in Figure 7.1, by the differential current clement / ill is proportional to the
product / dl and the sine of the angle a between the clement and the line joining P to
the element and is inversely proportional to the square of the distance K between P
and the element.

That is,

or

dH =

/ dl sin a
~ R2

kl dl sin a

R~2

(7.1)

(7.2)

where k is the constant of proportionality. In SI units, k = l/4ir, so eq. (7.2) becomes

/ dl sin a
dH =

4TTRZ
(7.3)

From the definition of cross product in eq. (1.21), it is easy to notice that eq. (7.3) is
better put in vector form as

dH =
Idl X a« Idl XR

(7.4)

where R = |R| and aR = R/R. Thus the direction of d¥L can be determined by the right-
hand rule with the right-hand thumb pointing in the direction of the current, the right-hand
fingers encircling the wire in the direction of dH as shown in Figure 7.2(a). Alternatively,
we can use the right-handed screw rule to determine the direction of dH: with the screw
placed along the wire and pointed in the direction of current flow, the direction of advance
of the screw is the direction of dH as in Figure 7.2(b).

Figure 7.1 magnetic field dH at P due to current
element I dl.

dH (inward)
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(a)

Figure 7.2 Determining the direction of dH using
(a) the right-hand rule, or (b) the right-handed screw
rule.

It is customary to represent the direction of the magnetic field intensity H (or current
/) by a small circle with a dot or cross sign depending on whether H (or I) is out of, or into,
the page as illustrated in Figure 7.3.

Just as we can have different charge configurations (see Figure 4.5), we can have dif-
ferent current distributions: line current, surface current, and volume current as shown in
Figure 7.4. If we define K as the surface current density (in amperes/meter) and J as the
volume current density (in amperes/meter square), the source elements are related as

(7.5)

Thus in terms of the distributed current sources, the Biot-Savart law as in eq. (7.4)
becomes

H

H =

H

Id\ X aR (line current)

KdSXaR

;— (surface current)
4TTR2

J dv X aR

z— (volume current)
4wR2

(7.6)

(7.7)

(7.8)

As an example, let us apply eq. (7.6) to determine the field due to a straight current
carrying filamentary conductor of finite length AB as in Figure 7.5. We assume that the
conductor is along the z-axis with its upper and lower ends respectively subtending angles

H (or /) is out H (or /) is in Figure 7.3 Conventional representation of H (or I) (a) out of
^ the page and (b) into the page.

(a) (b)
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(a) (b) (c)

Figure 7.4 Current distributions: (a) line current, (b) surface
current, (c) volume current.

a2 and a} at P, the point at which H is to be determined. Particular note should be taken of
this assumption as the formula to be derived will have to be applied accordingly. If we con-
sider the contribution dH at P due to an element dl at (0, 0, z),

d¥l =
Idl X R

4TTR3

But dl = dz az and R = pap - zaz, so

dl X R = P dz i

Hence,

Ipdz
H

(7.9)

(7.10)

(7.11)

Figure 7.5 Field at point P due to a straight filamen-
tary conductor.

H (into the page)
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Letting z = p cot a, dz — -p cosec2 a da, and eq. (7.11) becomes

H
1 f"2 p2 cosec2 a da

p3 cosec3 a

sin a da

4ir

I

4irp

or

I H = - — (cos a2 - cos
4irp

(7.12)

This expression is generally applicable for any straight filamentary conductor of finite
length. Notice from eq. (7.12) that H is always along the unit vector a^ (i.e., along concen-
tric circular paths) irrespective of the length of the wire or the point of interest P. As a
special case, when the conductor is semiinfinite (with respect to P) so that point A is now at
(9(0, 0, 0) while B is at (0, 0, °°); a, = 90°, a2 = 0°, and eq. (7.12) becomes

H =
4?rp

(7.13)

Another special case is when the conductor is infinite in length. For this case, point A is at
(0, 0, -oo) while B is at (0, 0, °°); a, = 180°, a2 = 0°, so eq. (7.12) reduces to

H =
2xp

(7.14)

To find unit vector a0 in eqs. (7.12) to (7.14) is not always easy. A simple approach is to de-
termine SJ, from

= &e X a (7.15)

where af is a unit vector along the line current and ap is a unit vector along the perpendic-
ular line from the line current to the field point.

EXAMPLE 7.1 The conducting triangular loop in Figure 7.6(a) carries a current of 10 A. Find H at (0, 0, 5)
due to side i of the loop.

Solution:

This example illustrates how eq. (7.12) is applied to any straight, thin, current-carrying
conductor. The key point to keep in mind in applying eq. (7.12) is figuring out a b a2, p,
and a^. To find H at (0, 0, 5) due to side 1 of the loop in Figure 7.6(a), consider Figure
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.©

(a)

Figure 7.6 For Example 7.1: (a) conducting triangular
loop, (b) side 1 of the loop.

7.6(b), where side 1 is treated as a straight conductor. Notice that we join the point of in-
terest (0, 0, 5) to the beginning and end of the line current. Observe that au a2, and p are
assigned in the same manner as in Figure 7.5 on which eq. (7.12) is based.

cos a, = cos 90° = 0, cos a2 =
V29'

To determine a0 is often the hardest part of applying eq. (7.12). According to eq. (7.15),
a{ = BX and ap = az, so

= ar az = - a v

Hence,

Hi = irP
 (cos *2 -cos

= — 59.1av mA/m
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PRACTICE EXERCISE 7.1

Find H at (0. 0, 5) due to side 3 of the triangular loop in Figure 7.6(a).

Answer: -30.63a, + 3().63av mA/m.

EXAMPLE 7.2
Find H at ( - 3 , 4, 0) due to the current filament shown in Figure 7.7(a).

Solution:
Let H = Hx + Hz, where Hx and H;, are the contributions to the magnetic field intensity at
P( — 3, 4, 0) due to the portions of the filament along x and z, respectively.

H7 =
4TTP

(cos a2 - cos

At P ( - 3 , 4, 0), p = (9 + 16)1/2 = 5, «! = 90°, a2 = 0°, and â , is obtained as a unit
vector along the circular path through P on plane z = 0 as in Figure 7.7(b). The direction
of a^ is determined using the right-handed screw rule or the right-hand rule. From the
geometry in Figure 7.7(b),

4 3
a0 = sin 6 ax + cos 6 ay = — ax + — ay

Alternatively, we can determine a^ from eq. (7.15). At point P, a.? and ap are as illustrated
in Figure 7.7(a) for Hz. Hence,

3
= - a z X ( -- ax + - ayJ = - ax + - ay

4

5

(a) (b)

Figure 7.7 For Example 7.2: (a) current filament along semiinfinite x- and
z-axes; â  and ap for Hz only; (b) determining ap for Hz.
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as obtained before. Thus

4TT(5)

28.65ay mA/m

It should be noted that in this case a0 happens to be the negative of the regular a^ of cylin-
drical coordinates. Hz could have also been obtained in cylindrical coordinates as

z 4TT(5)V " »'

= -47.75a,£ mA/m

Similarly, for Hx at P, p = 4, a2
 = 0°, cos a, = 3/5, and a^ = az or a^ = ae X

ap = ax X ay = az. Hence,

Thus

or

= 23.88 a, mA/m

H = Hx + Uz = 38.2ax + 28.65ay + 23.88a, mA/m

H = -47.75a0 + 23.88a, mA/m

Notice that although the current filaments appear semiinfinite (they occupy the posi-
tive z- and x-axes), it is only the filament along the £-axis that is semiinfinite with respect
to point P. Thus Hz could have been found by using eq. (7.13), but the equation could not
have been used to find Hx because the filament along the x-axis is not semiinfinite with
respect to P.

PRACTICE EXERCISE 7.2

The positive v-axis (semiinfinite line with respect to the origin) carries a filamentary
current of 2 A in the —ay direction. Assume it is part of a large circuit. Find H at

(a) A(2, 3, 0)

(b) fl(3, 12, -4 )

Answer: (a) 145.8az mA/m, (b) 48.97a,. + 36.73a; mA/m.
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EXAMPLE 7.3 A circular loop located on x2 + y2 = 9, z = 0 carries a direct current of 10 A along a$. De-
termine H at (0, 0, 4) and (0, 0, -4 ) .

Solution:

Consider the circular loop shown in Figure 7.8(a). The magnetic field intensity dH at point
P(0, 0, h) contributed by current element / d\ is given by Biot-Savart's law:

A-KR3

where d\ = p d<j) a0, R = (0, 0, h) - (x, y, 0) = -pap + haz, and

d\ X R = 0 pd4> 0
- p 0 h

= p/i az

Hence,

- = — — - (ph d<$> ap + p2 d<\> az) = dHp i
4x[p + h ]

dHzaz

By symmetry, the contributions along ap add up to zero because the radial components
produced by pairs of current element 180° apart cancel. This may also be shown mathe-
matically by writing ap in rectangular coordinate systems (i.e., ap = cos <f> ax + sin <j> ay).

P(0, 0, h)

Figure 7.8 For Example 7.3: (a) circular current loop, (b) flux lines due
to the current loop.
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Integrating cos <j> or sin $ over 0 < <j> < 2TT gives zero, thereby showing that Hp = 0.
Thus

H
Ip

l0 4TT[P2 47T[p2 + h2f2

or

H
2[p2 + h2f2

(a) Substituting/ = \0A,p = 3,h = 4 gives

H(0, 0, 4) = 1 0 ( 3 ) **„ = 0.36a7 A/m
2[9 + 16]3/2

(b) Notice from rflXR above that if h is replaced by - h, the z-component of dH remains
the same while the p-component still adds up to zero due to the axial symmetry of the loop.
Hence

H(0, 0, -4 ) = H(0, 0,4) = 0.36az A/m

The flux lines due to the circular current loop are sketched in Figure 7.8(b).

PRACTICE EXERCISE 7.3

A thin ring of radius 5 cm is placed on plane z = 1 cm so that its center is at
(0,0,1 cm). If the ring carries 50 mA along a^, find H at

(a) ( 0 , 0 , - l c m )

(b) (0,0, 10 cm)

Answer: (a) 400az mA/m, (b) 57.3az mA/m.

EXAMPLE 7.4
A solenoid of length € and radius a consists of N turns of wire carrying current /. Show that
at point P along its axis,

H = — (cos 62 - cos 0,)az

where n = N/€, dl and d2 are the angles subtended at P by the end turns as illustrated in
Figure 7.9. Also show that if £ ^> a, at the center of the solenoid,

H = nl&,
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Figure 7.9 For Example 7.4; cross section
of a solenoid.

Solution:

Consider the cross section of the solenoid as shown in Figure 7.9. Since the solenoid con-
sists of circular loops, we apply the result of Example 7.3. The contribution to the magnetic
field H at P by an element of the solenoid of length dz is

la n dz
dH7 =

Idle?

2[a2 + z2]m ~ 2[a2 + z2f2

where dl = ndz = (Nit) dz. From Figure 7.9, tan 0 = alz\ that is,

dz = -a cosec2 0 dd = -[l + " ] sin 6 dd

Hence,

or

Thus

dHz = - — sin 0 dd

Hz = - — | sin 0 dO

H = — (cos 62 - cos di) az

as required. Substituting n = Nit, gives

NI
H = — (cos 02 ~ c o s

At the center of the solenoid,

cos V7 =
1/2

[a2 + (2/4]1 = -cos
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and

„ _
2 + €2/4]1/2 z2[a2 + €2/4]

If € » aor02 = O°, 0, = 180°,

H

PRACTICE EXERCISE 7.4

If the solenoid of Figure 7.9 has 2,000 turns, a length of 75 cm, a radius of 5 cm, and
carries a current of 50 mA along a^, find H at

(a) (0,0, 0)

(b) (0, 0, 75 cm)

(c) (0,0,50 cm)

Answer: (a) 66.52az him, (b) 66.52a2 him, (c) 131.7az him.

.3 AMPERE'S CIRCUIT LAW—MAXWELL'S EQUATION

Ampere's circuit law states that the line integral of the tangential component of H
around a dosed path is the same as the net current /,.IK. enclosed by the path.

In other words, the circulation of H equals /enc; that is,

(7.16)

Ampere's law is similar to Gauss's law and it is easily applied to determine H when the
current distribution is symmetrical. It should be noted that eq. (7.16) always holds whether
the current distribution is symmetrical or not but we can only use the equation to determine
H when symmetrical current distribution exists. Ampere's law is a special case of
Biot-Savart's law; the former may be derived from the latter.

By applying Stoke's theorem to the left-hand side of eq. (7.16), we obtain

/ e n c = = ( V X H W S (7.17)
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But

4nc = J (7.18)

Comparing the surface integrals in eqs. (7.17) and (7.18) clearly reveals that

V X H = J (7.19)

This is the third Maxwell's equation to be derived; it is essentially Ampere's law in differ-
ential (or point) form whereas eq. (7.16) is the integral form. From eq. (7.19), we should
observe that V X H = J + 0; that is, magnetostatic field is not conservative.

7.4 APPLICATIONS OF AMPERE'S LAW

We now apply Ampere's circuit law to determine H for some symmetrical current distri-
butions as we did for Gauss's law. We will consider an infinite line current, an infinite
current sheet, and an infinitely long coaxial transmission line.

A. Infinite Line Current

Consider an infinitely long filamentary current / along the z-axis as in Figure 7.10. To de-
termine H at an observation point P, we allow a closed path pass through P. This path, on
which Ampere's law is to be applied, is known as an Amperian path (analogous to the term
Gaussian surface). We choose a concentric circle as the Amperian path in view of
eq. (7.14), which shows that H is constant provided p is constant. Since this path encloses
the whole current /, according to Ampere's law

j pd<f> = 2irp

Amperian path

Figure 7.10 Ampere's law applied to an infinite filamentary
line current.
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(7.20)

as expected from eq. (7.14).

B. Infinite Sheet of Current

Consider an infinite current sheet in the z = 0 plane. If the sheet has a uniform current
density K = Kyay A/m as shown in Figure 7.11, applying Ampere's law to the rectangular
closed path (Amperian path) gives

H • d\ = /enc = Kyb (7.21a)

To evaluate the integral, we first need to have an idea of what H is like. To achieve this, we
regard the infinite sheet as comprising of filaments; dH above or below the sheet due to a
pair of filamentary currents can be found using eqs. (7.14) and (7.15). As evident in Figure
7.11(b), the resultant dH has only an x-component. Also, H on one side of the sheet is the
negative of that on the other side. Due to the infinite extent of the sheet, the sheet can be re-
garded as consisting of such filamentary pairs so that the characteristics of H for a pair are
the same for the infinite current sheets, that is,

JHoax
I ~Hoax

z > 0
z < 0

(7.21b)

(a)

Figure 7.11 Application of Ampere's law to an infinite sheet: (a) closed path 1-2-3-4-1, (b) sym-
metrical pair of current filaments with current along ay.
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where Ho is yet to be determined. Evaluating the line integral of H in eq. (7.21b) along the
closed path in Figure 7.11 (a) gives

U-dl = [ \ + + + j H • rfl
I h h M '

= 0 ( -a ) + (-Ho)(-b) + 0(fl) + Ho(b)
= 2Hob

1

(7.21c)

From eqs. (7.21a) and (7.21c), we obtain Ho = — Ky. Substituting Ho in eq. (7.21b) gives

H = <
z>0

(7.22)
-~Kyax, z<0

In general, for an infinite sheet of current density K A/m,

(7.23)

where an is a unit normal vector directed from the current sheet to the point of interest.

C. Infinitely Long Coaxial Transmission Line

Consider an infinitely long transmission line consisting of two concentric cylinders having
their axes along the z-axis. The cross section of the line is shown in Figure 7.12, where the
z-axis is out of the page. The inner conductor has radius a and carries current / while the
outer conductor has inner radius b and thickness t and carries return current - / . We want
to determine H everywhere assuming that current is uniformly distributed in both conduc-
tors. Since the current distribution is symmetrical, we apply Ampere's law along the Am-

©

Amperian paths Figure 7.12 Cross section of the
4 yf transmission line; the positive ?-direc-

tion is out of the page.



jath,

:q. (7.26) is
e use path L
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and J in this case is the current density (current per unit area) of the outer conductor and is
along -av that is,

J = -

Thus

ir[(b + if - b2] z

2TT rp

= / 1
p2-b2

t2 + 2bt.

p dp d<f>

Substituting this in eq. (7.27a), we have

H -

For region p > 6 + t, we use path L4, getting

L4

or

Putting eqs. (7.25) to (7.28) together gives

(7.27b)

(7.28)

H = <

aw,,

2?rp

0,
2bt

0 < p < a

a < p < Z?

b < p<b + t

p > b + t

(7.29)

The magnitude of H is sketched in Figure 7.13.
Notice from these examples that the ability to take H from under the integral sign is

the key to using Ampere's law to determine H. In other words, Ampere's law can only be
used to find H due to symmetric current distributions for which it is possible to find a
closed path over which H is constant in magnitude.
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Figure 7.13 Plot of H^ against p.

•U-

b b+t

EXAMPLE 7.5
Planes 2 = 0 and z = 4 carry current K = -lOa* A/m and K = lOa* A/m, respectively.
Determine H at

(a) (1,1,1)
(b) (0, - 3 , 10)

Solution:

Let the parallel current sheets be as in Figure 7.14. Also let

H = Ho + H4

where Ho and H4 are the contributions due to the current sheets z = 0 and z = 4, respec-
tively. We make use of eq. (7.23).

(a) At (1, 1, 1), which is between the plates (0 < z = 1 < 4),

Ho = 1/2 K X an = 1/2 (-10ax) X a, = 5av A/m

H4 = l / 2 K X a , = 1/2 (10ax) X (-a,) = 5ay A/m

Hence,

H = 10ay A/m

: = 4 Figure 7.14 For Example 7.5; parallel

» » « « M » B = t infinite current sheets.

y \® 8 8 8 8
z = 0
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(b) At (0, - 3 , 10), which is above the two sheets (z = 10 > 4 > 0),

Ho = 1/2 ( - 10a*) X az = 5a, A/m

H4 = 1/2 (lOaJ X az = -5a y A/m

Hence,

H = 0 A/m

PRACTICE EXERCISE 7.5

Plane y = 1 carries current K = 50az mA/m. Find H at

(a) (0,0,0)

(b) (1 ,5 , -3 )

Answer: (a) 25ax mA/m, (b) — 25a* mA/m.

EXAMPLE 7.6
A toroid whose dimensions are shown in Figure 7.15 has N turns and carries current /. De
termine H inside and outside the toroid.

Solution:

We apply Ampere's circuit law to the Amperian path, which is a circle of radius p show
dotted in Figure 7.15. Since N wires cut through this path each carrying current /, the n<
current enclosed by the Amperian path is NI. Hence,

H • d\ = 7enc -> H • 2irp = M

Figure 7.15 For Example 7.6; a toroid with a circular cross
section.
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or

H =
NI

2irp'
for po - a < p < po + a

where po is the mean radius of the toroid as shown in Figure 7.15. An approximate value of
His

H,
NI NI

approx 2irpo

Notice that this is the same as the formula obtained for H for points well inside a very long
solenoid (€ 5s> a). Thus a straight solenoid may be regarded as a special toroidal coil for
which po —»co. Outside the toroid, the current enclosed by an Amperian path is
NI - NI = 0 and hence H = 0.

PRACTICE EXERCISE 7.6

A toroid of circular cross section whose center is at the origin and axis the same as
the z-axis has 1000 turns with po - 10 cm, a = 1 cm. If the toroid carries a 100-mA
current, find \H\ at / \...,. / '

\ - * • • ' •

(a) (3 c m , - 4 cm, 0) • !>~ ' .

(b) (6 cm, 9 cm, 0)

Answer: (a) 0, (b) 147.1 A/m.

-.5 MAGNETIC FLUX DENSITY—MAXWELL'S
EQUATION

The magnetic flux density B is similar to the electric flux density D. As D = soE in free
space, the magnetic flux density B is related to the magnetic field intensity H according to

(7.30)

where ^o is a constant known as the permeability of free space. The constant is in
henrys/meter (H/m) and has the value of

= 4TT X 10~7 H/m (7.31)

The precise definition of the magnetic field B, in terms of the magnetic force, will be given
in the next chapter.
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Figure 7.16 Magnetic flux lines due to a straight
Magnetic flux lines wire with current coming out of the page.

The magnetic flux through a surface S is given by

(7.32)

where the magnetic flux f is in webers (Wb) and the magnetic flux density is in
webers/square meter (Wb/m2) or teslas.

The magnetic flux line is the path to which B is tangential at every point in a magnetic
field. It is the line along which the needle of a magnetic compass will orient itself if placed
in the magnetic field. For example, the magnetic flux lines due to a straight long wire are
shown in Figure 7.16. The flux lines are determined using the same principle followed in
Section 4.10 for the electric flux lines. The direction of B is taken as that indicated as
"north" by the needle of the magnetic compass. Notice that each flux line is closed and has
no beginning or end. Though Figure 7.16 is for a straight, current-carrying conductor, it is
generally true that magnetic flux lines are closed and do not cross each other regardless of
the current distribution.

In an electrostatic field, the flux passing through a closed surface is the same as the
charge enclosed; that is, *P = §D • dS = Q. Thus it is possible to have an isolated electric
charge as shown in Figure 7.17(a), which also reveals that electric flux lines are not neces-
sarily closed. Unlike electric flux lines, magnetic flux lines always close upon themselves
as in Figure 7.17(b). This is due to the fact that it is not possible to have isolated magnetic

closed surface, *• = Q

closed surface, f = 0

(a) (b)

Figure 7.17 Flux leaving a closed surface due to: (a) isolated electric
charge V = §s D • dS = Q, (b) magnetic charge, Y = §s B • dS = 0.
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Figure 7.18 Successive division of a bar magnet results in pieces with
north and south poles, showing that magnetic poles cannot be isolated.

poles (or magnetic charges). For example, if we desire to have an isolated magnetic pole
by dividing a magnetic bar successively into two, we end up with pieces each having north
and south poles as illustrated in Figure 7.18. We find it impossible to separate the north
pole from the south pole.

An isolated magnetic charge does not exist.

Thus the total flux through a closed surface in a magnetic field must be zero; that is,

(7.33)

This equation is referred to as the law of conservation of magnetic flux or Gauss's law for
magnetostatic fields just as § D • dS = Q is Gauss's law for electrostatic fields. Although
the magnetostatic field is not conservative, magnetic flux is conserved.

By applying the divergence theorem to eq. (7.33), we obtain

B • dS = V • B dv = 0

or

V B = 0 (7.34)

This equation is the fourth Maxwell's equation to be derived. Equation (7.33) or (7.34)
shows that magnetostatic fields have no sources or sinks. Equation (7.34) suggests that
magnetic field lines are always continuous.

.6 MAXWELL'S EQUATIONS FOR STATIC EM FIELDS

Having derived Maxwell's four equations for static electromagnetic fields, we may take a
moment to put them together as in Table 7.2. From the table, we notice that the order in
which the equations were derived has been changed for the sake of clarity.
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TABLE 7.2 Maxwell's Equations for Static EM Fields

Differential (or Point) Form Integral Form Remarks

V • D = pv

V - B = 0

V X E = 0

V x H = J

D • dS = pv dv Gauss's law

B • dS =

E • d\ = '

Nonexistence of magnetic
monopole

Conservativeness of
electrostatic field

H • d\ = J • dS Ampere's law

The choice between differential and integral forms of the equations depends on a
given problem. It is evident from Table 7.2 that a vector field is defined completely by
specifying its curl and divergence. A field can only be electric or magnetic if it satisfies the
corresponding Maxwell's equations (see Problems 7.26 and 7.27). It should be noted that
Maxwell's equations as in Table 7.2 are only for static EM fields. As will be discussed in
Chapter 9, the divergence equations will remain the same for time-varying EM fields but
the curl equations will have to be modified.

7.7 MAGNETIC SCALAR AND VECTOR POTENTIALS

We recall that some electrostatic field problems were simplified by relating the electric po-
tential V to the electric field intensity E (E = — VV). Similarly, we can define a potential
associated with magnetostatic field B. In fact, the magnetic potential could be scalar Vm or
vector A. To define Vm and A involves recalling two important identities (see Example 3.9
and Practice Exercise 3.9):

V X (VV) = 0

V • (V X A) = 0

(7.35a)

(7.35b)

which must always hold for any scalar field V and vector field A.
Just as E = - VV, we define the magnetic scalar potential Vm (in amperes) as related

to H according to

H = -VVm if J = 0 (7.36)

The condition attached to this equation is important and will be explained. Combining eq.
(7.36) and eq. (7.19) gives

J = V X H = V X ( - VVm) = 0 (7.37)
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since Vm must satisfy the condition in eq. (7.35a). Thus the magnetic scalar potential Vm is
only defined in a region where J = 0 as in eq. (7.36). We should also note that Vm satisfies
Laplace's equation just as V does for electrostatic fields; hence,

V2Vm = 0, (J = 0) (7.38)

We know that for a magnetostatic field, V • B = 0 as stated in eq. (7.34). In order to
satisfy eqs. (7.34) and (7.35b) simultaneously, we can define the vector magnetic potential
A (in Wb/m) such that

B = V X A

Just as we defined

we can define

V =
dQ

4ireor

(7.39)

(7.40)

for line current

for surface current

for volume current

(7.41)

(7.42)

(7.43)

Rather than obtaining eqs. (7.41) to (7.43) from eq. (7.40), an alternative approach
would be to obtain eqs. (7.41) to (7.43) from eqs. (7.6) to (7.8). For example, we can derive
eq. (7.41) from eq. (7.6) in conjunction with eq. (7.39). To do this, we write eq. (7.6) as

IdV X R

R3
(7.44)

where R is the distance vector from the line element dV at the source point (x1, y', z') to the
field point (x, y, z) as shown in Figure 7.19 and R = |R|, that is,

R = |r - r'| = [(x - x'f + (y - y'f + (z - z'f]1 (7.45)

Hence,

v| 1\ =
Rj

(x - x')ax + (y - / )a y R

[(x - x'f - y'f + (z - z')T2
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R = r r'

Figure 7.19 Illustration of the source point
(*', y', z') and the field point (x, y, z).

(x, y, z)

or

R R
(7.46)

where the differentiation is with respect to x, y, and z. Substituting this into eq. (7.44), we
obtain

B= - - M IdV X v ( -
4TT R

(7.47)

We apply the vector identity

V X ( / F ) = / V X F + ( V / ) X F (7.48)

where/is a scalar field and F is a vector field. Taking / = \IR and F = dV, we have

Since V operates with respect to (x, y, z) while dV is a function of (x\ y', z'), V X dV = 0.
Hence,

(7.49)

(7.50)

With this equation, eq. (7.47) reduces to

B = V x
4irR

Comparing eq. (7.50) with eq. (7.39) shows that

verifying eq. (7.41).
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By substituting eq. (7.39) into eq. (7.32) and applying Stokes's theorem, we obtain

= B • dS = (V X A) • dS = <P A • d\

4
or

(7.51)

Thus the magnetic flux through a given area can be found using either eq. (7.32) or (7.51).
Also, the magnetic field can be determined using either Vm or A; the choice is dictated by
the nature of the given problem except that Vm can only be used in a source-free region.
The use of the magnetic vector potential provides a powerful, elegant approach to solving
EM problems, particularly those relating to antennas. As we shall notice in Chapter 13, it
is more convenient to find B by first finding A in antenna problems.

EXAMPLE 7.7 Given the magnetic vector potential A = —p2/4 az Wb/m, calculate the total magnetic flux
crossing the surface <f> = -ir/2, 1 < p < 2 m , 0 < z < 5 m .

Solution:

We can solve this problem in two different ways: using eq. (7.32) or eq. (7.51).

Method 1:

B = V x A = —-* a0 = J a0,op 2
dS = dp dz a0

Hence,

TP = j B • dS = -

¥ = 3.75 Wb

1
p dp dz = — p

z=0 •>=

(5) =
15

Method 2:
We use

<p = I A • d\ = f i + v2 + r3 + v4
'L

where L is the path bounding surface S; V 1( f 2, ¥3, and V4 are, respectively, the evalua-
tions of /A • d\ along the segments of L labeled 1 to 4 in Figure 7.20. Since A has only a
2-component,

¥>, = 0 = y 3
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5 -

4 -

3 -

2 -

1 -

©'

©

©
L

1 *

That is,

i rr\ 2

Figure 7.20 For Example 7.7.

= 3.75 Wb

as obtained previously. Note that the direction of the path L must agree with that of dS.

PRACTICE EXERCISE 7.7

A current distribution gives rise to the vector magnetic potential A = xzy&x +

y2xay — 4xyzaz Wb/m. Calculate

(a) B a t ( - 1 , 2 , 5)

(b) The flux through the surface defined b y z = 1 , 0 ^ x ^ 1 , - 1 < y < 4

Answer: (a) 20ax + 40ay + 3az Wb/m2, (b) 20 Wb.

EXAMPLE 7.8
If plane z = 0 carries uniform current K = Kyay,

H
1/2 Kyax,
-l/2Kvax,

>0
<0

This was obtained in Section 7.4 using Ampere's law. Obtain this by using the concept of
vector magnetic potential.
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Solution:

Consider the current sheet as in Figure 7.21. From eq. (7.42),

lxoKdS
dA =

A-KR

In this problem, K = Kyay, dS = dx' dy', and for z > 0,

R = |R| = |(0, 0, z) - (x',y',0)\
= \ix'f + (y'f + z2]112 (7.8.1)

where the primed coordinates are for the source point while the unprimed coordinates are
for the field point. It is necessary (and customary) to distinguish between the two points to
avoid confusion (see Figure 7.19). Hence

dA =
dx' dy' ay

4TT[(X')2 + (y'f + z2]'f + z2]1'2

dB = V X dA = —— d Ay ax

dz
jxoKyz dx' dy' ax

B

4ir[(x')2 + (y'f + z2]3'2

H0Kzax r f °° dx' dy'
2n3/2 (7.8.2)

In the integrand, we may change coordinates from Cartesian to cylindrical for convenience
so that

Hence

B =
4ir

fioKyz

4ir

jxoKyzax

P' d4>' dp'

y=o v=o
;2TT I [(p')

- 1

too2 + z2y p'=0

/̂ o 2
f or z > 0

By simply replacing z by ~z in eq. (7.8.2) and following the same procedure, we obtain

is

H = — l ax, for z < 0
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Figure 7.21 For Example 7.8; infinite
current sheet.

*• y

PRACTICE EXERCISE 7.8

Repeat Example 7.8 by using Biot-Savart's law to determine H at points (0,0, h)
and (0,0, -h).

7.8 DERIVATION OF BIOT-SAVART'S LAW
AND AMPERE'S LAW

Both Biot-Savart's law and Ampere's law may be derived using the concept of magnetic
vector potential. The derivation will involve the use of the vector identities in eq. (7.48)
and

V X V X A = V(V • A) - V2A (7.52)

Since Biot-Savart's law as given in eq. (7.4) is basically on line current, we begin our
derivation with eqs. (7.39) and (7.41); that is,

4TTR 4TT R
(7.53)

where R is as denned in eq. (7.45). If the vector identity in eq. (7.48) is applied by letting
F = dl and / = \IR, eq. (7.53) becomes

(7.54)

Since V operates with respect to (x, y, z) and dl' is a function of (xr, y', z'), V X dl' = 0.
Also

- = [(x - x'f + (y- y'f + (z - z')2]
R

-1/2 (7.55)
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j_l = (x - x')ax + (y- y')ay + (z - z')az = _a«

R [(x - x'f + (y~ y'Y
-, 3/2 (7.56)

where a^ is a unit vector from the source point to the field point. Thus eq. (7.54) (upon
dropping the prime in d\') becomes

4TT ) L R2

which is Biot-Savart's law.
Using the identity in eq. (7.52) with eq. (7.39), we obtain

V X B = V(V • A) - V2A

It can be shown that for a static magnetic field

V-A = 0

so that upon replacing B with /xoH and using eq. (7.19), eq. (7.58) becomes

V2A = -AIOV X H

or

V2A = -i

(7.57)

(7.58)

(7.59)

(7.60)

which is called the vector Poisson's equation. It is similar to Poisson's equation
(V2V = ~pvle) in electrostatics. In Cartesian coordinates, eq. (7.60) may be decomposed
into three scalar equations:

V2AX = ~

V2Ay = - (7.61)

which may be regarded as the scalar Poisson's equations.
It can also be shown that Ampere's circuit law is consistent with our definition of the

magnetic vector potential. From Stokes's theorem and eq. (7.39),

H d\ = V X H • dS

V X (V X A)-dS

From eqs. (7.52), (7.59), and (7.60),

VxVxA=-V2A =

(7.62)
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Substituting this into eq. (7.62) yields

H d\ = J • dS = I

which is Ampere's circuit law.

SUMMARY 1. The basic laws (Biot-Savart's and Ampere's) that govern magnetostatic fields are dis-
cussed. Biot-Savart's law, which is similar to Coulomb's law, states that the magnetic
field intensity dH at r due to current element / d\ at r' is

dR
Id\ X R

(in A/m)

where R = r — r' and R = |R|. For surface or volume current distribution, we replace
/ d\ with K dS or J dv respectively; that is,

Id\ = = Jdv

2. Ampere's circuit law, which is similar to Gauss's law, states that the circulation of H
around a closed path is equal to the current enclosed by the path; that is,

or

V X H = J

= IeiK = \ J - d S

(third Maxwell's equation to be derived).

When current distribution is symmetric so that an Amperian path (on which H
is constant) can be found, Ampere's law is useful in determining H; that is,

= Im or H^ =
*enc

3. The magnetic flux through a surface S is given by

f = \B-dS (inWb)

where B is the magnetic flux density in Wb/m2. In free space,

where fio = 4ir X 10 7 H/m = permeability of free space.
4. Since an isolated or free magnetic monopole does not exist, the net magnetic flux

through a closed surface is zero;

f = <t B • dS = 0
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or

V • B = 0 (fourth Maxwell's equation to be derived).

5. At this point, all four Maxwell's equations for static EM fields have been derived,
namely:

V • D = Pv

V-B = 0

V X E = 0

V X H = J

6. The magnetic scalar potential Vm is defined as

H = - W m if J = 0

and the magnetic vector potential A as

B = V X A

where V • A = 0. With the definition of A, the magnetic flux through a surface S can be
found from

V = | A • d\
'L

where L is the closed path defining surface S (see Figure 3.20). Rather than using
Biot-Savart's law, the magnetic field due to a current distribution may be found using
A, a powerful approach that is particularly useful in antenna theory. For a current
element / d\ at r', the magnetic vector potential at r is

A =
A-KR '

R= r - r ' l

7. Elements of similarity between electric and magnetic fields exist. Some of these are
listed in Table 7.1. Corresponding to Poisson's equation V2V = —pvle, for example, is

V2A = -nJ

7.1 One of the following is not a source of magnetostatic fields:

(a) A dc current in a wire

(b) A permanent magnet

(c) An accelerated charge

(d) An electric field linearly changing with time

(e) A charged disk rotating at uniform speed
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7.2 Identify the configuration in Figure 7.22 that is not a correct representation of /
and H.

7.3 Consider points A, B, C, D, and £ on a circle of radius 2 as shown in Figure 7.23. The
items in the right list are the values of a^ at different points on the circle. Match these
items with the points in the list on the left.

(a)

(b)

(c)

(d)

(e)

A

B

C

D

77
h

(1)

(ii)
(iii)

(iv)

(v)

(vi)

(vii)

(viii)

ax

- a *
a>
- a v

a, + ay

V2
- a x - a.

- a x + ay

ax - ay

7.4 The z-axis carries filamentary current of IOTT A along az. Which of these is incorrect?

(a) H = - a , A / m at (0 ,5 ,0)

(b) H = a^ A/m at (5, TT/4, 0)

(c) H = -0.8ax - 0 .6a } , a t ( -3 ,4 , 0)

(d) H = - a 0 a t ( 5 , 3ir/2, 0)

7.5 Plane y = 0 carries a uniform current of 30az niA/m. At (1, 10, —2), the magnetic field
intensity is

(a) —\5&xm£Jm

(b) 15

(a)

(d)

(b) (c)

H
© ©

'O ©
© ©

(e)

Figure 7.22 For Review Question 7.2.
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Figure 7.23 For Review Question 7.3.

(c) 477.5a,,/xA/m

(d) 18.85avnA/m

(e) None of the above

7.6 For the currents and closed paths of Figure 7.24, calculate the value of j>L H • d\.

7.7 Which of these statements is not characteristic of a static magnetic field?

(a) It is solenoidal.

(b) It is conservative.

(c) It has no sinks or sources.

(d) Magnetic flux lines are always closed.

(e) The total number of flux lines entering a given region is equal to the total number of
flux lines leaving the region.

Si 30 A

Figure 7.24 For Review Question 7.6.

30 A

(c) (d)
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Figure 7.25 For Review Question 7.10.

Volume

7.8 Two identical coaxial circular coils carry the same current / but in opposite direc-
tions. The magnitude of the magnetic field B at a point on the axis midway between the
coils is

(a) Zero

(b) The same as that produced by one coil

(c) Twice that produced by one coil

(d) Half that produced by one coil.

7.9 One of these equations is not Maxwell's equation for a static electromagnetic field in a
linear homogeneous medium.

(a) V • B = 0

(b) V X D = 0
(c) 0 B • d\ = nJ
(d) § D • dS = Q

(e) V2A = nJ

7.10 Two bar magnets with their north poles have strength Qml = 20 A • m and
Qm2 = 10 A • m (magnetic charges) are placed inside a volume as shown in Figure 7.25.
The magnetic flux leaving the volume is

(a) 200 Wb

(b) 30 Wb

(c) 10 Wb

(d) OWb

(e) - lOWb

Answers: 7.1c, 7.2c, 7.3 (a)-(ii), (b)-(vi), (c)-(i), (d)-(v), (e)-(iii), 7.4d, 7.5a, 7.6 (a) 10 A,
(b) - 2 0 A, (c) 0, (d) - 1 0 A, 7.7b, 7.8a, 7.9e, 7.10d.

PROBLEMS
7.1 (a) State Biot-Savart's law

(b) The y- and z-axes, respectively, carry filamentary currents 10 A along ay and 20 A
along -az. Find H at ( - 3 , 4, 5).
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Figure 7.26 For Problem 7.3.

7.2 A conducting filament carries current / from point A(0, 0, a) to point 5(0, 0, b). Show
that at point P(x, y, 0),

H =
Vx^

7.3 Consider AB in Figure 7.26 as part of an electric circuit. Find H at the origin due to AB.

7.4 Repeat Problem 7.3 for the conductor AB in Figure 7.27.

7.5 Line x = 0, y = 0, 0 < z £ 10m carries current 2 A along az. Calculate H at points

(a) (5, 0, 0)

(b) (5, 5, 0)

(c) (5, 15, 0)

(d) ( 5 , - 1 5 , 0 )

*7.6 (a) Find H at (0, 0, 5) due to side 2 of the triangular loop in Figure 7.6(a).

(b) Find H at (0, 0, 5) due to the entire loop.

7.7 An infinitely long conductor is bent into an L shape as shown in Figure 7.28. If a direct
current of 5 A flows in the current, find the magnetic field intensity at (a) (2, 2, 0),
(b)(0, - 2 , 0), and (c) (0,0, 2).

Figure 7.27 For Problem 7.4.

4A
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Figure 7.28 Current filament for Problem 7.7.

5 A

5A

7.8 Find H at the center C of an equilateral triangular loop of side 4 m carrying 5 A of current
as in Figure 7.29.

7.9 A rectangular loop carrying 10 A of current is placed on z = 0 plane as shown in Figure
7.30. Evaluate H at

(a) (2, 2, 0)

(b) (4, 2, 0)

(c) (4, 8, 0)

(d) (0, 0, 2)

7.10 A square conducting loop of side 2a lies in the z = 0 plane and carries a current / in the
counterclockwise direction. Show that at the center of the loop

H
•wa

*7.11 (a) A filamentary loop carrying current / is bent to assume the shape of a regular polygon
of n sides. Show that at the center of the polygon

nl . ir
H = sin —

2irr n

where r is the radius of the circle circumscribed by the polygon.

(b) Apply this to cases when n = 3 and n = 4 and see if your results agree with those for
the triangular loop of Problem 7.8 and the square loop of Problem 7.10, respectively.

Figure 7.29 Equilateral triangular loop for
Problem 7.8.
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Figure 7.30 Rectangular loop of Problem 7.9.

(c) As n becomes large, show that the result of part (a) becomes that of the circular loop
of Example 7.3.

7.12 For the filamentary loop shown in Figure 7.31, find the magnetic field strength at O.

7.13 Two identical current loops have their centers at (0, 0, 0) and (0, 0, 4) and their axes the
same as the z-axis (so that the "Helmholtz coil" is formed). If each loop has radius 2 m
and carries current 5 A in a ,̂ calculate H at

(a) (0,0,0)
(b) (0,0,2)

7.14 A 3-cm-long solenoid carries a current of 400 mA. If the solenoid is to produce a mag-
netic flux density of 5 mWb/m , how many turns of wire are needed?

7.15 A solenoid of radius 4 mm and length 2 cm has 150 turns/m and carries current 500 mA.
Find: (a) [H at the center, (b) |H | at the ends of the solenoid.

7.16 Plane x = 10 carries current 100 mA/m along az while line x = 1, y = —2 carries fila-
mentary current 20TT mA along a r Determine H at (4, 3, 2).

7.17 (a) State Ampere's circuit law.

(b) A hollow conducting cylinder has inner radius a and outer radius b and carries current
/ along the positive z-direction. Find H everywhere.

10 A

100 cm

10 A

Figure 7.31 Filamentary loop of Problem 7.12; not drawn to scale.
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7.18 (a) An infinitely long solid conductor of radius a is placed along the z-axis. If the con-
ductor carries current / i n the + z direction, show that

H = 2a<t>2ira

within the conductor. Find the corresponding current density,

(b) If / = 3 A and a = 2 cm in part (a), find H at (0, 1 cm, 0) and (0, 4 cm, 0).

(7.19 If H = yax - xay A/m on plane z = 0, (a) determine the current density and (b) verify
" Ampere's law by taking the circulation of H around the edge of the rectangle

Z = 0, 0 < x < 3, - 1 < y < 4.

7.20 In a certain conducting region, - . • - , • •

H = yz(x2 + y2)ax - y2xzay + 4x2y2az A/m .

(a) Determine J at (5, 2 , - 3 )

(b) Find the current passing through x = —1,0 < y,z < 2

(c) Show that V • B = 0

7.21 An infinitely long filamentary wire carries a current of 2 A in the +z-direction.
Calculate

(a) B a t ( - 3 , 4 , 7 ) " - . . • • • • ..;•••.•

(b) The flux through the square loop described by 2 < p < 6, 0 < z ^ 4, <£ = 90°

7.22 The electric motor shown in Figure 7.32 has field

106

H = s in 2<j> a A/m

Calculate the flux per pole passing through the air gap if the axial length of the pole is
20 cm.

7.23 Consider the two-wire transmission line whose cross section is illustrated in Figure 7.33.
Each wire is of radius 2 cm and the wires are separated 10 cm. The wire centered at (0, 0)

Figure 7.32 Electric motor pole of Problem 7.22.

armature
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4 c m±KJ
-10 cm-

Figure 7.33 Two-wire line of Problem
7.23.

carries current 5 A while the other centered at (10 cm, 0) carries the return current. Find
Hat

(a) (5 cm, 0)

(b) (10 cm, 5 cm)

7.24 Determine the magnetic flux through a rectangular loop (a X b) due to an infinitely long
conductor carrying current / as shown in Figure 7.34. The loop and the straight conductors
are separated by distance d.

*7.25 A brass ring with triangular cross section encircles a very long straight wire concentrically
as in Figure 7.35. If the wire carries a current /, show that the total number of magnetic
flux lines in the ring is

r = b — a In
a + b

2-wb L b

Calculate V if a = 30 cm, b = 10 cm, h = 5 cm, and / = 10 A.

7.26 Consider the following arbitrary fields. Find out which of them can possibly represent
electrostatic or magnetostatic field in free space.

(a) A = y cos axax + (y + e~x)az

(b) B = — ap

(c) C = r2 sin 6 a0

Figure 7.34 For Problem 7.24

I ,<
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hv.

- Brass ring

Figure 7.35 Cross section of a brass ring enclosing a long
straight wire; for Problem 7.25.

7.27 Reconsider the previous problem for the following fields.

(a) D = y2zax + 2{x + \)yzay - (JC + l)z2az

,, , _ (z + 1) , , s i n 0
(b) E = cos 4> aD H

P P

(c) F = — (2 cos 6 ar + sin d ae)

7.28 For a current distribution in free space,

A = {2x2y + yz)ax + {xy2 - xz3)ay - (6xyz ~ 2jc2.y2 )az Wb/m

(a) Calculate B.

(b) Find the magnetic flux through a loop described by x = 1, 0 < y, z < 2.

(c) Show that V • A = 0 and V • B = 0.

7.29 The magnetic vector potential of a current distribution in free space is given by

A = 15<?~p sin <j> az Wb/m

Find H at (3, ir/4, - 10). Calculate the flux through p = 5, 0 £ 0 < w/2, 0 < z < 10.

7.30 A conductor of radius a carries a uniform current with J = Joaz. Show that the magnetic
vector potential for p > a is

A = --)iaJop
2az

7.31 An infinitely long conductor of radius a is placed such that its axis is along the z-axis. The
vector magnetic potential, due to a direct current Io flowing along a, in the conductor, is
given by

A = ~ fxo(x
2 + y2) az Wb/m

Find the corresponding H. Confirm your result using Ampere's law.
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7.32 The magnetic vector potential of two parallel infinite straight current filaments in free
space carrying equal current / in opposite direction is

JX.1 d - p
A = — In a,

2TT p

where d is the separation distance between the filaments (with one filament placed along
the z-axis). Find the corresponding magnetic flux density B.

7.33 Find the current density J to

in free space.

A = — az Wb/m
P

7.34 Prove that the magnetic scalar potential at (0, 0, z) due to a circular loop of radius a
shown in Figure 7.8(a) is

V m = - | 1 -

*7.35 A coaxial transmission line is constructed such that the radius of the inner conductor is a
and the outer conductor has radii 3a and 4a. Find the vector magnetic potential within the
outer conductor. Assume Az = 0 for p = 3a.

7.36 The z-axis carries a filamentary current 12 A along az. Calculate Vm at (4, 30°, - 2 ) if
Vm = Oat(10, 60°, 7).

7.37 Plane z = — 2 carries a current of 50ay A/m. If Vm = 0 at the origin, find Vm at

(a) ( - 2 , 0 , 5 )

(b) (10, 3, 1)

7.38 Prove in cylindrical coordinates that

(a) V X (VV) = 0

(b) V • (V X A) = 0

7.39 IfR = r - r' and/? = |R|, show that

R R fl3

where V and V are del operators with respect to (x, y, z) and (x', y', z), respectively.



Chapter 8

MAGNETIC FORCES, MATERIALS,
AND DEVICES

Do all the good you can,
By all the means you can,
In all the ways you can,
In all the places you can,
At all the times you can,
To all the people you can,
As long as ever you can.

—JOHN WESLEY

8.1 INTRODUCTION

Having considered the basic laws and techniques commonly used in calculating magnetic
field B due to current-carrying elements, we are prepared to study the force a magnetic
field exerts on charged particles, current elements, and loops. Such a study is important to
problems on electrical devices such as ammeters, voltmeters, galvanometers, cyclotrons,
plasmas, motors, and magnetohydrodynamic generators. The precise definition of the mag-
netic field, deliberately sidestepped in the previous chapter, will be given here. The con-
cepts of magnetic moments and dipole will also be considered.

Furthermore, we will consider magnetic fields in material media, as opposed to the
magnetic fields in vacuum or free space examined in the previous chapter. The results of
the preceding chapter need only some modification to account for the presence of materi-
als in a magnetic field. Further discussions will cover inductors, inductances, magnetic
energy, and magnetic circuits.

8.2 FORCES DUE TO MAGNETIC FIELDS

There are at least three ways in which force due to magnetic fields can be experienced. The
force can be (a) due to a moving charged particle in a B field, (b) on a current element in an
external B field, or (c) between two current elements.

304
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A. Force on a Charged Particle

According to our discussion in Chapter 4, the electric force Fe on a stationary or moving
electric charge Q in an electric field is given by Coulomb's experimental law and is related
to the electric field intensity E as

Fe = QE (8.1)

This shows that if Q is positive, Fe and E have the same direction.
A magnetic field can exert force only on a moving charge. From experiments, it is

found that the magnetic force Fm experienced by a charge Q moving with a velocity u in a
magnetic field B is

Fm = Qn X B (8.2)

This clearly shows that Fm is perpendicular to both u and B.
From eqs. (8.1) and (8.2), a comparison between the electric force ¥e and the magnetic

force Fm can be made. Fe is independent of the velocity of the charge and can perform
work on the charge and change its kinetic energy. Unlike Fe, Fm depends on the charge ve-
locity and is normal to it. Fm cannot perform work because it is at right angles to the direc-
tion of motion of the charge (Fm • d\ = 0); it does not cause an increase in kinetic energy
of the charge. The magnitude of Fm is generally small compared to Fe except at high ve-
locities.

For a moving charge Q in the presence of both electric and magnetic fields, the total
force on the charge is given by

F = F + F

or

F = g(E + u X B) (8.3)

This is known as the Lorentz force equation.1 It relates mechanical force to electrical
force. If the mass of the charged particle moving in E and B fields is m, by Newton's
second law of motion.

du
= m — = (8.4)

The solution to this equation is important in determining the motion of charged particles in
E and B fields. We should bear in mind that in such fields, energy transfer can be only by
means of the electric field. A summary on the force exerted on a charged particle is given
in Table 8.1.

Since eq. (8.2) is closely parallel to eq. (8.1), which defines the electric field, some
authors and instructors prefer to begin their discussions on magnetostatics from eq. (8.2)
just as discussions on electrostatics usually begin with Coulomb's force law.

After Hendrik Lorentz (1853-1928), who first applied the equation to electric field motion.
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TABLE «.! Force on a Charged Particle

State of Particle E Field B Field Combined E and B Fields

Stationary

Moving Qu X B

QE

2(E + u X B)

B. Force on a Current Element

To determine the force on a current element / dl of a current-carrying conductor due to the
magnetic field B, we modify eq. (8.2) using the fact that for convection current [see
eq. (5.7)]:

J = P,u

From eq. (7.5), we recall the relationship between current elements:

Idl = KdS = idv

Combining eqs. (8.5) and (8.6) yields

I dl = pvu dv = dQu

Alternatively, / dl = — dl = dQ — = dQ u
dt dt

(8.5)

(8.6)

Hence,

Idl = dQu (8.7)

This shows that an elemental charge dQ moving with velocity u (thereby producing con-
vection current element dQ u) is equivalent to a conduction current element / dl. Thus the
force on a current element / dl in a magnetic field B is found from eq. (8.2) by merely re-
placing Qu by / dl; that is,

d¥ = Idl X B (8.8)

If the current / is through a closed path L or circuit, the force on the circuit is given by

(8.9), F = (b Idl X B i

In using eq. (8.8) or (8.9), we should keep in mind that the magnetic field produced by the
current element / dl does not exert force on the element itself just as a point charge does
not exert force on itself. The B field that exerts force on / dl must be due to another
element. In other words, the B field in eq. (8.8) or (8.9) is external to the current element
/ dl. If instead of the line current element / dl, we have surface current elements K dS
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or a volume current element J dv, we simply make use of eq. (8.6) so that eq. (8.8)
becomes

dF = KdS XB or dF = J dv X B

while eq. (8.9) becomes

F = \ KdSXB or F = J d v X B

(8.8a)

(8.9a)

From eq. (8.8)

The magnetic field B is defined as the force per unit current element.

Alternatively, B may be defined from eq. (8.2) as the vector which satisfies FJq = u X B
just as we defined electric field E as the force per unit charge, FJq. Both of these defini-
tions of B show that B describes the force properties of a magnetic field.

C. Force between Two Current Elements

Let us now consider the force between two elements /[ d\x and I2 d\2- According to
Biot-Savart's law, both current elements produce magnetic fields. So we may find the
force d(d¥{) on element /] dl{ due to the field dB2 produced by element I2 d\2 as shown in
Figure 8.1. From eq. (8.8),

But from Biot-Savart's law,

Hence,

d(dF}) = 7, d\x X dB2

= /xo/2 d\2 X aRii

^

(8.10)

(8.11)

(8.12)

Figure 8.1 Force between two current loops.
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This equation is essentially the law of force between two current elements and is analogous
to Coulomb's law, which expresses the force between two stationary charges. From
eq. (8.12), we obtain the total force F, on current loop 1 due to current loop 2 shown in
Figure 8.1 as

F, =
4TT

X (dl2 X
(8.13)

L, JL2

Although this equation appears complicated, we should remember that it is based on
eq. (8.10). It is eq. (8.9) or (8.10) that is of fundamental importance.

The force F2 on loop 2 due to the magnetic field Bx from loop 1 is obtained from
eq. (8.13) by interchanging subscripts 1 and 2. It can be shown that F2 = —F^ thus F, and
F2 obey Newton's third law that action and reaction are equal and opposite. It is worth-
while to mention that eq. (8.13) was experimentally established by Oersted and Ampere;
Biot and Savart (Ampere's colleagues) actually based their law on it.

EXAMPLE 8.1
A charged particle of mass 2 kg and charge 3 C starts at point (1, - 2 , 0) with velocity
4ax + 3az m/s in an electric field 123^ + lOâ , V/m. At time t = 1 s, determine

(a) The acceleration of the particle

(b) Its velocity

(c) Its kinetic energy

(d) Its position

Solution:

(a) This is an initial-value problem because initial values are given. According to
Newton's second law of motion,

F = ma = QE

where a is the acceleration of the particle. Hence,

QE 3 ,
a = — = - (12a., + 10ay) = 18a* + 15aym/s2

du d
a = — = — (ux, uy, uz) = 18ax + 15a,

(b) Equating components gives

dux

~dt
= 18->KX = 18r + A

- ^ = 15 -> «v = 15? + B
dt y

(8.1.1)

(8.1.2)
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~dt
= 0 - > M 7 = C (8.1.3)

where A, B, and C are integration constants. But at t = 0, u = Aax + 3az. Hence,

ux(t = 0) = 4^>4 = 0 + A or A = 4

uy(t = 0) = 0 - > 0 = 0 + B or B = 0

uz(t = O) = 3 H > 3 = C

Substituting the values of A, B, and C into eqs. (8.1.1) to (8.1.3) gives

u(r) = (wx, MV, Mj) = (18f + 4, 15f, 3)

Hence

u(t = 1 s) = 22a., + 15a}, + 3az m/s

(c) Kinetic energy (K.E.) = -m ju|2 = - (2)(222 + 152 + 32)

= 718J

(d) u = — = —{x,y,z) = (18r + 4, 15?, 3)

Equating components yields

— = ux = 18/ + 4 -^ x = 9r2 + 4f + (8.1.4)

dt ~y ""

— = uz = 3 -> z =

dt

At t = 0, (JC, j , z) = (1, - 2 , 0); hence,

x(t = 0) = 1 -> 1 = 0 + A,

y(f = 0) = - 2 - > - 2 = 0 + B,

z(f = 0) = 0 ^ 0 = 0 + C{ or C, = 0

Substituting the values of Ab Bu and C, into eqs. (8.1.4) to (8.1.6), we obtain

(x, y, z) = (9r2 + 4? + 1, 7.5?2 - 2, 30

or A] = 1

or 5, = - 2

(8.1.5)

(8.1.6)

(8.1.7)

Hence, at t = 1, (*, j , z) = (14, 5.5, 3).
By eliminating tm eq. (8.1.7), the motion of the particle may be described in terms of *, y,
and z.
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PRACTICE EXERCISE 8.1

A charged particle of mass 1 kg and charge 2 C starts at the origin with zero initial
velocity in a region where E = 3az V/m. Find

(a) The force on the particle

(b) The time it takes to reach point P(0, 0, 12 m)

(c) Its velocity and acceleration at P

(d) Its K.E. at P.

Answer: (a) 6az N, (b) 2 s, (c) 12az m/s, 6az m/s2, (d) 72 J.

EXAMPLE 8.2
A charged particle of mass 2 kg and 1 C starts at the origin with velocity 3av, m/s and
travels in a region of uniform magnetic field B = lOâ , Wb/m . At t = 4 s, calculate

(a) The velocity and acceleration of the particle

(b) The magnetic force on it

(c) Its K.E. and location

(d) Find the particle's trajectory by eliminating t.

(e) Show that its K.E. remains constant.

Solution:

du
(a) F = m — = Qu X B

dt

du Q
a = — = —u X B

dt m

Hence

(uxax + uy&y + uzaz) = - ux uy uz

0 0 10

By equating components, we get

dux

~di

duz

dt

= -5ur

= 5 ( 0 , - Ujiy)

(8.2.1)

(8.2.2)

(8.2.3)
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We can eliminate ux or uy in eqs. (8.2.1) and (8.2.2) by taking second derivatives of one
equation and making use of the other. Thus

d2ux duy

dt2 = 5 - = - 2 5 * ,

or

d ux

~d7 25ux = 0

which is a linear differential equation with solution (see Case 3 of Example 6.5)

ux = d cos 5/ + C2 sin 5? (8.2.4)

From eqs. (8.2.1) and (8.2.4),

5M,, = — = - 5 C , sin 5f + 5C2 cos 5t (8.2.5)

dt

or

uy = — d sin 5? + C2 cos 5?
We now determine constants Co, Cu and C2 using the initial conditions. At t = 0, u = 3a r

Hence,

ux = 0 -> 0 = Cj • 1 + C2 • 0 -» C, = 0

uy = 3 -^ 3 = - d • 0 + C2 • 1 -» C2 = 3

uz = 0 -» 0 = Co

Substituting the values of Co, C,, and C2 into eqs. (8.2.3) to (8.2.5) gives

u = (ux, uy, uz) = (3 sin 5;, 3 cos 5t, 0) (8.2.6)

Hence,

and

(b)

or

U(f = 4) = (3 sin 20, 3 cos 20, 0)
= 2.739ax + 1.224ay m/s

du
a = — = (15 cos 5f, - 15 sin 5t, 0)

if

a(f = 4) = 6.101a* - 13.703avm/s2

F = ma = 12.2ax - 27.4avN

F = gu X B = (1X2.7398* + 1.224av) X 10a,
= 12.2a*- 27.4a,, N
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(c) K.E. = l/2m |u|2 = 1/2(2) (2.7392 + 1.2242) = 9 J

ux = — = 3 sin 5f —> x = —— cos 5? + bx

dy 3
uy = — = 3 cos 5f -> y = - sin 5t + b2

at 5

dz

dt

(8.2.7)

(8.2.8)

(8.2.9)

where bu b2, and b3 are integration constants. At t = 0, (x, y, z) = (0, 0, 0) and hence,

x(t = 0) = 0 -> 0 = 1 = 0.6

y(t = 0) = 0 0 = - • 0 + b2 -> 62 = 0

(8.2.10)

z(/ = 0) = 0 -> 0 = &3

Substituting the values of bt, b2, and b3 into eqs. (8.2.7) to (8.2.9), we obtain

(x, y, z) = (0.6 - 0.6 cos 5?, 0.6 sin 5f, 0)

At t = 4 s,

(x, y, z) = (0.3552, 0.5478, 0)

(d) From eq. (8.2.10), we eliminate t by noting that

(x - 0.6)2 + y2 = (0.6)2 (cos2 5t + sin2 5?), z = 0

or

(x - 0.6)2 + y2 = (0.6)2, z = 0

which is a circle on plane z = 0, centered at (0.6, 0, 0) and of radius 0.6 m. Thus the parti-
cle gyrates in an orbit about a magnetic field line.

(e) K.E. = -m |u|2 = - ( 2 ) (9 cos2 5t + 9 sin2 5t) = 9 J

which is the same as the K.E. at t = 0 and t = 4 s. Thus the uniform magnetic field has no
effect on the K.E. of the particle.

Note that the angular velocity cu = QBIm and the radius of the orbit r = uju>, where
MO is the initial speed. An interesting application of the idea in this example is found in a
common method of focusing a beam of electrons. The method employs a uniform mag-
netic field directed parallel to the desired beam as shown in Figure 8.2. Each electron
emerging from the electron gun follows a helical path and is back on the axis at the same
focal point with other electrons. If the screen of a cathode ray tube were at this point, a
single spot would appear on the screen.
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focal point
Figure 8.2 Magnetic focusing of a
beam of electrons: (a) helical paths
of electrons, (b) end view of paths.

(a) (b)

PRACTICE EXERCISE 8.2

A proton of mass m is projected into a uniform field B = Boaz with an initial veloc-
ity aax + /3ar (a) Find the differential equations that the position vector r =
xax + yay + zaz must satisfy, (b) Show that a solution to these equations is

a
x = — sin oit,

0)

a
y — — cos ut,

where w = eBJm and e is the charge on the proton, (c) Show that this solution de-
scribes a circular helix in space.

Answer: (a) — = a cos ut,— — -a sin cat, — = j3, (b) and (c) Proof.
at at at

EXAMPLE 8.3
A charged particle moves with a uniform velocity 4ax m/s in a region where
E = 20 ay V/m and B = Boaz Wb/m2. Determine Bo such that the velocity of the particle
remains constant.

Solution:

If the particle moves with a constant velocity, it implies that its acceleration is zero. In
other words, the particle experiences no net force. Hence,

0 = 2 (20av + 4ax X Boa,)

or

-20av = -ABoay

Thus Bo = 5.
This example illustrates an important principle employed in a velocity filter shown in

Figure 8.3. In this application, E, B, and u are mutually perpendicular so that Qu X B is
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charged _ u
particles

Aperture
^_ Particles with

constant velocity

F m = Q u X B

Figure 8.3 A velocity filter for charged particles.

directed opposite to QE, regardless of the sign of the charge. When the magnitudes of the
two vectors are equal,

QuB = QE

or

This is the required (critical) speed to balance out the two parts of the Lorentz force. Parti-
cles with this speed are undeflected by the fields; they are "filtered" through the aperture.
Particles with other speeds are deflected down or up, depending on whether their speeds
are greater or less than this critical speed.

PRACTICE EXERCISE 8.3

Uniform E and B fields are oriented at right angles to each other. An electron moves
with a speed of 8 X 106 m/s at right angles to both fields and passes undeflected
through the field.

(a) If the magnitude of B is 0.5 mWb/m2, find the value of E.

(b) Will this filter work for positive and negative charges and any value of mass?

Answer: (a) 4 kV/m, (b) Yes.

EXAMPLE 8.4
A rectangular loop carrying current I2 is placed parallel to an infinitely long filamentary
wire carrying current Ix as shown in Figure 8.4(a). Show that the force experienced by the
loop is given by

2x
1_

iPo

1

po
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(a)

-2-H

w

Figure 8.4 For Example 8.4:
(a) rectangular loop inside the field
produced by an infinitely long wire,
(b) forces acting on the loop and
wire.

(b)

Solution:

Let the force on the loop be

F 4 = I? <\> dh X B ,¥( = F, + F7 +

where F b F2 , F3 , and F 4 are, respectively, the forces exerted on sides of the loop labeled 1,
2, 3, and 4 in Figure 8.4(b). Due to the infinitely long wire

a
2TTPO

Hence,

F, = I2 | d\2 X Bl = I2 dz az X

2irpo
ao (attractive)

Fj is attractive because it is directed toward the long wire; that is, F, is along -ap due to the
fact that loop side 1 and the long wire carry currents along the same direction. Similarly,

F 3 = I2 d\2 X B, = I2 i7 X

z=b
2TT(PO + a)

2TT(PO + a)

F 2 = 72 I i p ap X

A'c/l^ , Po + Cl

= — In ;
2TT P O

(repulsive)

(parallel)



316 Magnetic Forces, Materials, and Devices

dpap x

V-Jih , Po + a
2TT

In az (parallel)

The total force Fe on the loop is the sum of F l5 F2, F3, and F4; that is,

1 1
F, =

2w po + a_

which is an attractive force trying to draw the loop toward the wire. The force Fw on the
wire, by Newton's third law, is — F^; see Figure 8.4(b).

PRACTICE EXERCISE 8.4

In Example 8.4, find the force experienced by the infinitely long wire if lx = 10 A,
I2 — 5 A, po = 20 cm, a = 10 cm, b — 30 cm.

Answer: Sâ  £tN.

8.3 MAGNETIC TORQUE AND MOMENT

Now that we have considered the force on a current loop in a magnetic field, we can deter-
mine the torque on it. The concept of a current loop experiencing a torque in a magnetic
field is of paramount importance in understanding the behavior of orbiting charged parti-
cles, d.c. motors, and generators. If the loop is placed parallel to a magnetic field, it expe-
riences a force that tends to rotate it.

The torque T (or mechanical moincnl of force) on ihe loop is the \cclor product of
the force F and iho momem arm r.

That is,

T = r X F (8.14)

and its units are Newton-meters (N • m).
Let us apply this to a rectangular loop of length € and width w placed in a uniform

magnetic field B as shown in Figure 8.5(a). From this figure, we notice that d\ is parallel to
B along sides 12 and 34 of the loop and no force is exerted on those sides. Thus

F = / d \ X B + I \ d \ X B

{ 0

= / dz az X B + / dz a z X B
'0 'e
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it//
2~—w-f-

1

3 . / 4
f l / /

1 / B

I fl

i I

— axis of rotation

(a) (b)

Figure 8.5 Rectangular planar loop in a uniform magnetic field.

or

F = Fo - Fo = 0 (8.15)

where |F0| = IB£ because B is uniform. Thus, no force is exerted on the loop as a whole.
However, Fo and — Fo act at different points on the loop, thereby creating a couple. If the
normal to the plane of the loop makes an angle a with B, as shown in the cross-sectional
view of Figure 8.5(b), the torque on the loop is

|T| = |FO| ws ina

or

T = Bliw sin a

But €w = S, the area of the loop. Hence,

T = BIS sin a

We define the quantity

! m = ISa,

(8.16)

(8.17)

(8.18)

as the magnetic dipole moment (in A/m2) of the loop. In eq. (8.18), an is a unit normal
vector to the plane of the loop and its direction is determined by the right-hand rule: fingers
in the direction of current and thumb along an.

The magnetic dipolc moment is the product of current and area of the loop; its di-
rection is normal to the loop.

Introducing eq. (8.18) in eq. (8.17), we obtain

| T = m X B (8.19)
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This expression is generally applicable in determining the torque on a planar loop of any
arbitrary shape although it was obtained using a rectangular loop. The only limitation is
that the magnetic field must be uniform. It should be noted that the torque is in the direc-
tion of the axis of rotation (the z-axis in the case of Figure 8.5a). It is directed such as to
reduce a so that m and B are in the same direction. In an equilibrium position (when m and
B are in the same direction), the loop is perpendicular to the magnetic field and the torque
will be zero as well as the sum of the forces on the loop.

8.4 A MAGNETIC DIPOLE

A bar magnet or a small filamentary current loop is usually referred to as a magnetic
dipole. The reason for this and what we mean by "small" will soon be evident. Let us de-
termine the magnetic field B at an observation point P(r, 8, 4>) due to a circular loop carry-
ing current / as in Figure 8.6. The magnetic vector potential at P is

(8.20)

It can be shown that at far field (r ^> a, so that the loop appears small at the observation
point), A has only 0-component and it is given by

(8.21a)

or

A

jxj-wa sin

4TIT2

^ o m X

47rr2

ar
(8.21b)

P(r, 6, 0)

Figure 8.6 Magnetic field at P due to a current
loop.
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where m = Iira2az, the magnetic moment of the loop, and a, X ar = sin d a0. We deter-
mine the magnetic flux density B from B = V X A as

B = ~ : (2 cos 6 ar + sin 6 ; (8.22)

It is interesting to compare eqs. (8.21) and (8.22) with similar expressions in
eqs. (4.80) and (4.82) for electrical potential V and electric field intensity E due to an elec-
tric dipole. This comparison is done in Table 8.2, in which we notice the striking similari-

TABLE 8.2 Comparison between Electric and Magnetic Monopoles and Dipoles

Electric

V -

Monopoie (point charge)

Qcasd

E
Qd

(2 cos B ar + sin1©:

+0

Dipole (two point charge)

Magnetic

Does not exist

Qm

Monopoie (point charge)

A = •

sin 0 i 0

4irr2

Me,
B = (2 cos Hr + sin 9ae)

47TC3

Dipole (small current loop or bar magnet)
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Figure 8.7 The B lines due to
magnetic dipoles: (a) a small
current loop with m = IS, (b) a
bar magnet with m = Qm€.

(a) (b)

ties between B as far field due to a small current loop and E at far field due to an electric
dipole. It is therefore reasonable to regard a small current loop as a magnetic dipole. The B
lines due to a magnetic dipole are similar to the E lines due to an electric dipole. Figure
8.7(a) illustrates the B lines around the magnetic dipole m = IS.

A short permanent magnetic bar, shown in Figure 8.7(b), may also be regarded as a
magnetic dipole. Observe that the B lines due to the bar are similar to those due to a small
current loop in Figure 8.7(a).

Consider the bar magnet of Figure 8.8. If Qm is an isolated magnetic charge (pole
strength) and € is the length of the bar, the bar has a dipole moment Qm€. (Notice that Qm

does exist; however, it does not exist without an associated — Qm. See Table 8.2.) When the
bar is in a uniform magnetic field B, it experiences a torque

T=mXB=2JXB (8.23)

where € points in the direction south-to-north. The torque tends to align the bar with the
external magnetic field. The force acting on the magnetic charge is given by

F = QmB (8.24)

Since both a small current loop and a bar magnet produce magnetic dipoles, they are equiv-
alent if they produce the same torque in a given B field; that is, when

T = QJB = ISB

Hence,

QJ = IS

showing that they must have the same dipole moment.

(8.25)

(8.26)

n
s
rl«

*~F
B

Figure 8.8 A bar magnet in an external magnetic field.
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EXAMPLE 8.5
Determine the magnetic moment of an electric circuit formed by the triangular loop of
Figure 8.9.

Solution:

From Problem 1.18(c), the equation of a plane is given by Ax + By + Cz + D = 0 where
D= -(A2 + B2 + C2). Since points (2, 0, 0), (0, 2, 0), and (0, 0, 2) lie on the plane, these
points must satisfy the equation of the plane, and the constants A, B, C, and D can be
determined. Doing this gives x + y + z = 2 as the plane on which the loop lies. Thus we
can use

m = ISan

where

S = loop area = - X base X height = - (2 V2)(2 V2)sin 60°

= 4 sin 60°

If we define the plane surface by a function

f(x,y,z) = x + y + z ~ 2 = 0,

V / ^ (
a = ±

ay + az)

V 3

We choose the plus sign in view of the direction of the current in the loop (using the right-
hand rule, m is directed as in Figure 8.9). Hence

^ (a, + ay + a,)
m = 5 (4 sin 60°) r-

V 3
= 10(ax + ay + a,) A • m2

Figure 8.9 Triangular loop of Example 8.5.
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PRACTICE EXERCISE 8.5

A rectangular coil of area 10 cm2 carrying current of 50 A lies on plane
2x + 6y - 3z = 7 such that the magnetic moment of the coil is directed away from
the origin. Calculate its magnetic moment.

Answer: (1.429a, + 4.286a,, - 2.143az) X 10~2 A • m2

EXAMPLE 8.6
A small current loop L, with magnetic moment 53;, A/m is located at the origin while
another small loop current L2 with magnetic moment 3ay A • m2 is located at (4, —3, 10).
Determine the torque on L2.

Solution:

The torque T2 on the loop L2 is due to the field Bj produced by loop L,. Hence,

T2 = m2 X B,

Since m, for loop Lx is along az, we find Bj using eq. (8.22):

B =
4irr

(2 cos 9 ar + sin 8 ag)

Using eq. (2.23), we transform m2 from Cartesian to spherical coordinates:

m2 = 3av = 3 (sin 6 sin 4> ar + cos 6 sin 0 ae + cos <t> a^)

At (4, - 3 , 10),

r = V 4 2 + (-3)2 + 102 = 5 V 5

2

V5

Hence,

p 5 1 1
tan 6 = — = — = >sin0 = —1=,

z 10 2 V ?
COS P =

y - 3 - 3 4
t a n <j) = — = > sin 0 = , c o s <j> = —

B
_ 4 x X 1 0 ' 7 X 5 / 4 1
— j= I j= ar H -j= ae

47T625V5 VV5 V5
10"7

(4ar + a,)625

m2 - 3
5V5 5V5 5
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and

T =
1 0

4V/5a<A) X (4ar1_ ( 3 a r 6
625 (5 V5)

= 4.293 X 10"" (-6a r + 38.78ae + 24a0)
= -0.258ar + 1.665a,, + l.O3a0nN • m

PRACTICE EXERCISE 8.6

If the coil of Practice Exercise 8.5 is surrounded by a uniform field 0.6ax + 0.43^ +
0.5a. Wb/m2,

(a) Find the torque on the coil.

(b) Show that the torque on the coil is maximum if placed on plane 2x - 8>' +
4z = V84. Calculate the value of the maximum torque.

Answer: (a) 0.03a,, - 0.02av - 0.02a. N • m, (b) 0.04387 N • m.

8.5 MAGNETIZATION IN MATERIALS

Our discussion here will parallel that on polarization of materials in an electric field. We
shall assume that our atomic model is that of an electron orbiting about a positive nucleus.

We know that a given material is composed of atoms. Each atom may be regarded as
consisting of electrons orbiting about a central positive nucleus; the electrons also rotate
(or spin) about their own axes. Thus an internal magnetic field is produced by electrons or-
biting around the nucleus as in Figure 8.10(a) or electrons spinning as in Figure 8.10(b).
Both of these electronic motions produce internal magnetic fields B, that are similar to the
magnetic field produced by a current loop of Figure 8.11. The equivalent current loop has
a magnetic moment of m = IbSan, where S is the area of the loop and Ib is the bound
current (bound to the atom).

Without an external B field applied to the material, the sum of m's is zero due to
random orientation as in Figure 8.12(a). When an external B field is applied, the magnetic

Figure 8.10 (a) Electron orbiting around the
nucleus; (b) electron spin.

nucleus

23 electron
(J) electron

(a)
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Figure 8.11 Circular current loop equivalent to electronic motion of
Figure 8.10.

moments of the electrons more or less align themselves with B so that the net magnetic
moment is not zero, as illustrated in Figure 8.12(b).

The magnetization M (in amperes/meter) is the magnetic dipole moment per unit
volume.

If there are N atoms in a given volume Av and the kth atom has a magnetic moment m*.,

M = lim k-\

>0 Av
(8.27)

A medium for which M is not zero everywhere is said to be magnetized. For a differential
volume dv', the magnetic moment is dm = M dv'. From eq. (8.21b), the vector magnetic
potential due to dm is

dX =
X

A-KR1
dv' =

According to eq. (7.46),

R

X R
-dv'

B = 0, M = 0
Hgurc 8.! 2 Magnetic dipole mo-
ment in a volume Av: (a) before B is
applied, (b) after B is applied.

(a) (b)
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Hence,

Using eq. (7.48) gives

A = — I M X V - dv'
4TT R

(8.28)

' - = -V'XM-V'X-

Substituting this into eq. (8.28) yields

4TT Jy, R 4TT JV, fl

Applying the vector identity

V X F dv' = - <J> F X r f S

to the second integral, we obtain

4TT JV, J? 4TT JS , R

Ho f ibdv' JXO
(8.29)

4ir )v, R 4TT )S. R

Comparing eq. (8.29) with eqs. (7.42) and (7.43) (upon dropping the primes) gives

h = V X M

and

(8.30)

(8.31)

where Jb is the bound volume current density or magnetization volume current density (in
amperes per meter square), Kb is the bound surface current density (in amperes per meter),
and an is a unit vector normal to the surface. Equation (8.29) shows that the potential of a
magnetic body is due to a volume current density Jb throughout the body and a surface
current Kb on the surface of the body. The vector M is analogous to the polarization P in
dielectrics and is sometimes called the magnetic polarization density of the medium. In
another sense, M is analogous to H and they both have the same units. In this respect, as
J = V X H, so is Jb = V X M. Also, Jb and Kb for a magnetized body are similar to ppv

and pps for a polarized body. As is evident in eqs. (8.29) to (8.31), Jh and Kh can be derived
from M; therefore, ib and Kb are not commonly used.



326 HI Magnetic Forces, Materials, and Devices

In free space, M = 0 and we have

V X H = it or V X
B

(8.32)

where Jy is the free current volume density. In a material medium M i= 0, and as a result,
B changes so that

*x(i)-J/+J.-J -
= V X H + V X M

or

B = M) (8.33)

The relationship in eq. (8.33) holds for all materials whether they are linear or not. The
concepts of linearity, isotropy, and homogeneity introduced in Section 5.7 for dielectric
media equally apply here for magnetic media. For linear materials, M (in A/m) depends
linearly on H such that

(8.34)

where \m is a dimensionless quantity (ratio of M to H) called magnetic susceptibility of the
medium. It is more or less a measure of how susceptible (or sensitive) the material is to a
magnetic field. Substituting eq. (8.34) into eq. (8.33) yields

B = /xo(l +

or

where

(8.35)

(8.36)

(8.37)

The quantity /x = /io/xr is called the permeability of the material and is measured in
henrys/meter; the henry is the unit of inductance and will be defined a little later. The di-
mensionless quantity /xr is the ratio of the permeability of a given material to that of free
space and is known as the relative permeability of the material.

It should be borne in mind that the relationships in eqs. (8.34) to (8.37) hold only for
linear and isotropic materials. If the materials are anisotropic (e.g., crystals), eq. (8.33) still
holds but eqs. (8.34) to (8.37) do not apply. In this case, fi has nine terms (similar to e in
eq. 5.37) and, consequently, the fields B, H, and M are no longer parallel.

B

ixr =

- A

1 +

io/xrH

Xm
E.
Mo
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8.6 CLASSIFICATION OF MAGNETIC MATERIALS

In general, we may use the magnetic susceptibility \m or the relative permeability \ir to
classify materials in terms of their magnetic property or behavior. A material is said to be
nonmagnetic if ym = 0 (or jxr = 1); it is magnetic otherwise^ Free space, air, and materials
with Xm = 0 (or fir = 1) are regar3eTas"fT61imagnetic.

Roughly speaking, magnetic materials may be grouped into three major classes: dia-
magnetic, paramagnetic, and ferromagnetic. This rough classification is depicted in
Figure 8.13. A material is said to be diamagnetic if it has \xr S 1 (i.e., very small nega-
tive Xm)- It is paramagnetic if pr S 1 (i.e., very small positive xm)- If Mr ^ 1 (i-e-> verY
large positive xm)> the material is ferromagnetic. Table B.3 in Appendix B presents the
values fir for some materials. From the table, it is apparent that for most practical purposes
we may assume that \ir — 1 for diamagnetic and paramagnetic materials. Thus, we may
regard diamagnetic and paramagnetic materials as linear and nonmagnetic. Ferromagnetic
materials are always nonlinear and magnetic except when their temperatures are above
curie temperature (to be explained later). The reason for this will become evident as we
more closely examine each of these three types of magnetic materials.

Diamagnetism occurs in materials where the magnetic fields due to electronic motions
of orbiting and spinning completely cancel each other. Thus, the permanent (or intrinsic)
magnetic moment of each atom is zero and the materials are weakly affected by a magnetic
field. For most diamagnetic materials (e.g., bismuth, lead, copper, silicon, diamond,
sodium chloride), xm is of the order of - 1(T5. In certain types of materials called super-
conductors at temperatures near absolute zero, "perfect diamagnetism" occurs: xm

 = ~ 1
or jjir = 0 and B = 0. Thus superconductors cannot contain magnetic fields.2 Except for
superconductors, diamagnetic materials are seldom used in practice. Although the diamag-
netic effect is overshadowed by other stronger effects in some materials, all materials
exhibit diamagnetism.

Materials whose atoms have nonzero permanent magnetic moment may be paramag-
netic or ferromagnetic. Paramagnetism occurs in materials where the magnetic fields pro-

Magnetic Materials

Linear

Diamagnetics

Xm<0, M r s 1.0

Paramagnetics

Xm > 0, fir a

Nonlinear

Ferromagnetics

Xm » 0, nr a>

Figure 8.13 Classification of magnetic materials.

2An excellent treatment of superconductors is found in M. A. Plonus, Applied Electromagnetics.
New York: McGraw-Hill, 1978, pp. 375-388. Also, the August 1989 issue of the Proceedings of
IEEE is devoted to superconductivity.
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duced by orbital and spinning electrons do not cancel completely. Unlike diamagnetism,
paramagnetism is temperature dependent. For most paramagnetic materials (e.g., air, plat-
inum, tungsten, potassium), \m is ofthe order +10~5 to +10~3 and is temperature depen-
dent. Such materials find application in masers.

Ferromagnetism occurs in materials whose atoms have relatively large permanent
magnetic moment. They are called ferromagnetic materials because the best known
member is iron. Other members are cobalt, nickel, and their alloys. Ferromagnetic materi-
als are very useful in practice. As distinct from diamagnetic and paramagnetic materials,
ferromagnetic materials have the following properties:

1. They are capable of being magnetized very strongly by a magnetic field.
2. They retain a considerable amount of their magnetization when removed from the

field.
3. They lose their ferromagnetic properties and become linear paramagnetic materials

when the temperature is raised above a certain temperature known as the curie tem-
perature. Thus if a permanent magnet is heated above its curie temperature (770°C
for iron), it loses its magnetization completely.

4. They are nonlinear; that is, the constitutive relation B = /xo/irH does not hold for
ferromagnetic materials because \x.r depends on B and cannot be represented by a
single value.

Thus, the values of /xr cited in Table B.3 for ferromagnetics are only typical. For example,
for nickel \x.r = 50 under some conditions and 600 under other conditions.

As mentioned in Section 5.9 for conductors, ferromagnetic materials, such as iron and
steel, are used for screening (or shielding) to protect sensitive electrical devices from dis-
turbances from strong magnetic fields. A typical example of an iron shield is shown in
Figure 8.14(a) where the compass is protected. Without the iron shield, the compass gives
an erroneous reading due to the effect of the external magnetic field as in Figure 8.14(b).
For perfect screening, it is required that the shield have infinite permeability.

Even though B = juo(H + M) holds for all materials including ferromagnetics, the
relationship between B and H depends on previous magnetization of a ferromagnetic

Iron shield

(N-»-) *
s I)(

(b)

Figure 8.14 Magnetic screening: (a) iron shield protecting a small compass,
(b) compass gives erroneous reading without the shield.
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material—its "magnetic history." Instead of having a linear relationship between B and H
(i.e., B = fiH), it is only possible to represent the relationship by a magnetization curve or
B-H curve.

A typical B-H curve is shown in Figure 8.15. First of all, note the nonlinear relation-
ship between B and H. Second, at any point on the curve, fi is given by the ratio B/H and
not by dB/dH, the slope of the curve.

If we assume that the ferromagnetic material whose B-H curve.in Figure 8.15 is ini-
tially unmagnetized, as H increases (due to increase in current) from O to maximum
applied field intensity Hm.dX, curve OP is produced. This curve is referred to as the virgin or
initial magnetization curve. After reaching saturation at P, if H is decreased, B does not
follow the initial curve but lags behind H. This phenomenon of B lagging behind H is
called hysteresis (which means "to lag" in Greek).

If H is reduced to zero, B is not reduced to zero but to Bn which is referred to as the
permanent flux density. The value of Br depends on //max, the maximum applied field in-
tensity. The existence of Br is the cause of having permanent magnets. If H increases neg-
atively (by reversing the direction of current), B becomes zero when H becomes Hc, which
is known as the coercive field intensity. Materials for which Hc is small are said to be mag-
netically hard. The value of Hc also depends on Hmm.

Further increase in H in the negative direction to reach Q and a reverse in its direction
to reach P gives a closed curve called a hysteresis loop. The shape of hysteresis loops
varies from one material to another. Some ferrites, for example, have an almost rectangu-
lar hysteresis loop and are used in digital computers as magnetic information storage
devices. The area of a hysteresis loop gives the energy loss (hysteresis loss) per unit
volume during one cycle of the periodic magnetization of the ferromagnetic material. This
energy loss is in the form of heat. It is therefore desirable that materials used in electric
generators, motors, and transformers should have tall but narrow hysteresis loops so that
hysteresis losses are minimal.

Initial
magnetization
curve

Figure 8.15 Typical magnetization (B-H) curve.
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EXAMPLE 8.7
Region 0 ^ z — 2 m is occupied by an infinite slab of permeable material (/xr = 2.5). If
B = \0y&x — 5xay mWb/m2 within the slab, determine: (a) J, (b) ih, (c) M, (d) Kb on
z = 0.

Solution:

(a) By definition,

J = V X H = V X B 1

4ir X 10"'(2.5) V dx dy

dB,
a

106

( - 5 - 10)10 X = -4.775azkA/mz

(b) h = XmJ = (Mr - DJ = 1.5(-4.775az) • 103

= -7.163a7kA/m2

(c) M = XmH =
B 1.5(10yax - 5xay) • 10

Air X 10"7(2.5)

- 3

= 4.775vax - 2.387xav kA/m
(d) Kb = M X an. Since z = 0 is the lower side of the slab occupying 0 < z ^ 2,
an = — az. Hence,

Kb = (4.775jax - 2.387xav) X (-a,)
= 2.387xax + 4.775jaT'kA/m

PRACTICE EXERCISE 8.7

In a certain region (/i = 4.6/x0),

find: (a) Xm, (b) H, (c) M.

B = We~\ mWb/m2

Answer: (a) 3.6, (b) mOe^a, A/m, (c) 6228e"yaz A/m.

8.7 MAGNETIC BOUNDARY CONDITIONS

We define magnetic boundary conditions as the conditions that H (or B) field must satisfy
at the boundary between two different media. Our derivations here are similar to those in
Section 5.9. We make use of Gauss's law for magnetic fields

B • dS = 0 (8.38)
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and Ampere's circuit law

H • d\ = I 3.39)

Consider the boundary between two magnetic media 1 and 2, characterized, respec-
tively, by ix{ and /x2 as in Figure 8.16. Applying eq. (8.38) to the pillbox (Gaussian surface)
of Figure 8.16(a) and allowing Ah —> 0, we obtain

ln AS - B2n AS = (8.40)

Thus

or (8.41)

since B = ^H. Equation (8.41) shows that the normal component of B is continuous at the
boundary. It also shows that the normal component of H is discontinuous at the boundary;
H undergoes some change at the interface.

Similarly, we apply eq. (8.39) to the closed path abcda of Figure 8.16(b) where
surface current K on the boundary is assumed normal to the path. We obtain

Ah
\n ' ~~Z I" H2n

Ah

As Ah -> 0, eq. (8.42) leads to

H Aw H M H Ak

Hit H2, — K

(8.42)

(8.43)

f
H,

(a) (b)

Figure 8.16 Boundary conditions between two magnetic media: (a) for B, (b) for H.
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This shows that the tangential component of H is also discontinuous. Equation (8.43) may
be written in terms of B as

— = K (8.44)

In the general case, eq. (8.43) becomes

(H, - H2) X an l2 = K (8.45)

where anl2 is a unit vector normal to the interface and is directed from medium 1 to
medium 2. If the boundary is free of current or the media are not conductors (for K is free
current density), K — 0 and eq. (8.43) becomes

I H l r - H2, or (8.46)

Thus the tangential component of H is continuous while that of B is discontinuous at the
boundary.

If the fields make an angle 6 with the normal to the interface, eq. (8.41) results in

cos 0[ = Bln = B2n = B2 cos

while eq. (8.46) produces

Mi

B2

sin 0, = Hu = H2t = — sin 62

(8.47)

(8.48)

Dividing eq. (8.48) by eq. (8.47) gives

r tan I

tan02
(8.49)

which is [similar to eq. (5.65)] the law of refraction for magnetic flux lines at a boundary
with no surface current.

EXAMPLE 8.8 Given that H! = -2a x + 6ay + 4az A/m in region y - x - 2 < 0 where /*] = 5/*0, cal-
culate

(a) M, and B,

(b) H2 and B2 in region y - x - 2 > 0 where ju2 = 2;ito

Solution:

Since j - x - 2 = 0 i s a plane, y - x < 2 o r y < x + 2 i s region 1 in Figure 8.17. A
point in this region may be used to confirm this. For example, the origin (0, 0) is in this
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Figure 8.17 For Example 8.8.

region since 0 - 0 - 2 < 0. If we let the surface of the plane be described by j{x, y) =
y — x — 2, a unit vector normal to the plane is given by

(a) M,

= ay - a*

V~2
= ( / M - 1)H, = ( 5 - lX-2 ,6 ,4 )

+ 24av, + 16a7 A/m

(b) HlB = (H! • aB)aB = | ( -2 ,6 ,4)

B, = ^JHJ = Aio/nnH, = 4TT X 10"7(5)(-2, 6,4)
= -12.57a* + 37.7ay + 25.13a,/iWb/m2

( -1 ,1 ,0)1 ( -1 ,1 ,0)

Vl J V2

But

Hence,

— Hln + Hlf

Ult = H, - Hln = (-2, 6, 4) - (-4,4, 0)
= 2ar + 2av + 4a7

Using the boundary conditions, we have

H2, = H u = 4az

or

H2n = — HIB = | ( -4a , + 4ay) = -10a* + 10a,
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Thus

H 2 = H2n + H2, = - 8 a x + 12av + 4a. A/m

and

B 2 = fi2H2 = jxojxr2n2 = (4TT X 10 7 ) (2 ) ( -8 , 12, 4)
= -20 .11a , + 30.16ay + 10.05a.

PRACTICE EXERCISE 8.8

Region 1, described by 3x + Ay > 10, is free space whereas region 2, described by
3x + Ay < 10, is a magnetic material for which /* = J OJU0. Assuming that the
boundary between the material and free space is current free find B7 if B, =
0.1a,+ 0.4av +0.2a. Wb/m2

Answer: -1.052a, + 1.264a,. + 2az Wb/m2

EXAMPLE 8.9 The xy-plane serves as the interface between two different media. Medium 1 (z < 0) is
filled with a material whose Mr = 6, and medium 2 (z > 0) is filled with a material whose
Hr = 4. If the interface carries current (1/Mo) av mA/m, and B2 = 5a, + 8a mWb/m2 find
HiandB,.

Solution:

In the previous example K = 0, so eq. (8.46) was appropriate. In this example, however,
K # 0, and we must resort to eq. (8.45) in addition to eq. (8.41). Consider the problem as
illustrated in Figure 8.18. Let B, = (Bx, By, Bz) in mWb/m2.

But

[2) nr2=4

Bin = B2 n

(5a,

K
-» -y

B7 = 8

mA/m

Figure 8.18 For Example 8.9.

(8.8.1)

(8.8.2)
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and

H, =
B, 1

{Bxax + Byay + Bzaz) mA/m (8.8.3)

Having found the normal components, we can find the tangential components using

(H, - H2) X anl2 = K

or

H, X anl2 = H2 X aBl2 + K (8.8.4)

Substituting eqs. (8.8.2) and (8.8.3) into eq. (8.8.4) gives

— ( B A + 5vay + Bzaz) X az = —- (5a, + 8az) X a, + — av
6^ ' 4/x M

Equating components yields

By = 0, :

From eqs. (8.8.1) and (8.8.5),

- 5
4

o r

6
T
4

B, = 1.5a,, + 8azmWb/m2

H, = — = — (0.25ax + 1.33a,) mA/m
Ml Mo

and

(8.8.5)

H2 = — (1.25a* + 2az) mA/m
Mo

Note that Hlx is (1//O mA/m less than H2x due to the current sheet and also that
Bin = B2n.

PRACTICE EXERCISE 8.9

A unit normal vector from region 2 {ft, = 2MO) to region 1 {ft, = Mo) is a«2i =

(6ax + 2a, - 3az)/7. If H, = \0ax + ay + 12az A/m and H2 =
4az A/m, determine

(a) H ^

(b) The surface current density K on the interface

(c) The angles Bj and B2 make with the normal to the interface.

- 5ay +

Answer: (a) 5.833, (b) 4.86a* - 8.64a. + 3.95a, A/m, (c)76.27°, 77.62°.
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8.8 INDUCTORS AND INDUCTANCES

A circuit (or closed conducting path) carrying current / produces a magnetic field B which
causes a flux ¥* = J B • dS to pass through each turn of the circuit as shown in Figure 8.19.
If the circuit has N identical turns, we define the flux linkage X as

X = NY (8.50)

Also, if the medium surrounding the circuit is linear, the flux linkage X is proportional to
the current / producing it; that is,

or X = (8.51)

where Lisa constant of proportionality called the inductance of the circuit. The inductance
L is a property of the physical arrangement of the circuit. A circuit or part of a circuit that
has inductance is called an inductor. From eqs. (8.50) and (8.51), we may define induc-
tance L of an inductor as the ratio of the magnetic flux linkage X to the current / through the
inductor; that is,

X
(8.52)

The unit of inductance is the henry (H) which is the same as webers/ampere. Since the
henry is a fairly large unit, inductances are usually expressed in millihenrys (mH).

The inductance denned by eq. (8.52) is commonly referred to as self-inductance since
the linkages are produced by the inductor itself. Like capacitances, we may regard induc-
tance as a measure of how much magnetic energy is stored in an inductor. The magnetic
energy (in joules) stored in an inductor is expressed in circuit theory as:

Wm = ^L (8.53)

Figure 8.19 Magnetic field B produced by a circuit.
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or

L — — (8.54)

Thus the self-inductance of a circuit may be defined or calculated from energy considera-
tions.

If instead of having a single circuit we have two circuits carrying current I\ and I2 as
shown in Figure 8.20, a magnetic interaction exists between the circuits. Four component
fluxes ^ n , f|2, V 21, and f22

 a r e produced. The flux "f \2, for example, is the flux passing
through circuit 1 due to current I2 in circuit 2. If B2 in the field due to I2 and S\ is the area
of circuit 1, then

(8.55)

We define the mutual inductance Mn as the ratio of the flux linkage X12 = N{fu on circuit
1 to current I2, that is,

! .. x12
12 = T =

I i

(8.56)

Similarly, the mutual inductance M2\ is defined as the flux linkages of circuit 2 per unit
current /,; that is,

M7I =
h /,

(8.57a)

It can be shown by using energy concepts that if the medium surrounding the circuits is
linear (i.e., in the absence of ferromagnetic material),

M12 = M2{ (8.57b)

The mutual inductance Mi2 or M2l is expressed in henrys and should not be confused with
the magnetization vector M expressed in amperes/meter.

Figure 8.20 Magnetic interaction between
two circuits.



338 B Magnetic Forces, Materials, and Devices

We define the self-inductance of circuits 1 and 2, respectively, as

L = x,, _ w
(8.58)

and

U = x,22 (8.59)

where V, = + + ¥^2-The total energy in the magnetic field is the
sum of the energies due to Lh L2, andMI2 (orM21); that is,

Wm = W2 + W12

2 + ~L2I
2
2 (8.60)

The positive sign is taken if currents /] and I2 flow such that the magnetic fields of the two
circuits strengthen each other. If the currents flow such that their magnetic fields oppose
each other, the negative sign is taken.

As mentioned earlier, an inductor is a conductor arranged in a shape appropriate to
store magnetic energy. Typical examples of inductors are toroids, solenoids, coaxial trans-
mission lines, and parallel-wire transmission lines. The inductance of each of these induc-
tors can be determined by following a procedure similar to that taken in determining the
capacitance of a capacitor. For a given inductor, we find the self-inductance L by taking
these steps:

1. Choose a suitable coordinate system.
2. Let the inductor carry current /.
3. Determine B from Biot-Savart's law (or from Ampere's law if symmetry exists)

and calculate f from V = / B • dS.
X NY

4. Finally find L from L = — = .

The mutual inductance between two circuits may be calculated by taking a similar proce-
dure.

In an inductor such as a coaxial or a parallel-wire transmission line, the inductance
produced by the flux internal to the conductor is called the internal inductance L-m while
that produced by the flux external to it is called external inductance Lext. The total induc-
tance L is

Mn ' ^e\l

Just as it was shown that for capacitors

e
RC = -

a

(8.61)

(6.35)
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(8.62)

Thus Lext may be calculated using eq. (8.62) if C is known.
A collection of formulas for some fundamental circuit elements is presented in Table

8.3. All formulas can be derived by taking the steps outlined above.3

8.9 MAGNETIC ENERGY

Just as the potential energy in an electrostatic field was derived as

eE dvWE = - D • E dv = ~ (4.96)

we would like to derive a similar expression for the energy in a magnetostatic field. A
simple approach is using the magnetic energy in the field of an inductor. From eq. (8.53),

(8.53)

The energy is stored in the magnetic field B of the inductor. We would like to express
eq. (8.53) in terms of B or H.

Consider a differential volume in a magnetic field as shown in Figure 8.21. Let the
volume be covered with conducting sheets at the top and bottom surfaces with current A/.

conducting
sheets

Figure 8.21 A differential volume
in a magnetic field.

'Additional formulas can be found in standard electrical handbooks or in H. Knoepfel, Pulsed High
Magnetic Fields. Amsterdam: North-Holland, 1970, pp. 312-324.
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TABLE 8.3 A Collection of Formulas for Inductance of Common Elements

1. Wire

L

L =
877

2.

3.

Hollow

L = —
2TI

€»a

Parallel

L = —-
IT

cylinder

' \ a

wires

f J
- l n -

(3

4. Coaxial conductor

L = In -
7T a

5. Circular loop

ii ^ 1 In — — 2
2TT \ d

€ = 27rpo, po » d

6. Solenoid

L =

7. Torus (of circular cross section)

L = voN
2[Po - Vp2

o - a2]
2.1

8. Sheet

L = /to 2€ /«
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We assume that the whole region is filled with such differential volumes. From eq. (8.52),
each volume has an inductance

AL =
AT tiHAxAz

A/ A/

where A/ = H Ay. Substituting eq. (8.63) into eq. (8.53), we have

AWm = -AL A/2 = - iiH2 Ax Ay Az

or

_ l 2
m j

The magnetostatic energy density wm (in J/m3) is defined as

AWm 1 .. ,
wm = lim

Av->0 Av

Hence,

1 , 1 B2

2 2 2/*

Thus the energy in a magnetostatic field in a linear medium is

Wm= wmdv

or

which is similar to eq. (4.96) for an electrostatic field.

(8.63)

(8.64)

(8.65)

(8.66)

EXAMPLE 8.10
Calculate the self-inductance per unit length of an infinitely long solenoid.

Solution:

We recall from Example 7.4 that for an infinitely long solenoid, the magnetic flux inside
the solenoid per unit length is

B = nH = uln
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where n = N/€ = number of turns per unit length. If S is the cross-sectional area of the so-
lenoid, the total flux through the cross section is

Y = BS =

Since this flux is only for a unit length of the solenoid, the linkage per unit length is

X' = - = nV = im2IS

and thus the inductance per unit length is

L X' ,

V = /xn2S H/m

PRACTICE EXERCISE 8.10

A very long solenoid with 2 X 2 cm cross section has an iron core (p,r - 1000) and
4000 turns/meter. If it carries a current of 500 mA, find

(a) Its self-inductance per meter

(b) The energy per meter stored in its field

Answer: (a) 8.042 H/m, (b) 1.005 J/m.

EXAMPLE 8.11 Determine the self-inductance of a coaxial cable of inner radius a and outer radius b.

Solution:

The self-inductance of the inductor can be found in two different ways: by taking the four
steps given in Section 8.8 or by using eqs. (8.54) and (8.66).

Method 1: Consider the cross section of the cable as shown in Figure 8.22. We recall
from eq. (7.29) that by applying Ampere's circuit law, we obtained for region
1 (0 < p < a),

and for region 2 (a < p < b),

B , - - j a<*
2-wa
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© z-axis

(a) (b)

Figure 8.22 Cross section of the coaxial cable: (a) for region 1,
0 < p < a, (b) for region 2, a < p < b; for Example 8.11.

We first find the internal inductance Lin by considering the flux linkages due to the inner
conductor. From Figure 8.22(a), the flux leaving a differential shell of thickness dp is

dYi = 5, dp dz = - ~ dp dz
2ira

The flux linkage is dxPl multiplied by the ratio of the area within the path enclosing the flux
to the total area, that is,

because / is uniformly distributed over the cross section for d.c. excitation. Thus, the total
flux linkages within the differential flux element are

flip dp dz

lira2 a2

For length € of the cable,

X, = r dp dz
8TT

/ 8TT

The internal inductance per unit length, given by

m i H/m

(8.11.1)

(8.11.2)

is independent of the radius of the conductor or wire. Thus eqs. (8.11.1) and (8.11.2) are also
applicable to finding the inductance of any infinitely long straight conductor of finite radius.
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We now determine the external inductance Lext by considering the flux linkages
between the inner and the outer conductor as in Figure 8.22(b). For a differential shell of
thickness dp,

df2 = B2 dp dz
2-Kp

dp dz

In this case, the total current / is enclosed within the path enclosing the flux. Hence,

X, =
p=a Jz=0

al dp dz i"/€ , b
= In —

2irp 2-K a

_ \ 2 _ ^ b
L e x t ~ I ~ 2* a

Thus

\

or the inductance per length is

H/m

Method 2: It is easier to use eqs. (8.54) and (8.66) to determine L, that is,

2W

where

or L =

1 f B1

I H dv = —dv
2

Hence

2 [B\ 2T2 2

— — p dp d(j) dz
4TT a

= - ^ - r dz dct> p 3 dp =
0 J0 J0

8TT

^ P 6?P d<t> dz
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and

as obtained previously.

PRACTICE EXERCISE 8.11

Calculate the self-inductance of the coaxial cable of Example 8.11 if the inner con-
ductor is made of an inhomogeneous material having a = 2aJ{\ + p).

aot uj \ b (1 + b)
Answer: 1 In In

8TT IT I a (1 + a)

EXAMPLE 8.12 Determine the inductance per unit length of a two-wire transmission line with separation
distance d. Each wire has radius a as shown in Figure 6.37.

Solution:

We use the two methods of the last example.

Method 1: We determine Lin just as we did in the last example. Thus for region
0<p<a,we obtain

_ alt

as in the last example. For region a < p < d - a, the flux linkages between the wires are
cd—a /*€ T rt) jX2 =

The flux linkages produced by wire 1 are

dp dz = —- In
2TT a

X, + \? =
alt alt d- a

1 In
8TT 2TT a

By symmetry, the same amount of flux produced by current —/ in wire 2. Hence the total
linkages are

X 2(Xi+X2) [
If d 5s> a, the self-inductance per unit length is

H/m
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Method 2: From the last example,

Lm ~ 8

Now

B2dv 1 {[[ ii2!2

L e x t I2) 2» l \

dz

^ p dp d(j) dz

d—a

2ir a

Since the two wires are symmetrical,

L = 2 (Lin + Lext)

as obtained previously.

PRACTICE EXERCISE 8.12

Two #10 copper wires (2.588 mm in diameter) are placed parallel in air with a sepa-
ration distance d between them. If the inductance of each wire is 1.2 jiiH/m, calculate

(a) Lin and Lext per meter for each wire

(b) The separation distance d

Answer: (a) 0.05,1.15 juH/m, (b) 40.79 cm.

EXAMPLE 8.13
Two coaxial circular wires of radii a and b(b > a) are separated by distance h(h ^> a, b)
as shown in Figure 8.23. Find the mutual inductance between the wires.

Solution:

Let current /, flow in wire 1. At an arbitrary point P on wire 2, the magnetic vector poten-
tial due to wire 1 is given by eq. (8.21a), namely

A , =
A[h2 + b2f2

If/i » b

b
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Figure 8.23 Two coaxial circular wires; for Example
8.13.

Hence,

and

u;
,21.2

• d\2 =
4/r'

/x7r/,a b

~2h3

lbl

PRACTICE EXERCISE 8.13

Find the mutual inductance of two coplanar concentric circular loops of radii 2 m
and 3 m.

Answer: 2.632 /*H.

8.10 MAGNETIC CIRCUITS

The concept of magnetic circuits is based on solving some magnetic field problems using
circuit approach. Magnetic devices such as toroids, transformers, motors, generators, and
relays may be considered as magnetic circuits. The analysis of such circuits is made simple
if an analogy between magnetic circuits and electric circuits is exploited. Once this is done,
we can directly apply concepts in electric circuits to solve their analogous magnetic circuits.

The analogy between magnetic and electric circuits is summarized in Table 8.4 and
portrayed in Figure 8.24. The reader is advised to pause and study Table 8.4 and Figure
8.24. First, we notice from the table that two terms are new. We define the magnetomotive
force (mmf) 9* (in ampere-turns) as

(8.67)
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TABLE 8.4 Analogy between Electric and Magnetic
Circuits

Electric

Conductivity a

Field intensity E

Current / = / J • dS

Current density J = — = oE

Electromotive force (emf) V
Resistance R

Conductance G = —
R

V (
Ohm's law R = — = —

or V = E( = IR

Kirchoff's laws:
E / = 0

J. V - 2 RI = 0

Magnetic

Permeability /j

Field intensity H

Magnetic flux V = / B • dS

Flux density B = — = fiH

Magnetomotive force (mmf) 9
Reluctance 2ft

Permeance 9* = —
gft

Ohm's law gft = — = —

or 9 = Hi = » = Nl

Kirchhoff's laws:

The source of mmf in magnetic circuits is usually a coil carrying current as in Figure 8.24.
We also define reluctance 2ft (in ampere-turns/weber) as

(8.68)

where € and S are, respectively, the mean length and the cross-sectional area of the mag-
netic core. The reciprocal of reluctance is permeance (3>. The basic relationship for circuit
elements is Ohm's law (V = IR):

(8.69)

Based on this, Kirchhoff's current and voltage laws can be applied to nodes and loops of a
given magnetic circuit just as in an electric circuit. The rules of adding voltages and for

Figure 8.24 Analogy between
(a) an electric circuit, and (b) a
magnetic circuit.

(a) (b)



8.11 FORCE ON MAGNETIC MATERIALS 349

combining series and parallel resistances also hold for mmfs and reluctances. Thus for n
magnetic circuit elements in series

and

3? = 3%,

For n magnetic circuit elements in parallel,

and

(8.70)

(8.71)

(8.72)

(8.73)

Some differences between electric and magnetic circuits should be pointed out. Unlike
an electric circuit where current / flows, magnetic flux does not flow. Also, conductivity a
is independent of current density J in an electric circuit whereas permeability JX varies with
flux density B in a magnetic circuit. This is because ferromagnetic (nonlinear) materials
are normally used in most practical magnetic devices. These differences notwithstanding,
the magnetic circuit concept serves as an approximate analysis of practical magnetic
devices.

8.11 FORCE ON MAGNETIC MATERIALS

It is of practical interest to determine the force that a magnetic field exerts on a piece of
magnetic material in the field. This is useful in electromechanical systems such as electro-
magnets, relays, rotating machines, and magnetic levitation. Consider, for example, an
electromagnet made of iron of constant relative permeability as shown in Figure 8.25. The
coil has N turns and carries a current /. If we ignore fringing, the magnetic field in the air
gap is the same as that in iron (Bln = B2n). To find the force between the two pieces of iron,
we calculate the change in the total energy that would result were the two pieces of the
magnetic circuit separated by a differential displacement d\. The work required to effect

dlA

Figure 8.25 An electromagnet.

/2F
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the displacement is equal to the change in stored energy in the air gap (assuming constant
current), that is

1 B
-Fdl = dWm = 2 | Sdl

2 Mo
(8.74)

where S is the cross-sectional area of the gap, the factor 2 accounts for the two air gaps, and
the negative sign indicates that the force acts to reduce the air gap (or that the force is at-
tractive). Thus

F = -2
B2S

(8.75)

Note that the force is exerted on the lower piece and not on the current-carrying upper
piece giving rise to the field. The tractive force across a single gap can be obtained from
eq. (8.75) as

F = -
B2S

(8.76)

Notice the similarity between eq. (8.76) and that derived in Example 5.8 for electrostatic
case. Equation (8.76) can be used to calculate the forces in many types of devices includ-
ing relays, rotating machines, and magnetic levitation. The tractive pressure (in N/m2) in a
magnetized surface is

P
F

S

B1

(8.77)

which is the same as the energy density wm in the air gap.

EXAMPLE 8.14
The toroidal core of Figure 8.26(a) has po = 10 cm and a circular cross section with
a = 1 cm. If the core is made of steel (/x = 1000 /io) and has a coil with 200 turns, calcu-
late the amount of current that will produce a flux of 0.5 mWb in the core.

(a) (b)

Figure 8.26 (a) Toroidal core of Example 8.14; (b) its equivalent elec-
tric circuit analog.
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Solution:

This problem can be solved in two different ways: using the magnetic field approach
(direct), or using the electric circuit analog (indirect).

Method 1: Since p0 is large compared with a, from Example 7.6,

UNI _ floHrNI

Hence,

B =

= BS =
HolirNI tea

2TTP0

or

8TT

_ 2(10 X 10~2)(0.5 X 10~3)

~ 4TT X 10~7(1000)(200)(l X 10

= 3.979 A

Method 2: The toroidal core in Figure 8.26(a) is analogous to the electric circuit of
Figure 8.26(b). From the circuit and Table 8.4.

or

/ = = 3.979 A

as obtained previously.

PRACTICE EXERCISE 8.14

A conductor of radius a is bent into a circular loop of mean radius po (see Figure
8.26a). If p0 = 10 cm and 2a - 1 cm, calculate the internal inductance of the loop.

Answer: 31.42 nH.

EXAMPLE 8.15 In the magnetic circuit of Figure 8.27, calculate the current in the coil that will produce a
magnetic flux density of 1.5 Wb/m in the air gap assuming that fi = 50/xo and that all
branches have the same cross-sectional area of 10 cm2.
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Figure 8.27 Magnetic circuit of Exam-
ple 8.15.

10 cm

Solution:

The magnetic circuit of Figure 8.27 is analogous to the electric circuit of Figure 8.28. In
Figure 8.27, Sft,, 2ft2, 2/l3, and <3la are the reluctances in paths 143, 123, 35 and 16, and 56
(air gap), respectively. Thus

(3i,='3i7 =

3 X 10s

30 X 10~z

(4TT X 10 7)(50)(10 X

20TT

9 X 10"
3 (4TT X 10~7)(50)(10 X

1 X 10~2

0.9 X 10s

20TT

5 X 10,8

'J"a ~ (4,r x 10"7)(l)(10 X 10~4) ~ 20ir

We combine 91, and 9l2 as resistors in parallel. Hence,

„ ,,„ 2ft,2ft7 2/1, 1.5 X 108

The total reluctance is

20x

7.4 X 108

91,

(a) (b)

Figure 8.28 Electric circuit analog of the magnetic circuit in
Figure 8.27.
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The

But

mmf is

r.-r = BaS. Hence

i a

1 —

= 44

52ft

N
.16

T

A

= NI = YJ

1.5 X 10 X 10~4 X 7.4 X 108

400 X 20TT

PRACTICE EXERCISE 8.15

The toroid of Figure 8.26(a) has a coil of 1000 turns wound on its core. If
p 0 = 10 cm and a = 1 cm, what current is required to establish a magnetic flux of
0.5 mWb

(a) If the core is nonmagnetic

(b) If the core has /xr = 500

Answer: (a) 795.8 A, (b) 1.592 A.

EXAMPLE 8.16 A U-shaped electromagnet shown in Figure 8.29 is designed to lift a 400-kg mass (which
includes the mass of the keeper). The iron yoke (jxr = 3000) has a cross section of 40 cm2

and mean length of 50 cm, and the air gaps are each 0.1 mm long. Neglecting the reluc-
tance of the keeper, calculate the number of turns in the coil when the excitation current
is 1 A.

Solution:

The tractive force across the two air gaps must balance the weight. Hence

F = 2
(B2

aS)
= mg

NI Figure 8.29 U-shaped electromagnet; for Example 8.16.

- iron yoke

- keeper

' weisht
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or

But

Since

mgno _ 400 X 9.8 X 4TT X 10 - i

S 40 X

Bn = 1.11 Wb/m2

cm = ZJL =ta 2 X 0.1 10- 3 10b

Air X 10 7 X 40 X 10 4

50 X 10~2

48TT

4TT X 10"' X 3000 X 40 X 10~

3? = NI = —NI
6 + 5 11

5 X 10"

48TT

P-o

11 L

7V= 162

11 X 1.11 X 0.1 X 10

6 X 4TT X 10~7 X 1

PRACTICE EXERCISE 8.16

Find the force across the air gap of the magnetic circuit of Example 8.15.

Answer: 895.2 N.

SUMMARY 1. The Lorentz force equation

F = g(E + u X B) = m
du
dt

relates the force acting on a particle with charge Q in the presence of EM fields. It ex-
presses the fundamental law relating EM to mechanics.

2. Based on the Lorentz force law, the force experienced by a current element Idl in a
magnetic field B is

dV = Idl X B

From this, the magnetic field B is defined as the force per unit current element.
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3. The torque on a current loop with magnetic moment m in a uniform magnetic field B is

T = m X B = ISan X B

4. A magnetic dipole is a bar magnet or a small filamental current loop; it is so called due
to the fact that its B field lines are similar to the E field lines of an electric dipole.

5. When a material is subjected to a magnetic field, it becomes magnetized. The magne-
tization M is the magnetic dipole moment per unit volume of the material. For linear
material,

where \m is the magnetic susceptibility of the material.
6. In terms of their magnetic properties, materials are either linear (diamagnetic or para-

magnetic) or nonlinear (ferromagnetic). For linear materials,

B = ,xH = = /xo(l + + M)

where /x = permeability and \xr = \il\xo = relative permeability of the material. For
nonlinear material, B = fi(H) H, that is, JX does not have a fixed value; the relationship
between B and H is usually represented by a magnetization curve.

7. The boundary conditions that H or B must satisfy at the interface between two differ-
ent media are

(H, - H2) X anl2 = K or Hu = H2/ if K = 0

where anl2 is a unit vector directed from medium 1 to medium 2.
8. Energy in a magnetostatic field is given by

Wm = - | B Udv

For an inductor carrying current /

= Vm 2

Thus the inductance L can be found using

L =
B -Hdv

9. The inductance L of an inductor can also be determined from its basic definition: the
ratio of the magnetic flux linkage to the current through the inductor, that is,

_ X NY
~ I ~ I
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Thus by assuming current /, we determine B and !P = / B • dS, and finally find

L = NY/I.
10. A magnetic circuit can be analyzed in the same way as an electric circuit. We simply

keep in mind the similarity between

= NI= 4> H = TO and V= IR

that is,

Thus we can apply Ohms and Kirchhoff's laws to magnetic circuits just as we apply
them to electric circuits.

11. The magnetic pressure (or force per unit surface area) on a piece of magnetic material is

F 1
~ = ~
S 2

B2

—
2/xo

where B is the magnetic field at the surface of the material.

8.1 Which of the following statements are not true about electric force Fe and magnetic force
Fm on a charged particle?

(a) E and Fc are parallel to each other whereas B and Fm are perpendicular to each other.

(b) Both Fe and Fm depend on the velocity of the charged particle.

(c) Both Fe and ¥m can perform work.

(d) Both Fc and Fm are produced when a charged particle moves at a constant velocity.

(e) Fm is generally small in magnitude compared to Fe.

(f) Fe is an accelerating force whereas Fm is a purely deflecting force.

8.2 Two thin parallel wires carry currents along the same direction. The force experienced by
one due to the other is

(a) Parallel to the lines

(b) Perpendicular to the lines and attractive

(c) Perpendicular to the lines and repulsive

(d) Zero

8.3 The force on differential length d\ at point P in the conducting circular loop in Figure
8.30 is

(a) Outward along OP

(b) Inward along OP
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Q Figure 8.30 For Review Questions 8.3 and 8.4.

O

O

O

(c) In the direction of the magnetic field

(d) Tangential to the loop at P

8.4 The resultant force on the circular loop in Figure 8.30 has the magnitude of

(a) 2wpJB

(b) irpllB

(c) 2PJB

(d) Zero

8.5 What is the unit of magnetic charge?

(a) Ampere-meter square

(b) Coulomb

(c) Ampere

(d) Ampere-meter

8.6 Which of these materials requires the least value of magnetic field strength to magne-
tize it?

(a) Nickel

(b) Silver

(c) Tungsten

(d) Sodium chloride

8.7 Identify the statement that is not true of ferromagnetic materials.

(a) They have a large \m.

(b) They have a fixed value of fir.

(c) Energy loss is proportional to the area of the hysteresis loop.

(d) They lose their nonlinearity property above the curie temperature.
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8.8 Which of these formulas is wrong?

(a) Bu,= B2n

(b) B2 = Vfi2,, + B\,

(c) // , = //„, + Hu

(d) a,,2i X (H t — H2) = K, where an2i is a unit vector normal to the interface and di-
rected from region 2 to region 1.

8.9 Each of the following pairs consists of an electric circuit term and the corresponding mag-
netic circuit term. Which pairs are not corresponding?

(a) V and S5

(b) GandSP

(c) e and n

(d) IR and tf9l

(e) 2 / = 0 and 2 f = 0

8.10 A multilayer coil of 2000 turns of fine wire is 20 mm long and has a thickness 5 mm of
winding. If the coil carries a current of 5 mA, the mmf generated is

(a) lOA-t

(b) 500 A-t

(c) 2000 A-t

(d) None of the above

Answers: 8.1 b,c, 8.2b, 8.3a, 8.4d, 8.5d, 8.6a, 8.7b, 8.8c, 8.9c,d, 8.10a.

PROBLEMS
• 8.1 An electron with velocity u = (3ar + 12aY — 4az) X 105m/s experiences no net

J force at a point in a magnetic field B = Wax + 20av + 30a;. mWb/m2. Find E at that
point.

8.2 A charged particle of mass 1 kg and charge 2 C starts at the origin with velocity 10az m/s
in a magnetic field B = 1 a, Wb/m2. Find the location and the kinetic energy of the parti-
cle at t = 2 s.

*8.3 A particle with mass 1 kg and charge 2 C starts from rest at point (2, 3, - 4 ) in a region
where E = - 4 a v V/m and B = 5ar Wb/m2. Calculate

(a) The location of the particle at t = I s

(b) Its velocity and K.E. at that location

8.4 A — 2-mC charge starts at point (0, 1, 2) with a velocity of 5ax m/s in a magnetic field
B = 6av Wb/m . Determine the position and velocity of the particle after 10 s assuming
that the mass of the charge is 1 gram. Describe the motion of the charge.
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Figure 8.31 For Problem 8.5.

*8.5 By injecting an electron beam normally to the plane edge of a uniform field Boaz, elec-
trons can be dispersed according to their velocity as in Figure 8.31.

(a) Show that the electrons would be ejected out of the field in paths parallel to the input

beam as shown.

(b) Derive an expression for the exit distance d above entry point.

8.6 Given that B = 6xa^ — 9yay + 3zaz Wb/m2, find the total force experienced by the rec-
tangular loop (on z = 0 plane) shown in Figure 8.32.

8.7 A current element of length 2 cm is located at the origin in free space and carries current
12 mA along ax. A filamentary current of 15az A is located along x = 3, y = 4. Find the
force on the current filament.

*8.8 Three infinite lines L b L2, and L3 defined by x = 0, y = 0; x = 0, y = 4; x = 3, y = 4,
respectively, carry filamentary currents —100 A, 200 A, and 300 A along az. Find the
force per unit length on

(a) L2 due to L,

(b) L[ due to L2

(c) L3 due to Lj

(d) L3 due to Lx and L2. State whether each force is repulsive or attractive.

Figure 8.32 For Problem 8.6.

, 5A

1 2 3
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Figure 8.33 For Problem 8.9.

8.9 A conductor 2 m long carrying 3A is placed parallel to the z-axis at distance p0 = 10 cm
as shown in Figure 8.33. If the field in the region is cos (4>/3) ap Wb/m2, how much work
is required to rotate the conductor one revolution about the z-axis?

*8.10 A conducting triangular loop carrying a current of 2 A is located close to an infinitely
long, straight conductor with a current of 5 A, as shown in Figure 8.34. Calculate (a) the
force on side 1 of the triangular loop and (b) the total force on the loop.

*8.11 A three-phase transmission line consists of three conductors that are supported at points
A, B, and C to form an equilateral triangle as shown in Figure 8.35. At one instant, con-
ductors A and B both carry a current of 75 A while conductor C carries a return current of
150 A. Find the force per meter on conductor C at that instant.

*8.12 An infinitely long tube of inner radius a and outer radius b is made of a conducting magnetic
material. The tube carries a total current / and is placed along the z-axis. If it is exposed to a
constant magnetic field Boap, determine the force per unit length acting on the tube.

5 A

Figure 8.34 For Problem 8.10.

.©

2m 4 m
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Figure 8.35 For Problem 8.11.
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*8.13 An infinitely long conductor is buried but insulated from an iron mass (fi = 2000^,o) as
shown in Figure 8.36. Using image theory, estimate the magnetic flux density at point P.

8.14 A galvanometer has a rectangular coil of side 10 by 30 mm pivoted about the center of the
shorter side. It is mounted in radial magnetic field so that a constant magnetic field of 0.4
Wb/m always acts across the plane of the coil. If the coil has 1000 turns and carries
current 2 mA, find the torque exerted on it.

= - 0 . 5 a , mWb/m2at(10, 0, 0). FindB8.15 A small magnet placed at the origin produces B
at

(a) (0 ,3 ,0)

(b) (3, 4, 0)

(c) ( 1 , 1 , - D

8.16 A block of iron (/* = 5000;uo) is placed in a uniform magnetic field with 1.5 Wb/m . If
iron consists of 8.5 X 1028 atoms/m3, calculate: (a) the magnetization M, (b) the average
magnetic current.

y

30 mm

o

p%-

0 A

20 mm

iron

20 mm \

*-x

Figure 8.36 For Problem 8.13.
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8.17 In a certain material for which n = 6.5/x0,

H = 10ax + 25av - 40az A/m

find

(a) The magnetic susceptibility xm of the material

(b) The magnetic flux density B

(c) The magnetization M,

(d) The magnetic energy density

8.18 In a ferromagnetic material (/* = 4.5/to),

B = 4>-a_ mWb/m2

calculate: (a) Xm, (b) H, (c) M, (d) Jb.

8.19 The magnetic field intensity is H = 1200 A/m in a material when B = 2 Wb/m2. When
H is reduced to 400 A/m, B = 1.4 Wb/m2. Calculate the change in the magnetization M.

8.20 An infinitely long cylindrical conductor of radius a and permeability /xo/xr is placed along
the z-axis. If the conductor carries a uniformly distributed current / along a7 find M and Jb

for 0 < p < a.

8.21 If M = — {—y&x + xay) in a cube of size a, find Jb. Assume ko is a constant.

*8.22 (a) For the boundary between two magnetic media such as is shown in Figure 8.16, show
that the boundary conditions on the magnetization vector are

Mu M2t
= K and • m l n =

Xml Xml Xm\ Xml

(b) If the boundary is not current free, show that instead of eq. (8.49), we obtain

tan 0, HI [

tan 62 L B-, sin d7

8.23 If Mi = 2fio for region 1 (0 < <j> < it) and p.2 = 5/*o for region 2 (IT < tj> < 2ir) and
B2 = 10ap + 15a0 - 20az mWb/m2. Calculate: (a) B,, (b) the energy densities in the
two media.

8.24 The interface 2x + y = 8 between two media carries no current. If medium
1 (2x + y > 8) is nonmagnetic with H | = — 4aA + 3av — az A/m. Find: (a) the mag-
netic energy density in medium 1, (b) M2 and B2 in medium 2 (2x + ^ £ 8 ) with
H = 10/io, (c) the angles H] and H2 make with the normal to the interface.

8.25 The interface 4x — 5z = 0 between two magnetic media carries current 35av A/m. If
H] = 25ax — 30av + 45a, A/m in region 4x — 5z < 0 where firl = 5, calculate H2 in
region 4x — 5z — 0 where fir2 = 10.
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8.26 The plane z = 0 separates air (z > 0, y, = / O from iron (z < 0, ^ = 2 0 0 , 0 . Given that

H = 10ax + 15av - 3a, A/m

in air, find B in iron and the angle it makes with the interface.

8.27 Region 0 s ? < 2 m is filled with an infinite slab of magnetic material (fi = 2.5juo). If
the surfaces of the slab at z = 0 and z = 2, respectively, carry surface currents 30a,- A/m
and — 40av A/m as in Figure 8.37, calculate H and B for

(a) z < 0

(b) 0 < z < 2

(c) z > 2

8.28 In a certain region for which x m = 19,

H = 5x2yzaA + 10xy2zav - 1 5 x y z V A/m

How much energy is stored in 0 < x < 1, 0 < v < 2, — 1 < z < 2 ?

1
8.29 The magnetization curve for an iron alloy is approximately given by B = —H +

H2n Wb/m2. Find: (a) \ir when H = 210 A/m, (b) the energy stored per unit volume in
the alloy as H increases from 0 to 210 A/m.

*8.30 (a) If the cross section of the toroid of Figure 7.15 is a square of side a, show that the self-
inductance of the toroid is

L = In
2po + a

(b) If the toroid has a circular cross section as in Figure 7.15, show that

L =

where p o ~^> a.

8.31 When two parallel identical wires are separated by 3 m, the inductance per unit length is
2.5 juH/m. Calculate the diameter of each wire.

Mo

Figure 8.37 For Problem 8.27.

—40 ax A/m

z = 0 30 ax A/m
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8.32 A solenoid with length 10 cm and radius 1 cm has 450 turns. Calculate its inductance.

8.33 The core of a toroid is 12 cm and is made of material with /xr = 200. If the mean radius
of the toroid is 50 cm, calculate the number of turns needed to obtain an inductance of
2.5 H.

8.34 Show that the mutual inductance between the rectangular loop and the infinite line current
of Figure 8.4 is

r a + p0

Calculate M12 when a = b = po = 1 m.

*8.35 Prove that the mutual inductance between the closed wound coaxial solenoids of length <
and €2 (^i ^ ^X turns Ny and N2, and radii r, and r2 with rx — r2 is

8.36 A cobalt ring (jxr = 600) has a mean radius of 30 cm. If a coil wound on the ring carries
12 A, calculate the number of turns required to establish an average magnetic flux density
of 1.5 Wb/m in the ring.

8.37 Refer to Figure 8.27. If the current in the coil is 0.5 A, find the mmf and the magnetic field
intensity in the air gap. Assume that [i = 500/no and that all branches have the same
cross-sectional area of 10 cm2.

8.38 The magnetic circuit of Figure 8.38 has current 10 A in the coil of 2000 turns. Assume that
all branches have the same cross section of 2 cm2 and that the material of the core is iron
with nr = 1500. Calculate R, 9, and V for

(a) The core
(b) The air gap

12 cm
0.6 cm

Figure 8.38 For Problem 8.38.



0.2 A

("1

500 turns

-

»~

PROBLEMS

Figure 8.39 For Problem 8.39.
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• L = 42 cm

8.39 Consider the magnetic circuit in Figure 8.39. Assuming that the core (^ = 1000/xo)hasa
uniform cross section of 4 cm2, determine the flux density in the air gap.

8.40 An electromagnetic relay is modeled as shown in Figure 8.40. What force is on the arma-
ture (moving part) of the relay if the flux in the air gap is 2 mWb? The area of the gap is
0.3 cm2, and its length 1.5 mm.

8.41 A toroid with air gap, shown in Figure 8.41, has a square cross section. A long conductor
carrying current 72 is inserted in the air gap. If 7, = 200 mA, N = 750, p0 = 10 cm,
a = 5 mm, and ia = 1 mm, calculate

(a) The force across the gap when 72 = 0 and the relative permeability of the toroid is
300

(b) The force on the conductor when 72 = 2 m A and the permeability of the toroid is in-
finite. Neglect fringing in the gap in both cases.

8.42 A section of an electromagnet with a plate below it carrying a load is shown in Figure
8.42. The electromagnet has a contact area of 200 cm2 per pole with the middle pole
having a winding of 1000 turns with 7 = 3 A. Calculate the maximum mass that can be
lifted. Assume that the reluctance of the electromagnet and the plate is negligible.

8.43 Figure 8.43 shows the cross section of an electromechanical system in which the plunger
moves freely between two nonmagnetic sleeves. Assuming that all legs have the same
cross-sectional area S, show that

F =
 2 ^ 2 / 2 ^ a

(a + 2x^x

Figure 8.40 For Problem 8.40.
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Figure 8.41 For Problem 8.41.

Figure 8.42 For Problem 8.42.

1 mm

Figure 8.43 For Problem 8.43.

u J + •

-nmagnetic sleeve
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MAXWELL'S EQUATIONS

Do you want to be a hero? Don't be the kind of person who watches others do

great things or doesn't know what's happening. Go out and make things happen.

The people who get things done have a burning desire to make things happen, get

ahead, serve more people, become the best they can possibly be, and help

improve the world around them.

—GLENN VAN EKEREN

9.1 INTRODUCTION

In Part II (Chapters 4 to 6) of this text, we mainly concentrated our efforts on electrostatic
fields denoted by E(x, y, z); Part III (Chapters 7 and 8) was devoted to magnetostatic fields
represented by H(JC, y, z). We have therefore restricted our discussions to static, or time-
invariant, EM fields. Henceforth, we shall examine situations where electric and magnetic
fields are dynamic, or time varying. It should be mentioned first that in static EM fields,
electric and magnetic fields are independent of each other whereas in dynamic EM fields,
the two fields are interdependent. In other words, a time-varying electric field necessarily
involves a corresponding time-varying magnetic field. Second, time-varying EM fields,
represented by E(x, y, z, t) and H(x, y, z, t), are of more practical value than static EM
fields. However, familiarity with static fields provides a good background for understand-
ing dynamic fields. Third, recall that electrostatic fields are usually produced by static elec-
tric charges whereas magnetostatic fields are due to motion of electric charges with
uniform velocity (direct current) or static magnetic charges (magnetic poles); time-varying
fields or waves are usually due to accelerated charges or time-varying currents such as
shown in Figure 9.1. Any pulsating current will produce radiation (time-varying fields). It
is worth noting that pulsating current of the type shown in Figure 9.1(b) is the cause of ra-
diated emission in digital logic boards. In summary:

charges —> electrostatic fields
steady currenis —» magnclosiatic fields
time-varying currenis ••» electromagnetic fields (or wavesj

Our aim in this chapter is to lay a firm foundation for our subsequent studies. This will
involve introducing two major concepts: (1) electromotive force based on Faraday's ex-
periments, and (2) displacement current, which resulted from Maxwell's hypothesis. As a
result of these concepts, Maxwell's equations as presented in Section 7.6 and the boundary

369
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(a) (b)

(0

Figure 9.1 Various types of time-varying current: (a) sinusoidal,
(b) rectangular, (c) triangular.

conditions for static EM fields will be modified to account for the time variation of the
fields. It should be stressed that Maxwell's equations summarize the laws of electromag-
netism and shall be the basis of our discussions in the remaining part of the text. For this
reason, Section 9.5 should be regarded as the heart of this text.

9.2 FARADAY'S LAW

After Oersted's experimental discovery (upon which Biot-Savart and Ampere based their
laws) that a steady current produces a magnetic field, it seemed logical to find out if mag-
netism would produce electricity. In 1831, about 11 years after Oersted's discovery,
Michael Faraday in London and Joseph Henry in New York discovered that a time-varying
magnetic field would produce an electric current.'

According to Faraday's experiments, a static magnetic field produces no current flow,
but a time-varying field produces an induced voltage (called electromotive force or simply
emf) in a closed circuit, which causes a flow of current.

Faraday discovered that the induced emf. \\.iM (in volts), in any closed circuit is
equal to the time rale of change of the magnetic flux linkage by the circuit.

This is called Faraday's law, and it can be expressed as

dt dt• e m f (9.1)

where N is the number of turns in the circuit and V is the flux through each turn. The neg-
ative sign shows that the induced voltage acts in such a way as to oppose the flux produc-

'For details on the experiments of Michael Faraday (1791-1867) and Joseph Henry (1797-1878),
see W. F. Magie, A Source Book in Physics. Cambridge, MA: Harvard Univ. Press, 1963, pp.
472-519.
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battery

Figure 9.2 A circuit showing emf-producing field
and electrostatic field E,.

ing it. This is known as Lenz's law,2 and it emphasizes the fact that the direction of current
flow in the circuit is such that the induced magnetic field produced by the induced current
will oppose the original magnetic field.

Recall that we described an electric field as one in which electric charges experience
force. The electric fields considered so far are caused by electric charges; in such fields, the
flux lines begin and end on the charges. However, there are other kinds of electric fields not
directly caused by electric charges. These are emf-produced fields. Sources of emf include
electric generators, batteries, thermocouples, fuel cells, and photovoltaic cells, which all
convert nonelectrical energy into electrical energy.

Consider the electric circuit of Figure 9.2, where the battery is a source of emf. The
electrochemical action of the battery results in an emf-produced field Ey. Due to the accu-
mulation of charge at the battery terminals, an electrostatic field Ee{ = — VV) also exists.
The total electric field at any point is

E = Ey + Ee (9.2)

Note that Ey is zero outside the battery, Ey and Ee have opposite directions in the battery,
and the direction of Ee inside the battery is opposite to that outside it. If we integrate
eq. (9.2) over the closed circuit,

E • d\ = <f Ey • d\ + 0 = Ef-dl (through battery) (9.3a)

where § Ee • d\ = 0 because Ee is conservative. The emf of the battery is the line integral
of the emf-produced field; that is,

d\ = - (9.3b)

since Eyand Ee are equal but opposite within the battery (see Figure 9.2). It may also be re-
garded as the potential difference (VP - VN) between the battery's open-circuit terminals.
It is important to note that:

1. An electrostatic field Ee cannot maintain a steady current in a closed circuit since
$LEe-dl = 0 = //?.

2. An emf-produced field Eyis nonconservative.
3. Except in electrostatics, voltage and potential difference are usually not equivalent.

2After Heinrich Friedrich Emil Lenz (1804-1865), a Russian professor of physics.
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9.3 TRANSFORMER AND MOTIONAL EMFs

Having considered the connection between emf and electric field, we may examine how
Faraday's law links electric and magnetic fields. For a circuit with a single turn (N = 1),
eq. (9.1) becomes

V - ** (9.4)

In terms of E and B, eq. (9.4) can be written as

yemf = f E • d\ = - - B
h dt 4

(9.5)

where *P has been replaced by Js B • dS and S is the surface area of the circuit bounded by
the closed path L. It is clear from eq. (9.5) that in a time-varying situation, both electric and
magnetic fields are present and are interrelated. Note that d\ and JS in eq. (9.5) are in ac-
cordance with the right-hand rule as well as Stokes's theorem. This should be observed in
Figure 9.3. The variation of flux with time as in eq. (9.1) or eq. (9.5) may be caused in three
ways:

1. By having a stationary loop in a time-varying B field
2. By having a time-varying loop area in a static B field
3. By having a time-varying loop area in a time-varying B field.

Each of these will be considered separately.

A. Stationary Loop in Time-Varying B Fit transformer emf)

This is the case portrayed in Figure 9.3 where a stationary conducting loop is in a time-
varying magnetic B field. Equation (9.5) becomes

(9.6)

Increasing B(t) Figure 9.3 Induced emf due to a stationary loop in a time-
varying B field.

:ed B
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This emf induced by the time-varying current (producing the time-varying B field) in a sta-
tionary loop is often referred to as transformer emf in power analysis since it is due to
transformer action. By applying Stokes's theorem to the middle term in eq. (9.6), we obtain

(V X E) • dS = - I — • dS

For the two integrals to be equal, their integrands must be equal; that is,

(9.7)

dt
(9.8)

This is one of the Maxwell's equations for time-varying fields. It shows that the time-
varying E field is not conservative (V X E + 0). This does not imply that the principles of
energy conservation are violated. The work done in taking a charge about a closed path in
a time-varying electric field, for example, is due to the energy from the time-varying mag-
netic field. Observe that Figure 9.3 obeys Lenz's law; the induced current / flows such as
to produce a magnetic field that opposes B(f).

B. Moving Loop in Static B Field (Motional emf)

When a conducting loop is moving in a static B field, an emf is induced in the loop. We
recall from eq. (8.2) that the force on a charge moving with uniform velocity u in a mag-
netic field B is

Fm = Qu X B

We define the motional electric field Em as

(8.2)

Em = - ^ = u X B (9.9)

If we consider a conducting loop, moving with uniform velocity u as consisting of a large
number of free electrons, the emf induced in the loop is

(9.10)

This type of emf is called motional emf or flux-cutting emf because it is due to motional
action. It is the kind of emf found in electrical machines such as motors, generators, and al-
ternators. Figure 9.4 illustrates a two-pole dc machine with one armature coil and a two-
bar commutator. Although the analysis of the d.c. machine is beyond the scope of this text,
we can see that voltage is generated as the coil rotates within the magnetic field. Another
example of motional emf is illustrated in Figure 9.5, where a rod is moving between a pair
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Figure 9.4 A direct-current machine.

of rails. In this example, B and u are perpendicular, so eq. (9.9) in conjunction with
eq. (8.2) becomes

or

and eq. (9.10) becomes

Fm = U X B

Fm = KB

Vem( =

By applying Stokes's theorem to eq. (9.10)

( V X E J ' d S = V X (u X B) • dS
's 's

or

V X Em = V X (u X B)

(9.11)

(9.12)

(9.13)

(9.14)

Notice that unlike eq. (9.6), there is no need for a negative sign in eq. (9.10) because
Lenz's law is already accounted for.

B(in)
Figure 9.5 Induced emf due to a moving
loop in a static B field.
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To apply eq. (9.10) is not always easy; some care must be exercised. The following
points should be noted:

1. The integral in eq. (9.10) is zero along the portion of the loop where u = 0. Thus
d\ is taken along the portion of the loop that is cutting the field (along the rod in
Figure 9.5), where u has nonzero value.

2. The direction of the induced current is the same as that of Em or u X B. The limits
of the integral in eq. (9.10) are selected in the opposite direction to the induced
current thereby satisfying Lenz's law. In eq. (9.13), for example, the integration
over L is along —av whereas induced current flows in the rod along ay.

C. Moving Loop in Time-Varying Field

This is the general case in which a moving conducting loop is in a time-varying magnetic
field. Both transformer emf and motional emf are present. Combining eqs. (9.6) and (9.10)
gives the total emf as

(9.15)
f

V f = 9J E •d\ =
f flB ft (u X B) •d\

or from eqs. (9.8) and (9.14),

V X E = + V X (u X B)
dt

(9.16)

Note that eq. (9.15) is equivalent to eq. (9.4), so Vemf can be found using either eq. (9.15)
or (9.4). In fact, eq. (9.4) can always be applied in place of eqs. (9.6), (9.10), and (9.15).

EXAMPLE 9.1
A conducting bar can slide freely over two conducting rails as shown in Figure 9.6. Calcu-
late the induced voltage in the bar

(a) If the bar is stationed at y = 8 cm and B = 4 cos 106f az mWb/m2

(b) If the bar slides at a velocity u = 20aj, m/s and B = 4az mWb/m2

(c) If the bar slides at a velocity u = 20ay m/s and B = 4 cos (106r — y) az mWb/m2

Figure 9.6 For Example 9.1.
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Solution:

(a) In this case, we have transformer emf given by

dB

dt
dS =

0.08 /-0.06

y=0

sin Wtdxdy

= 4(103)(0.08)(0.06) sin l06t
= 19.2 sin 106;V

The polarity of the induced voltage (according to Lenz's law) is such that point P on the
bar is at lower potential than Q when B is increasing.

(b) This is the case of motional emf:

Vemf = (" x B) • d\ = {u&y X Baz) • dxax

= -uB( = -20(4.10"3)(0.06)
= -4.8 mV

(c) Both transformer emf and motional emf are present in this case. This problem can be
solved in two ways.

Method 1: Using eq. (9.15)

Kmf = " I — • dS + | (U X B) • d\

r0.06 ry

(9.1.1)

x=0 ""0
0

[20ay X 4.10 3 cos(106f - y)aj • dxax

0.06

= 240 cos(106f - / ) - 80(10~3)(0.06) cos(106r - y)

= 240 008(10"? - y) - 240 cos 106f - 4.8(10~j) cos(106f - y)
=- 240 cos(106f -y)- 240 cos 106? (9.1.2)

because the motional emf is negligible compared with the transformer emf. Using trigono-
metric identity

A + B A - B
cos A - cos B = - 2 sin sin — - —

Veirf = 480 sin MO6? - £ ) sin ^ V (9.1.3)
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Method 2: Alternatively we can apply eq. (9.4), namely,

Vemt = ~

where

dt

377

(9.1.4)

B-dS

•0.06

4 cos(106r - y) dx dy
y=0 JJt=

= -4(0.06) sin(106f - y)

= -0.24 sin(106r - y) + 0.24 sin 10°f mWb

But

Hence,

— = u -> y = ut = 20/

V = -0.24 sin(106r - 200 + 0.24 sin 106f mWb

yemf = = 0.24(106 - 20) cos(106r - 20f) - 0.24(106) cos 106f mV
dt

= 240 cos(106f - y) - 240 cos 106f V (9.1.5)

which is the same result in (9.1.2). Notice that in eq. (9.1.1), the dependence of y on time
is taken care of in / (u X B) • d\, and we should not be bothered by it in dB/dt. Why?
Because the loop is assumed stationary when computing the transformer emf. This is a
subtle point one must keep in mind in applying eq. (9.1.1). For the same reason, the second
method is always easier.

PRACTICE EXERCISE 9.1

Consider the loop of Figure 9.5. If B = 0.5az Wb/m2, R = 20 0, € = 10 cm, and the
rod is moving with a constant velocity of 8ax m/s, find

(a) The induced emf in the rod

(b) The current through the resistor

(c) The motional force on the rod

(d) The power dissipated by the resistor.

Answer: (a) 0.4 V, (b) 20 mA, (c) - a x mN, (d) 8 mW.
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EXAMPLE 9.2
The loop shown in Figure 9.7 is inside a uniform magnetic field B = 50 ax mWb/m2. If
side DC of the loop cuts the flux lines at the frequency of 50 Hz and the loop lies in the
jz-plane at time t = 0, find

(a) The induced emf at t = 1 ms

(b) The induced current at t = 3 ms

Solution:

(a) Since the B field is time invariant, the induced emf is motional, that is,

yemf = (u x B) • d\

where

d\ = d\DC = dzaz, u =
dt dt

p = AD = 4 cm, a) = 2TT/ = IOOTT

As u and d\ are in cylindrical coordinates, we transform B into cylindrical coordinates
using eq. (2.9):

B = BQax = Bo (cos <j> ap - sin <t> a0)

where Bo = 0.05. Hence,

u X B = 0 pco 0
Bo cos 4> —Bo sin 4> 0

= —puBo cos </> az

Figure 9.7 For Example 9.2; polarity is for
increasing emf.
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and

(uXB)-dl= -puBo cos <f> dz = - 0 . 0 4 ( 1 0 0 T T ) ( 0 . 0 5 ) COS <t> dz
= —0.2-ir cos 0 dz

r 0.03

V e m f = — 0 .2TT COS 4> dz = — 6TT COS <f> m V
4=0

To determine <j>, recall that

d<t>
co = > 0 = cof + C odt

where Co is an integration constant. At t = 0, 0 = TT/2 because the loop is in the yz-plane
at that time, Co = TT/2. Hence,

= CO/ +
TT

and

mf = ~6TT cosf cor + — ) = 6TT sin(lOOirf) mV

At f = 1 ms, yemf = 6TT sin(O.lTr) = 5.825 mV

(b) The current induced is

. Vem{

R
= 607rsin(100xr)mA

At t = 3 ms,

i = 60TT sin(0.37r) mA = 0.1525 A

PRACTICE EXERCISE 9.2

Rework Example 9.2 with everything the same except that the B field is changed to:

(a) B = 50av. mWb/m2—that is, the magnetic field is oriented along the y-direction

(b) B = 0.02ir ax Wb/m2—that is, the magnetic field is time varying.

Answer: (a) -17.93 mV, -0.1108 A, (b) 20.5 jtV, -41.92 mA.

EXAMPLE 9.3
The magnetic circuit of Figure 9.8 has a uniform cross section of 10 3 m2. If the circuit is
energized by a current ix{i) = 3 sin IOOTT? A in the coil of N\ = 200 turns, find the emf
induced in the coil of N2 = 100 turns. Assume that JX. = 500 /xo.
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/A
h(o / r

" l lpo = 10 cm <LJN2

<Dl
\

Solution:

The flux in the circuit is

w — —

Figure 9.8 Magnetic circuit of
Example 9.3.

-o +

2irpo

According to Faraday's law, the emf induced in the second coil is

V2 = -N2 —r = — ~ -
dt 2-Kp0 dt

100 • (200) • (500) • (4TT X 10"7) • (10~3) • 300TT COS IOOTT?

2x • (10 X 10"2)
= -6TTCOS 100ir?V

PRACTICE EXERCISE 9.3

A magnetic core of uniform cross section 4 cm2 is connected to a 120-V, 60-Hz
generator as shown in Figure 9.9. Calculate the induced emf V2 in the second-
ary coil.

Aaswer: 72 V

Vtfc)

T
i

> N2 = 300 V2

Figure 9.9 For Practice Exercise 9.3.
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9.4 DISPLACEMENT CURRENT

In the previous section, we have essentially reconsidered Maxwell's curl equation for elec-
trostatic fields and modified it for time-varying situations to satisfy Faraday's law. We shall
now reconsider Maxwell's curl equation for magnetic fields (Ampere's circuit law) for
time-varying conditions.

For static EM fields, we recall that

V x H = J (9.17)

But the divergence of the curl of any vector field is identically zero (see Example 3.10).
Hence,

V - ( V X H ) = 0 = V - J

The continuity of current in eq. (5.43), however, requires that

(9.18)

(9.19)

Thus eqs. (9.18) and (9.19) are obviously incompatible for time-varying conditions. We
must modify eq. (9.17) to agree with eq. (9.19). To do this, we add a term to eq. (9.17) so
that it becomes

V X H = J + Jd (9.20)

where id is to be determined and defined. Again, the divergence of the curl of any vector is
zero. Hence:

In order for eq. (9.21) to agree with eq. (9.19),

(9.21)

(9.22a)

or

h

3.20) results

V X H =

dD

dt

in

.1 +
dX)

dt

(9.22b)

(9.23)

This is Maxwell's equation (based on Ampere's circuit law) for a time-varying field. The
term Jd = dD/dt is known as displacement current density and J is the conduction current
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(a)

Figure 9.10 Two surfaces of integration
/ showing the need for Jd in Ampere's circuit

law.

density (J = aE).3 The insertion of Jd into eq. (9.17) was one of the major contributions of
Maxwell. Without the term Jd, electromagnetic wave propagation (radio or TV waves, for
example) would be impossible. At low frequencies, Jd is usually neglected compared with
J. However, at radio frequencies, the two terms are comparable. At the time of Maxwell,
high-frequency sources were not available and eq. (9.23) could not be verified experimen-
tally. It was years later that Hertz succeeded in generating and detecting radio waves
thereby verifying eq. (9.23). This is one of the rare situations where mathematical argu-
ment paved the way for experimental investigation.

Based on the displacement current density, we define the displacement current as

ld= \jd-dS =
dt

dS (9.24)

We must bear in mind that displacement current is a result of time-varying electric field. A
typical example of such current is the current through a capacitor when an alternating
voltage source is applied to its plates. This example, shown in Figure 9.10, serves to illus-
trate the need for the displacement current. Applying an unmodified form of Ampere's
circuit law to a closed path L shown in Figure 9.10(a) gives

(9.25)H d\ = J • dS = /enc = /

where / is the current through the conductor and Sx is the flat surface bounded by L. If we
use the balloon-shaped surface S2 that passes between the capacitor plates, as in Figure
9.10(b),

(9.26)H d\ = J • dS = Ieac = 0

4
because no conduction current (J = 0) flows through S2- This is contradictory in view of
the fact that the same closed path L is used. To resolve the conflict, we need to include the

• Recall that we also have J = pvii as the convection current density.
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displacement current in Ampere's circuit law. The total current density is J + Jd. In
eq. (9.25), id = 0 so that the equation remains valid. In eq. (9.26), J = 0 so that

H d\ = I id • dS = =- I D • dS = -~ = I
dt dt

(9.27)

So we obtain the same current for either surface though it is conduction current in S{ and
displacement current in S2.

EXAMPLE 9.4
A parallel-plate capacitor with plate area of 5 cm2 and plate separation of 3 mm has a
voltage 50 sin 103r V applied to its plates. Calculate the displacement current assuming
e = 2eo.

Solution:

D = eE = s —
d

dD
dt

e dv
~d dt

Hence,

which is the same as the conduction current, given by

/ = 2

s

dt dt

5

dt

36TT 3 X 10"3

=

dt d dt

103 X 50 cos 10't

dV

dt

= 147.4 cos 103?nA

PRACTICE EXERCISE 9.4

In free space, E = 20 cos (at - 50xj ay V/m. Calculate

(a) h

(b) H

(c) w

Answer: (a) -20a>so sin (wt - 50J:) ay A/m2, (b) 0.4 wso cos(uit - 50x) az A/m,
(c)1.5 X 1010rad/s.
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9.5 MAXWELL'S EQUATIONS IN FINAL FORMS

James Clerk Maxwell (1831-1879) is regarded as the founder of electromagnetic theory in
its present form. Maxwell's celebrated work led to the discovery of electromagnetic
waves.4 Through his theoretical efforts over about 5 years (when he was between 35 and
40), Maxwell published the first unified theory of electricity and magnetism. The theory
comprised all previously known results, both experimental and theoretical, on electricity
and magnetism. It further introduced displacement current and predicted the existence of
electromagnetic waves. Maxwell's equations were not fully accepted by many scientists
until they were later confirmed by Heinrich Rudolf Hertz (1857-1894), a German physics
professor. Hertz was successful in generating and detecting radio waves.

The laws of electromagnetism that Maxwell put together in the form of four equations
were presented in Table 7.2 in Section 7.6 for static conditions. The more generalized
forms of these equations are those for time-varying conditions shown in Table 9.1. We
notice from the table that the divergence equations remain the same while the curl equa-
tions have been modified. The integral form of Maxwell's equations depicts the underlying
physical laws, whereas the differential form is used more frequently in solving problems.
For a field to be "qualified" as an electromagnetic field, it must satisfy all four Maxwell's
equations. The importance of Maxwell's equations cannot be overemphasized because
they summarize all known laws of electromagnetism. We shall often refer to them in the
remaining part of this text.

Since this section is meant to be a compendium of our discussion in this text, it is
worthwhile to mention other equations that go hand in hand with Maxwell's equations.
The Lorentz force equation

+ u X B) (9.28)

TABLE 9.1 Generalized Forms of Maxwell's Equations

Differential

V • D = pv

V - B = O

V X E = -

V X H = J

Form

3B

dt

3D

at

1 D
's

9 B

I,*
<P H
'L

Integral

• dS = j p,

rfS = 0

dt

Form

,rfv

B-rfS

Remarks

Gauss's law

Nonexistence of isolated
magnetic charge*

Faraday's law

• dS Ampere's circuit law

*This is also referred to as Gauss's law for magnetic fields.

4The work of James Clerk Maxwell (1831-1879), a Scottish physicist, can be found in his book, A
Treatise on Electricity and Magnetism. New York: Dover, vols. 1 and 2, 1954.
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is associated with Maxwell's equations. Also the equation of continuity

V • J = - — (9.29)
dt

is implicit in Maxwell's equations. The concepts of linearity, isotropy, and homogeneity of
a material medium still apply for time-varying fields; in a linear, homogeneous, and
isotropic medium characterized by a, e, and fi, the constitutive relations

D = eE = eoE + P

B = ixH = /no(H + M)

J = CTE + pvu

hold for time-varying fields. Consequently, the boundary conditions

Eu = E2t or (Ej - E2) X anl2 = 0

# u ~ H2t = K or (H, - H2) X anl2 = K

Din - D2n = p, or (D, - D2) • an l2 = p,

Bm - B2n = 0 or (B2 - B,) • aBl2 = 0

(9.30a)

(9.30b)

(9.30c)

(9.31a)

(9.31b)

(9.31c)

(9.31d)

remain valid for time-varying fields. However, for a perfect conductor (a — °°) in a time-
varying field,

and hence,

E = 0, H = 0, J = 0

BB = 0, E, = 0

(9.32)

(9.33)

For a perfect dielectric (a — 0), eq. (9.31) holds except that K = 0. Though eqs. (9.28) to
(9.33) are not Maxwell's equations, they are associated with them.

To complete this summary section, we present a structure linking the various poten-
tials and vector fields of the electric and magnetic fields in Figure 9.11. This electromag-
netic flow diagram helps with the visualization of the basic relationships between field
quantities. It also shows that it is usually possible to find alternative formulations, for a
given problem, in a relatively simple manner. It should be noted that in Figures 9.10(b) and
(c), we introduce pm as the free magnetic density (similar to pv), which is, of course, zero,
Ae as the magnetic current density (analogous to J). Using terms from stress analysis, the
principal relationships are typified as:

(a) compatibility equations

V • B = pm = 0 (9.34)
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^ -v«v

(a)

Vx—Vx 0
Vx ' Vx

V-'

(b) (c)

Figure 9.11 Electromagnetic flow diagram showing the relationship between the potentials
and vector fields: (a) electrostatic system, (b) magnetostatic system, (c) electromagnetic
system. [Adapted with permission from IEE Publishing Dept.]

and

(b) constitutive equations

and

(c) equilibrium equations

and

B = ,uH

D = eE

V • D = Pv

dt
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9.6 TIME-VARYING POTENTIALS

For static EM fields, we obtained the electric scalar potential as

pvdv

and the magnetic vector potential as

V =

A =

AireR

fiJ dv

4wR

(9.40)

(9.41)

We would like to examine what happens to these potentials when the fields are time
varying. Recall that A was defined from the fact that V • B = 0, which still holds for time-
varying fields. Hence the relation

B = V X A (9.42)

holds for time-varying situations. Combining Faraday's law in eq. (9.8) with eq. (9.42) gives

V X E = (V X A) (9.43a)

or

V X | E + - | =
dt

(9.43b)

Since the curl of the gradient of a scalar field is identically zero (see Practice Exercise
3.10), the solution to eq. (9.43b) is

dt

or

dt

(9.44)

(9.45)

From eqs. (9.42) and (9.45), we can determine the vector fields B and E provided that the
potentials A and V are known. However, we still need to find some expressions for A and
V similar to those in eqs. (9.40) and (9.41) that are suitable for time-varying fields.

From Table 9.1 or eq. (9.38) we know that V • D = pv is valid for time-varying condi-
tions. By taking the divergence of eq. (9.45) and making use of eqs. (9.37) and (9.38), we
obtain

V - E = — = - V 2 V - — ( V - A )
e dt
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or

VV + ( V A )
dt e

Taking the curl of eq. (9.42) and incorporating eqs. (9.23) and (9.45) results in

VX V X A = uj + e/n — ( -VV
dt V dt

dV

(9.46)

where D = sE and B = fiH have been assumed. By applying the vector identity

V X V X A = V(V • A) - V2A

to eq. (9.47),

V2A - V(V • A) = -f + \dt

d2A
—r-
dt2

(9.47)

(9.48)

(9.49)

A vector field is uniquely defined when its curl and divergence are specified. The curl of A
has been specified by eq. (9.42); for reasons that will be obvious shortly, we may choose
the divergence of A as

V • A = -J
dV_

dt
(9.50)

This choice relates A and V and it is called the Lorentz condition for potentials. We had this
in mind when we chose V • A = 0 for magnetostatic fields in eq. (7.59). By imposing the
Lorentz condition of eq. (9.50), eqs. (9.46) and (9.49), respectively, become

(9.51)

and

2

V2A JUS

d2V

dt2

a2
 A

dt2

Pv
e

y

/xj (9.52)

which are wave equations to be discussed in the next chapter. The reason for choosing the
Lorentz condition becomes obvious as we examine eqs. (9.51) and (9.52). It uncouples
eqs. (9.46) and (9.49) and also produces a symmetry between eqs. (9.51) and (9.52). It can
be shown that the Lorentz condition can be obtained from the continuity equation; there-
fore, our choice of eq. (9.50) is not arbitrary. Notice that eqs. (6.4) and (7.60) are special
static cases of eqs. (9.51) and (9.52), respectively. In other words, potentials V and A
satisfy Poisson's equations for time-varying conditions. Just as eqs. (9.40) and (9.41) are



9.7 TIME-HARMONIC FIELDS 389

the solutions, or the integral forms of eqs. (6.4) and (7.60), it can be shown that the solu-
tions5 to eqs. (9.51) and (9.52) are

V =
[P.] dv

A-KSR

and

A =
A-KR

(9.53)

(9.54)

The term [pv] (or [J]) means that the time t in pv(x, y, z, t) [or J(x, y, z, t)] is replaced by the
retarded time t' given by

(9.55)

where R = |r — r ' | is the distance between the source point r ' and the observation point r
and

1
u = (9.56)

/xe

is the velocity of wave propagation. In free space, u = c — 3 X 1 0 m/s is the speed of
light in a vacuum. Potentials V and A in eqs. (9.53) and (9.54) are, respectively, called the
retarded electric scalar potential and the retarded magnetic vector potential. Given pv and
J, V and A can be determined using eqs. (9.53) and (9.54); from V and A, E and B can be
determined using eqs. (9.45) and (9.42), respectively.

9.7 TIME-HARMONIC FIELDS

So far, our time dependence of EM fields has been arbitrary. To be specific, we shall
assume that the fields are time harmonic.

A time-harmonic field is one thai varies periodically or sinusoidally wiih time.

Not only is sinusoidal analysis of practical value, it can be extended to most waveforms by
Fourier transform techniques. Sinusoids are easily expressed in phasors, which are more
convenient to work with. Before applying phasors to EM fields, it is worthwhile to have a
brief review of the concept of phasor.

Aphasor z is a complex number that can be written as

z = x + jy = r (9.57)

1983, pp. 291-292.
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or
„ = r „)<$> == r e = r (cos <j> + j sin - (9.58)

where j = V — 1, x is the real part of z, y is the imaginary part of z, r is the magnitude of
z, given by

r —

and cj> is the phase of z, given by

= tan'1 l

(9.59)

(9.60)

Here x, y, z, r, and 0 should not be mistaken as the coordinate variables although they
look similar (different letters could have been used but it is hard to find better ones). The
phasor z can be represented in rectangular form as z = x + jy or in polar form as
z = r [§_ = r e'^. The two forms of representing z are related in eqs. (9.57) to (9.60) and
illustrated in Figure 9.12. Addition and subtraction of phasors are better performed in rec-
tangular form; multiplication and division are better done in polar form.

Given complex numbers

z = x + jy = r[$_, z, = x, + jy, = r, /

the following basic properties should be noted.

Addition:

Subtraction:

Multiplication:

Division:

x2)

x2)

and z2 = x2 + jy2 = r2 /<j>2

y2) (9.61a)

- y2) (9.61b)

(9.61c)

(9.61d)

lm

co rad/s

Figure 9.12 Representation of a phasor z = x + jy
r /<t>.

•Re
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Square Root:

Complex Conjugate:

Z = Vr

Z* = x — jy = r/—<j> == re

Other properties of complex numbers can be found in Appendix A.2.
To introduce the time element, we let

(9.61e)

(9.61f)

(9.62)

where 6 may be a function of time or space coordinates or a constant. The real (Re) and
imaginary (Im) parts of

= rejeeJo"

are, respectively, given by

and

Re (rej<t>) = r cos (ut + 0)

Im {rei4>) = r sin (art + 0)

(9.63)

(9.64a)

(9.64b)

Thus a sinusoidal current 7(0 = 7O cos(wt + 0), for example, equals the real part of
Ioe

jeeM. The current 7'(0 = h sin(co? + 0), which is the imaginary part of Ioe
]ee]01t, can

also be represented as the real part of Ioe
jeeju"e~j90° because sin a = cos(a - 90°).

However, in performing our mathematical operations, we must be consistent in our use of
either the real part or the imaginary part of a quantity but not both at the same time.

The complex term Ioe
je, which results from dropping the time factor ejo" in 7(0, is

called the phasor current, denoted by 7̂ ; that is,

]s = io(,J» = 70 / 0 (9.65)

where the subscript s denotes the phasor form of 7(0- Thus 7(0 = 70 cos(cof + 0), the in-
stantaneous form, can be expressed as

= Re (9.66)

In general, a phasor could be scalar or vector. If a vector A(*, y, z, t) is a time-harmonic
field, the phasor form of A is As(x, y, z); the two quantities are related as

A = Re (Xse
Jo")

For example, if A = Ao cos (ut — j3x) ay, we can write A as

A = Re (Aoe-j0x a / u ' )

Comparing this with eq. (9.67) indicates that the phasor form of A is

(9.67)

(9.68)

**-s AQ€ (9.69)
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Notice from eq. (9.67) that

(9.70)
= Re (/«A/M()

showing that taking the time derivative of the instantaneous quantity is equivalent to mul-
tiplying its phasor form byyco. That is,

<3A

Similarly,

(9.71)

(9.72)

Note that the real part is chosen in eq. (9.67) as in circuit analysis; the imaginary part
could equally have been chosen. Also notice the basic difference between the instanta-
neous form A(JC, y, z, t) and its phasor form As(x, y, z); the former is time dependent and
real whereas the latter is time invariant and generally complex. It is easier to work with Â
and obtain A from As whenever necessary using eq. (9.67).

We shall now apply the phasor concept to time-varying EM fields. The fields quanti-
ties E(x, y, z, t), D(x, y, z, t), H(x, y, z, t), B(x, y, z, t), J(x, y, z, t), and pv(x, y, z, i) and their
derivatives can be expressed in phasor form using eqs. (9.67) and (9.71). In phasor form,
Maxwell's equations for time-harmonic EM fields in a linear, isotropic, and homogeneous
medium are presented in Table 9.2. From Table 9.2, note that the time factor eJa" disappears
because it is associated with every term and therefore factors out, resulting in time-
independent equations. Herein lies the justification for using phasors; the time factor can
be suppressed in our analysis of time-harmonic fields and inserted when necessary. Also
note that in Table 9.2, the time factor e'01' has been assumed. It is equally possible to have
assumed the time factor e~ja", in which case we would need to replace every y in Table 9.2
with —j.

TABLE 9.2 Time-Harmonic Maxwell's Equations
Assuming Time Factor e'""

Point Form Integral Form

Dv • dS = I pvs dv

B5 • dS = 0

V • D v = />„.,

V • B.v = 0

V X E s = -joiB, <k E s • d\ = -ju> I Bs • dS

V X H, = Js + juDs §Hs-dl= [ (J s + joiDs) • dS
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EXAMPLE 9.5
Evaluate the complex numbers

7(3 - ;4)*
(a) z, =

( -1
11/2

Solution:

(a) This can be solved in two ways: working with z in rectangular form or polar form.

Method 1: (working in rectangular form):
Let

_ Z3Z4

where

£3 =j

z,4 = (3 - j4)* = the complex conjugate of (3 - j4)
= 3 + ;4

(To find the complex conjugate of a complex number, simply replace every) with —j.)

z5 = - 1 +76

and

Hence,

z3z4 = j4) = - 4

and

= (-1 + j6)(3 + ;4) = - 3 - ;4
= -27+ ;14

- 4 + ;3

- 24

*"' - 2 7 + 7 I 4

Multiplying and dividing z\ by -27 - j\4 (rationalization), we have

(-4 + j3)(-27 - yi4) _ 150 -J25
Zl ~ (-27 +yl4)(-27 -j'14) 272 + 142

= 0.1622 -;0.027 = 0.1644 / - 9.46°

Method 2: (working in polar form):

z3=j= 1/90°

z4 = (3 - j4)* = 5 /-53.130)* = 5 /53.13°
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Hence,

as obtained before,

(b) Let

where

and

Hence

z5 = ("I +j6) = V37 /99.46°

zb = (2 + jf = (V5 /26.56°)2 = 5 /53.130

(1 /90°)(5 /53.130)

and

(V37 /99.46°)(5 /53.130)

1 /90° - 99.46° = 0.1644 /-9.46°
V37

= 0.1622 - 70.027

1/2

Zs

Z7=l+j= V2/45°

= 4 -78 = 4V5/-63.4O

V2 /45° V2

4V5/-63.40 4V5
0.1581 7108.4°

/45° 63.4°

z2 = V0.1581 /108.472
= 0.3976 754.2°

PRACTICE EXERCISE 9.5

Evaluate these complex numbers:

(b) 6 /W_ + ;5 - 3 + ejn

Answer: (a) 0.24 + j0.32, (b) 2.903 + J8.707.
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EXAMPLE 9.6
Given that A = 10 cos (108? - 10* + 60°) az and Bs = (20//) a, + 10 ej2"B ay, express
A in phasor form and B^ in instantaneous form.

Solution:

where u = 10 . Hence

A = Re[10e'M~1 0 A H

If

A = Re [\0eJ(bU ~lw az e*"] = Re ( A , O

A, = ]0ej

90
e / 2" / 3a = - jB, = — a , + 10e / 2" / 3ay = - j20a v

2 / 2 / 3

B = Re (B.e-"0')
= Re [20ej(w("7r/2)ax + lO^'(w'+2TJ[/3)a),]

/ 2TT*\
= 20 cos (art - 7r/2)a.v + 10 cos I wf + — - lav

= 20 sin o)t ax + 10 cos —r— jav

PRACTICE EXERCISE 9.6

If P = 2 sin (]Qt + x - TT/4) av and Qs = ej*(ax - a.) sin Try, determine the phasor
form of P and the instantaneous form of Qv.

Answer: 2eju" Jx/4)av, sin x y cos(wf + jc)(a,. - ar).

EXAMPLE 9.7
The electric field and magnetic field in free space are given by

E = — cos (l06f + /3z) a* V/m
P

H = —^ cos (l06f + |3z) a0 A/m

Express these in phasor form and determine the constants Ho and /3 such that the fields
satisfy Maxwell's equations.
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Solution:

The instantaneous forms of E and H are written as

E = Re (Ese
Jal), H = Re (Hse

J"')

where co = 106 and phasors Es and Hs are given by

50 H
E = —' e^a H = — e^za

p *' p "
For free space, pv = 0, a = 0, e = eo, and ft = fio so Maxwell's equations become

V-B = |ioV-H = 0-> V-Ha: = 0

dE

dt
> V X H S = j

•iii

V X E = -fio —

(9.7.1)

(9.7.2)

(9.7.3)

(9.7.4)

(9.7.5)

(9.7.6)

Substituting eq. (9.7.2) into eqs. (9.7.3) and (9.7.4), it is readily verified that two
Maxwell's equations are satisfied; that is,

Now

V X Hs = V X
P V P

Substituting eqs. (9.7.2) and (9.7.7) into eq. (9.7.5), we have

JHOI3 mz . 50 M,

(9.7.7i

or

//o/3 = 50 a)eo

Similarly, substituting eq. (9.7.2) into (9.7.6) gives

P

or

(9.7.8)

(9.7.9)
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Multiplying eq. (9.7.8) with eq. (9.7.9) yields

or

Mo

50
Ho = ±50V sJno = ± 7 ^ " = ± 0 - 1 3 2 6

Dividing eq. (9.7.8) by eq. (9.7.9), we get

I32 = o;2/x0e0

or

0 = ± aVp,

= ±3.33 X 10

10"

3 X 10s

- 3

In view of eq. (9.7.8), Ho = 0.1326, & = 3.33 X 10~3 or Ho = -0.1326, j3 =
— 3.33 X 10~3; only these will satisfy Maxwell's four equations.

PRACTICE EXERCISE 9.7

In air, E = ^— cos (6 X 107r - /3r) a* V/m.
r

Find j3 and H.

Answer: 0.2 rad/m, r cos 6 sin (6 X 107? - 0.2r) ar — sin S X
llzr2 1207rr

cos (6 X 107f - 0.2r) % A/m.

EXAMPLE 9.8
In a medium characterized by a = 0, \x = /xo, eo, and

E = 20 sin (108f - j3z) a7 V/m

calculate /8 and H.

Solution:

This problem can be solved directly in time domain or using phasors. As in the previous
example, we find 13 and H by making E and H satisfy Maxwell's four equations.

Method 1 (time domain): Let us solve this problem the harder way—in time domain. It
is evident that Gauss's law for electric fields is satisfied; that is,

dy
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From Faraday's law,

V X E = - /

But

V X E =

dH
dt

A A A
dx dy dz
0 Ey 0

H = - - I (V X E)dt

dEy dEy

dz dx

Hence,

= 20/3 cos (108f - (3z) ax + 0

H = cos (108r - pz) dtax

^ s i - I3z)ax (9.8.1)

It is readily verified that

dx

showing that Gauss's law for magnetic fields is satisfied. Lastly, from Ampere's law

V X H = CTE + £
1

E = - | (V X H) (9.8.2)

because a = 0.
But

V X H =
A A A
dx dy dz
Hr 0 0

dHx dHx

cos(108? - $z)ay + 0

where H in eq. (9.8.1) has been substituted. Thus eq. (9.8.2) becomes

20/S2

E = cos(10 8r- (3z)dtay

2O/32

•sin(108f -

Comparing this with the given E, we have

= 20
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or

= ± 108Vtis = ± 10SVIXO • 4eo = ±
108(2) 108(2)

3 X 10B

From eq. (9.8.1),

or

1 / 2z\
H = ± — sin 108?±— axA/m

3TT V 3/

Method 2 (using phasors):

E = Im ( £ y ) -> E, = av

where co =
Again

10°.

V X E, =

dy

• -> " H, =
V X Es

or

20/3 fr

Notice that V • H, = 0 is satisfied.

V X Hs = ji E, =
V X H,

jus

Substituting H^ in eq. (9.8.4) into eq. (9.8.5) gives

2
co /xe

Comparing this with the given Es in eq. (9.8.3), we have

^
co /xe

(9.8.3)

(9.8.4)

(9.8.5)
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or

as obtained before. From eq. (9.8.4),

„ ^ 2 0 ( 2 / 3 ) ^

10 8 (4T X 10 ') 3TT

H = Im (H/" 1 )

= ± — sin (108f ± Qz) ax A/m
3TT

as obtained before. It should be noticed that working with phasors provides a considerable
simplification compared with working directly in time domain. Also, notice that we have
used

A = Im (Ase
jat)

because the given E is in sine form and not cosine. We could have used

A = Re (Ase
jo")

in which case sine is expressed in terms of cosine and eq. (9.8.3) would be

E = 20 cos (108? - & - 90°) av = Re (Ese
M)

or

and we follow the same procedure.

PRACTICE EXERCISE 9.8

A medium is characterized by a = 0, n = 2/*,, and s = 5eo. If H = 2
cos {(jit — 3y) a_, A/m, calculate us and E.

Answer: 2.846 X l(f rad/s, -476.8 cos (2.846 X 108f - 3v) a, V/m.

SUMMARY 1. In this chapter, we have introduced two fundamental concepts: electromotive force
(emf), based on Faraday's experiments, and displacement current, which resulted from
Maxwell's hypothesis. These concepts call for modifications in Maxwell's curl equa-
tions obtained for static EM fields to accommodate the time dependence of the fields.

2. Faraday's law states that the induced emf is given by (N = 1)

dt



REVIEW QUESTIONS U 401

For transformer emf, Vemf = — ,

and for motional emf, Vemf = I (u X B) • d\.

3. The displacement current

h = ( h • dS

dD
where id = (displacement current density), is a modification to Ampere's circuit

dt

law. This modification attributed to Maxwell predicted electromagnetic waves several
years before it was verified experimentally by Hertz.

4. In differential form, Maxwell's equations for dynamic fields are:

V • D = Pv

V-B = 0

dt

V X H J +

dt

Each differential equation has its integral counterpart (see Tables 9.1 and 9.2) that can
be derived from the differential form using Stokes's or divergence theorem. Any EM
field must satisfy the four Maxwell's equations simultaneously.

5. Time-varying electric scalar potential V(x, y, z, t) and magnetic vector potential
A(JC, y, z, t) are shown to satisfy wave equations if Lorentz's condition is assumed.

6. Time-harmonic fields are those that vary sinusoidally with time. They are easily ex-
pressed in phasors, which are more convenient to work with. Using the cosine refer-
ence, the instantaneous vector quantity A(JC, y, z, t) is related to its phasor form
As(x, y, z) according to

A(x, y, z, t) = Re [AX*, y, z) eM]

9.1 The flux through each turn of a 100-turn coil is (t3 — 2t) mWb^ where t is in seconds.
The induced emf at t = 2 s is

(a) IV

(b) - 1 V

(c) 4mV

(d) 0.4 V
(e) -0.4 V
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, Increasing B

(a)

Decreasing B
Figure 9.13 For Review Question 9.2.

(b)

• Decreasing B Increasing B

(d)

9.2 Assuming that each loop is stationary and the time-varying magnetic field B induces
current /, which of the configurations in Figure 9.13 are incorrect?

9.3 Two conducting coils 1 and 2 (identical except that 2 is split) are placed in a uniform mag-
netic field that decreases at a constant rate as in Figure 9.14. If the plane of the coils is per-
pendicular to the field lines, which of the following statements is true?

(a) An emf is induced in both coils.

(b) An emf is induced in split coil 2.

(c) Equal joule heating occurs in both coils.

(d) Joule heating does not occur in either coil.

9.4 A loop is rotating about the y-axis in a magnetic field B = Ba sin wt ax Wb/m2. The
voltage induced in the loop is due to

(a) Motional emf

(b) Transformer emf

(c) A combination of motional and transformer emf

(d) None of the above

9.5 A rectangular loop is placed in the time-varying magnetic field B = 0.2 cos
150irfaz Wb/m as shown in Figure 9.15. Vx is not equal to V2.

(a) True (b) False

Figure 9.14 For Review Question 9.3.
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©

©

©

0 B Figure 9.15 For Review Question 9.5 and Problem 9.10.

9.6 The concept of displacement current was a major contribution attributed to

(a) Faraday

(b) Lenz

(c) Maxwell

(d) Lorentz

(e) Your professor

9.7 Identify which of the following expressions are not Maxwell's equations for time-varying
fields:

(a)

(b) V • D = Pv

(d) 4> H • d\ =

(e) i B • dS = 0

+ e ) • dS
dt J

9.8 An EM field is said to be nonexistent or not Maxwellian if it fails to satisfy Maxwell's
equations and the wave equations derived from them. Which of the following fields in
free space are not Maxwellian?

(a) H = cos x cos 106fav

(b) E = 100 cos cot ax

(c) D = e"10> 'sin(105 - lOy) az

(d) B = 0.4 sin 104fa.

(e) H = 10 cos ( 103/ - — | a r

sinfl
(f) E = cos i

V/ioeo) i

(g) B = (1 - p ) sin u>faz
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9.9 Which of the following statements is not true of a phasor?

(a) It may be a scalar or a vector.

(b) It is a time-dependent quantity.
(c) A phasor Vs may be represented as Vo / 0 or Voe

je where Vo = | Vs

(d) It is a complex quantity.

9.10 If Ej = 10 ej4x ay, which of these is not a correct representation of E?

(a) Re (Ese
jut)

(b) Re (Ese-j"')

(c) Im (E.^"")
(d) 10 cos (wf + jAx) ay

(e) 10 sin (ut + Ax) ay

Answers: 9.1b, 9.2b, d, 9.3a, 9.4c, 9.5a, 9.6c, 9.7a, b, d, g, 9.8b, 9.9a,c, 9.10d.

PRORI FMS ' '* ^ conducting circular loop of radius 20 cm lies in the z = 0 plane in a magnetic field
B = 10 cos 377? az mWb/m2. Calculate the induced voltage in the loop.

9.2 A rod of length € rotates about the z-axis with an angular velocity w. If B = Boaz, calcu-
late the voltage induced on the conductor.

9.3 A 30-cm by 40-cm rectangular loop rotates at 130 rad/s in a magnetic field 0.06 Wb/m2

normal to the axis of rotation. If the loop has 50 turns, determine the induced voltage in
the loop.

9.4 Figure 9.16 shows a conducting loop of area 20 cm2 and resistance 4 fl. If B = 40 cos
104faz mWb/m2, find the induced current in the loop and indicate its direction.

9.5 Find the induced emf in the V-shaped loop of Figure 9.17. (a) Take B = 0.1a, Wb/m2

and u = 2ax m/s and assume that the sliding rod starts at the origin when t = 0.
(b) Repeat part (a) if B = 0.5xaz Wb/m2.

Figure 9.16 For Problem 9.4.
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Figure 9.17 For Problem 9.5.

©

B

0 /

/V
©

©

0

-»- u

©

0

©

*9.6 A square loop of side a recedes with a uniform velocity «oav from an infinitely long fila-
ment carrying current / along az as shown in Figure 9.18. Assuming that p = po at time
t = 0, show that the emf induced in the loop at t > 0 is

Vrmf = uoa
2vp{p + a)

*9.7 A conducting rod moves with a constant velocity of 3az m/s parallel to a long straight wire
carrying current 15 A as in Figure 9.19. Calculate the emf induced in the rod and state
which end is at higher potential.

*9.8 A conducting bar is connected via flexible leads to a pair of rails in a magnetic field
B = 6 cos lOf ax mWb/m2 as in Figure 9.20. If the z-axis is the equilibrium position of
the bar and its velocity is 2 cos lOf ay m/s, find the voltage induced in it.

9.9 A car travels at 120 km/hr. If the earth's magnetic field is 4.3 X 10"5 Wb/m2, find the
induced voltage in the car bumper of length 1.6 m. Assume that the angle between the
earth magnetic field and the normal to the car is 65°.

*9.10 If the area of the loop in Figure 9.15 is 10 cm2, calculate Vx and V2.

Figure 9.18 For Problem 9.6.
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15 A

A

20 cm

u

t
40 cm

Figure 9.19 For Problem 9.7.

9.11 As portrayed in Figure 9.21, a bar magnet is thrust toward the center of a coil of 10 turns
and resistance 15 fl. If the magnetic flux through the coil changes from 0.45 Wb to
0.64 Wb in 0.02 s, what is the magnitude and direction (as viewed from the side near the
magnet) of the induced current?

9.12 The cross section of a homopolar generator disk is shown in Figure 9.22. The disk has
inner radius p] = 2 cm and outer radius p2 = 10 cm and rotates in a uniform magnetic
field 15 mWb/m2 at a speed of 60 rad/s. Calculate the induced voltage.

9.13 A 50-V voltage generator at 20 MHz is connected to the plates of an air dielectric parallel-
plate capacitor with plate area 2.8 cm2 and separation distance 0.2 mm. Find the
maximum value of displacement current density and displacement current.

9.14 The ratio JIJd (conduction current density to displacement current density) is very impor-
tant at high frequencies. Calculate the ratio at 1 GHz for:

(a) distilled water (p = ,uo, e = 81e0, a = 2 X 10~3 S/m)

(b) sea water (p, = no, e = 81eo, a = 25 S/m)

(c) limestone {p. = ixo, e = 5eo, j = 2 X 10~4 S/m)

9.15 Assuming that sea water has fi = fxa, e = 81e0, a = 20 S/m, determine the frequency at
which the conduction current density is 10 times the displacement current density in mag-
nitude.

Figure 9.20 For Problem 9.8.
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Figure 9.21 For Problem 9.11.

407

9.16 A conductor with cross-sectional area of 10 cm carries a conduction current 0.2 sin
l09t mA. Given that a = 2.5 X 106 S/m and e r = 6, calculate the magnitude of the dis-
placement current density.

9.17 (a) Write Maxwell's equations for a linear, homogeneous medium in terms of Es and YLS

only assuming the time factor e~Ju".

(b) In Cartesian coordinates, write the point form of Maxwell's equations in Table 9.2 as
eight scalar equations.

9.18 Show that in a source-free region (J = 0, pv = 0), Maxwell's equations can be reduced
to two. Identify the two all-embracing equations.

9.19 In a linear homogeneous and isotropic conductor, show that the charge density pv satisfies

— + -pv = 0
dt e

9.20 Assuming a source-free region, derive the diffusion equation

at

shaft

brush

copper disk

Figure 9.22 For Problem 9.12.
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9.21 In a certain region,

J = (2yax + xzay + z3az) sin 104r A/m

nndpvifpv(x,y,0,t) = 0.

9.22 In a charge-free region for which a = 0, e = eoer, and /* = /xo,

H = 5 c o s ( 1 0 u ? - 4y)a,A/m

find: (a) Jd and D, (b) er.

9.23 In a certain region with a = 0, /x = yuo, and e = 6.25a0, the magnetic field of an EM
wave is

H = 0.6 cos I3x cos 108r a, A/m

Find /? and the corresponding E using Maxwell's equations.

*9.24 In a nonmagnetic medium,

E = 50 cos(109r - Sx)&y + 40 sin(109? - Sx)az V/m

find the dielectric constant er and the corresponding H.

9.25 Check whether the following fields are genuine EM fields, i.e., they satisfy Maxwell's
equations. Assume that the fields exist in charge-free regions.

(a) A = 40 sin(co? + 10r)a2

(b) B = — cos(cor - 2p)a6
P

(c) C = f 3 p 2 cot <j>ap H a 0 j sin u>t

(d) D = — sin 8 sm(wt — 5r)aer

**9.26 Given the total electromagnetic energy

W = | (E • D + H • B) dv

show from Maxwell's equations that

dW
dt = - f (EXH)-(iS- E • J dv

9.27 In free space,

H = p(sin 4>ap + 2 cos ^ a j cos 4 X 10 t A/m

find id and E.
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9.28 An antenna radiates in free space and

12 sin 6
H = cos(2ir X l(fr - 0r)ag mA/m

find the corresponding E in terms of /3.

*9.29 The electric field in air is given by E = pte~p~\ V/m; find B and J.

**9.30 In free space (pv = 0, J = 0). Show that

A = -£2_ ( c o s e a r _ s i n e ajeJ*'-"*
A-wr

satisfies the wave equation in eq. (9.52). Find the corresponding V. Take c as the speed of
light in free space.

9.31 Evaluate the following complex numbers and express your answers in polar form:

(a) (4 /30° - 10/50°)1/2

1 +J2
(b)

(c)

(d)

6 + 7 8 - 7
(3 + j4)2

12 - jl + ( -6 +;10)*

(3.6/-200°)1 /2

9.32 Write the following time-harmonic fields as phasors:

(a) E = 4 cos(oit - 3x - 10°) ay - sin(cof + 3x + 20°) B;,

sin
(b) H = cos(ut - 5r)ag

r
(c) J = 6e~3x sin(ojf — 2x)ay + 10e~*cos(w? —

9.33 Express the following phasors in their instantaneous forms:

(a) A, = (4 - 3j)e-j0xay

0 » B , = ^ - * %

(c) Cs = —7 (1 + j2)e~j<t> sin 0 a 0
r

9.34 Given A = 4 sin wtax + 3 cos wtay and Bs = j\0ze~jzax, express A in phase form and
B, in instantaneous form.

9.35 Show that in a linear homogeneous, isotropic source-free region, both Es and Hs must
satisfy the wave equation

, = 0

where y2 = a>2/xe and Â  = E,, or Hs.



Chapter 10

ELECTROMAGNETIC WAVE
PROPAGATION

How far you go in life depends on your being tender with the young, compas-
sionate with the aged, sympathetic with the striving, and tolerant of the weak and
the strong. Because someday in life you will have been all of these.

—GEORGE W. CARVER

10.1 INTRODUCTION

Our first application of Maxwell's equations will be in relation to electromagnetic wave
propagation. The existence of EM waves, predicted by Maxwell's equations, was first in-
vestigated by Heinrich Hertz. After several calculations and experiments Hertz succeeded
in generating and detecting radio waves, which are sometimes called Hertzian waves in his
honor.

In general, waves are means of transporting energy or information.

Typical examples of EM waves include radio waves, TV signals, radar beams, and light
rays. All forms of EM energy share three fundamental characteristics: they all travel at
high velocity; in traveling, they assume the properties of waves; and they radiate outward
from a source, without benefit of any discernible physical vehicles. The problem of radia-
tion will be addressed in Chapter 13.

In this chapter, our major goal is to solve Maxwell's equations and derive EM wave
motion in the following media:

1. Free space (<T = 0, s = eo, JX = /xo)
2. Lossless dielectrics (a = 0, e = e,so, JX = jxrjxo, or a <sC aie)
3. Lossy dielectrics {a # 0, e = E,EO, fx = fxrixo)
4. Good conductors (a — °°, e = eo, JX = ixrfxo, or a Ŝ> we)

where w is the angular frequency of the wave. Case 3, for lossy dielectrics, is the most
general case and will be considered first. Once this general case is solved, we simply
derive other cases (1,2, and 4) from it as special cases by changing the values of a, e, and
ix. However, before we consider wave motion in those different media, it is appropriate that
we study the characteristics of waves in general. This is important for proper understand-

410
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ing of EM waves. The reader who is conversant with the concept of waves may skip
Section 10.2. Power considerations, reflection, and transmission between two different
media will be discussed later in the chapter.

10.2 WAVES IN GENERAL

A clear understanding of EM wave propagation depends on a grasp of what waves are in
general.

A wave is a function of both space and time.

Wave motion occurs when a disturbance at point A, at time to, is related to what happens at
point B, at time t > t0. A wave equation, as exemplified by eqs. (9.51) and (9.52), is a
partial differential equation of the second order. In one dimension, a scalar wave equation
takes the form of

d2E 2 d2E
r- - U r- = 0

dt2 dz2
(10.1)

where u is the wave velocity. Equation (10.1) is a special case of eq. (9.51) in which the
medium is source free (pv, = 0, J = 0). It can be solved by following procedure, similar to
that in Example 6.5. Its solutions are of the form

or

E =f(z~ ut)

E+ = g(z + ut)

E=f(z- ut) + g(z + ut)

(10.2a)

(10.2b)

(10.2c)

where / and g denote any function of z — ut and z + ut, respectively. Examples of such
functions include z ± ut, sin k(z ± ut), cos k(z ± ut), and eJ

k(-z±u'\ where k is a constant. It
can easily be shown that these functions all satisfy eq. (10.1).

If we particularly assume harmonic (or sinusoidal) time dependence eJ0", eq. (10.1)
becomes

d2E,
S = 0 (10.3)

where /3 = u/u and Es is the phasor form of E. The solution to eq. (10.3) is similar to
Case 3 of Example 6.5 [see eq. (6.5.12)]. With the time factor inserted, the possible solu-
tions to eq. (10.3) are

E
+ = (10.4a)

(10.4b)
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and

= Aei{<M"0z) + Bej(ut+fiz) (10.4c)

where A and B are real constants.
For the moment, let us consider the solution in eq. (10.4a). Taking the imaginary part

of this equation, we have

E = A sin (cof - /3z) (10.5)

This is a sine wave chosen for simplicity; a cosine wave would have resulted had we taken
the real part of eq. (10.4a). Note the following characteristics of the wave in eq. (10.5):

1. It is time harmonic because we assumed time dependence ejo" to arrive at
eq. (10.5).

2. A is called the amplitude of the wave and has the same units as E.
3. (ox - /3z) is the phase (in radians) of the wave; it depends on time t and space vari-

able z.
4. w is the angular frequency (in radians/second); 0 is the phase constant or wave

number (in radians/meter).

Due to the variation of E with both time t and space variable z, we may plot £ as a
function of t by keeping z constant and vice versa. The plots of E(z, t = constant) and
E(t, z = constant) are shown in Figure 10.1(a) and (b), respectively. From Figure 10.1(a),
we observe that the wave takes distance X to repeat itself and hence X is called the wave-
length (in meters). From Figure 10.1(b), the wave takes time T to repeat itself; conse-
quently T is known as the period (in seconds). Since it takes time T for the wave to travel
distance X at the speed u, we expect

X = uT (10.6a)

But T = l/f, where/is the frequency (the number of cycles per second) of the wave in
Hertz (Hz). Hence,

u = / X (10.6b)

Because of this fixed relationship between wavelength and frequency, one can identify the
position of a radio station within its band by either the frequency or the wavelength.
Usually the frequency is preferred. Also, because

a) = 2TT/ (10.7a)

(10.7b)

and

/
(10.7c)



10.2 WAVES IN GENERAL 413

I

A-

A /

\ /

—Y~\

o x\

V

/
/x

/

\
3X\
2 \

/ 2 X

. /

. 1

(a)

\
\

A •

1J
0

\

2 \

/
IT

J
T
/

3r\ /IT
2 \ /

Figure 10.1 Plot of E(z, t)
(b) with constant z.

(b)

• A sin(co/ - &z): (a) with constant t,

we expect from eqs. (10.6) and (10.7) that

(10.8)

Equation (10.8) shows that for every wavelength of distance traveled, a wave undergoes a
phase change of 2TT radians.

We will now show that the wave represented by eq. (10.5) is traveling with a velocity
u in the +z direction. To do this, we consider a fixed point P on the wave. We sketch
eq. (10.5) at times t = 0, 774, and 772 as in Figure 10.2. From the figure, it is evident that
as the wave advances with time, point P moves along +z direction. Point P is a point of
constant phase, therefore

ut - j3z = constant

or

dz
(10.9)
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Figure 10.2 Plot of E(z, t) = A
sin(cot - /3z) at time (a) t = 0, (b)
t = T/4, (c) t = 772; P moves along
+z direction with velocity u.

(c) t = Tj2

which is the same as eq. (10.7b). Equation (10.9) shows that the wave travels with velocity
u in the +z direction. Similarly, it can be shown that the wave B sin (cof + (5z) in
eq. (10.4b) is traveling with velocity u in the — z direction.

In summary, we note the following:

1. A wave is a function of both time and space.
2. Though time / = 0 is arbitrarily selected as a reference for the wave, a wave is

without beginning or end.
3. A negative sign in (u>t ± /3z) is associated with a wave propagating in the +z di-

rection (forward traveling or positive-going wave) whereas a positive sign indi-
cates that a wave is traveling in the —z direction (backward traveling or negative-
going wave).

4. Since sin (~\p) = -sin ^ = sin (\j/ ± ir), whereas cos(-i/<) = cos \p,

sin (\j/ ± itl2) = ± cos \[/

sin (\p ± ir) = —sin \j/

cos (\p ± if 12) = + sin \p

cos (\j/ ± IT) = —cos \f/

(10.10a)

(10.10b)

(10.10c)

(lO.lOd)

where \p = u>t ± ffz- With eq. (10.10), any time-harmonic wave can be represented
in the form of sine or cosine.
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TABLE 10.1 Electromagnetic Spectrum

EM Phenomena Examples of Uses Approximate Frequency Range

Cosmic rays

Gamma rays

X-rays

Ultraviolet radiation

Visible light

Infrared radiation

Microwave waves

Radio waves

Physics, astronomy

Cancer therapy

X-ray examination

Sterilization

Human vision

Photography

Radar, microwave relays,

satellite communication

UHF television

VHF television, FM radio

Short-wave radio

AM radio

1014 GHz and above

10'°-1013GHz

108-109 GHz

106-108 GHz

105-106GHz

103-104 GHz

3-300 GHz

470-806 MHz

54-216 MHz

3-26 MHz

535-1605 kHz

A large number of frequencies visualized in numerical order constitute a spectrum.
Table 10.1 shows at what frequencies various types of energy in the EM spectrum occur.
Frequencies usable for radio communication occur near the lower end of the EM spectrum.
As frequency increases, the manifestation of EM energy becomes dangerous to human
beings.1 Microwave ovens, for example, can pose a hazard if not properly shielded. The
practical difficulties of using EM energy for communication purposes also increase as fre-
quency increases, until finally it can no longer be used. As communication methods
improve, the limit to usable frequency has been pushed higher. Today communication
satellites use frequencies near 14 GHz. This is still far below light frequencies, but in the
enclosed environment of fiber optics, light itself can be used for radio communication.2

EXAMPLE 10.1
The electric field in free space is given by

E = 50 cos (108r + &x) ay V/m

(a) Find the direction of wave propagation.

(b) Calculate /3 and the time it takes to travel a distance of A/2.

(c) Sketch the wave at t = 0, 774, and 772.

Solution:

(a) From the positive sign in (tot + /3x), we infer that the wave is propagating along
This will be confirmed in part (c) of this example.

'See March 1987 special issue of IEEE Engineering in Medicine and Biology Magazine on "Effects
of EM Radiation."
2See October 1980 issue of IEEE Proceedings on "Optical-Fiber Communications."
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(b) In free space, u = c.

c 3 X 10s

or

/3 = 0.3333 rad/m

If 7 is the period of the wave, it takes 7 seconds to travel a distance X at speed c. Hence to
travel a distance of X/2 will take

7 I 2ir -K „„ _
3 L 4 2

Alternatively, because the wave is traveling at the speed of light c,

X

But

or t l = -

Hence,

6TT
= 31.42 ns

2(3 X 108)

as obtained before.

(c) At t = O,Ey = 50 cos I3x

At t = 7/4, Ey = 50 cos (co • — + /3JC I = 50 cos (fix + TT/2)
\ 4co

= -50(sin)3x

At t = 7/2, EY = 50 cos ( co + 0x ) = 50 cos(/3x + it)
2co

= — 50 cos fix

Ey at r = 0, 7/4, 7/2 is plotted against x as shown in Figure 10.3. Notice that a point P (ar-
bitrarily selected) on the wave moves along — ax as f increases with time. This shows thai
the wave travels along — ax.
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- 50 sin jix

Figure 10.3 For Example 10.1; wave
travels along — ax.

(c) t = Tl

PRACTICE EXERCISE 10.1 J

In free space, H = 0.1 cos (2 X 108/ - kx) ay A/m. Calculate

(a) k, A, and T

(b) The time tx it takes the wave to travel A/8

(c) Sketch the wave at time tx.

Answer: (a) 0.667 rad/m, 9.425 m, 31.42 ns, (b) 3.927 ns, (c) see Figure 10.4.

0.3 WAVE PROPAGATION IN LOSSY DIELECTRICS

As mentioned in Section 10.1, wave propagation in lossy dielectrics is a general case from
which wave propagation in other types of media can be derived as special cases. Therefore,
this section is foundational to the next three sections.
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0. 1 " >

Figure 10.4 For Practice Exercise 10.1(c).

A lossy dielectric is a medium in which an EM wave loses power as it propagates
due to poor conduction.

In other words, a lossy dielectric is a partially conducting medium (imperfect dielectric or
imperfect conductor) with a ¥= 0, as distinct from a lossless dielectric (perfect or good di-
electric) in which a = 0.

Consider a linear, isotropic, homogeneous, lossy dielectric medium that is charge free
(pv = 0). Assuming and suppressing the time factor ej"', Maxwell's equations (see Table
9.2) become

V • E, = 0

V • Hs = 0

V X Es = -ju>nHs

Taking the curl of both sides of eq. (10.13) gives

V X V X Es = -join V X H S

Applying the vector identity

VX V X A = V(V-A) - V2A

(10.11)

(10.12)

(10.13)

(10.14)

(10.15)

(10.16)

to the left-hand side of eq. (10.15) and invoking eqs. (10.11) and (10.14), we obtain

V(V/E, ) - V2ES = -j

or

V2ES - 72ES = 0 (10.17)

where

7 = j'w/̂ Cff + j (10.18)
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and y is called the propagation constant (in per meter) of the medium. By a similar proce-
dure, it can be shown that for the H field,

V2HS - y2Ks = 0 (10.19)

Equations (10.17) and (10.19) are known as homogeneous vector Helmholtz 's equations or
simply vector wave equations. In Cartesian coordinates, eq. (10.17), for example, is equiv-
alent to three scalar wave equations, one for each component of E along ax, ay, and az.

Since y in eqs. (10.17) to (10.19) is a complex quantity, we may let

y = a + j/3

We obtain a and /3 from eqs. (10.18) and (10.20) by noting that

Re y2 = P2 - a2 = (f

and

\y2\ = 01 + a2 = ufi VV + co

From eqs. (10.21) and (10.22), we obtain

V

(10.20)

(10.21)

(10.22)

Oi =

6 =

V 2 [V

•°v 2 [V

a
cos

coe

J
2 "I

J

(10.23)

(10.24)

Without loss of generality, if we assume that the wave propagates along +az and that
Es has only an x-component, then

Es = Exs(z)ax

Substituting this into eq. (10.17) yields

(V2 - y2)Exs(z)

Hence

d2Exs(z)

(10.25)

(10.26)

or

,2
—2 - y2 \Exs(z) = 0
dz

(10.27)
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This is a scalar wave equation, a linear homogeneous differential equation, with solution
(see Case 2 in Example 6.5)

EJx) = Eoe'yz + E'oe
yz (10.28)

where Eo and E'o are constants. The fact that the field must be finite at infinity requires that
E'o = 0. Alternatively, because eiz denotes a wave traveling along —az whereas we assume
wave propagation along az, E'o = 0. Whichever way we look at it, E'o = 0. Inserting the
time factor ejo" into eq. (10.28) and using eq. (10.20), we obtain

Efc t) = Re aJ = Re (Eoe-azeji"'-0z)ax)

or

Efo i) = Eoe~azcos(at - j3z)ax (10.29)

A sketch of |E| at times t = 0 and t = At is portrayed in Figure 10.5, where it is evident
that E has only an x-component and it is traveling along the +z-direction. Having obtained
E(z, t), we obtain H(z, t) either by taking similar steps to solve eq. (10.19) or by using eq.
(10.29) in conjunction with Maxwell's equations as we did in Example 9.8. We will even-
tually arrive at

H(z, t) = Re (Hoe-ayM-ft) ) (10.30)

where

H - ^ (10.31)

and 77 is a complex quantity known as the intrinsic impedance (in ohms) of the medium. It
can be shown by following the steps taken in Example 9.8 that

V = (10.32)

Figure 10.5 £-field with x-component
traveling along +z-direction at times
t = 0 and t = At; arrows indicate in-
stantaneous values of E.
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with

(10.33)

where 0 < 6V < 45°. Substituting eqs. (10.31) and (10.32) into eq. (10.30) gives

or

H = ~\ e~az cos(co? - pz- 0,) (10.34)

Notice from eqs. (10.29) and (10.34) that as the wave propagates along az, it decreases or
attenuates in amplitude by a factor e~az, and hence a is known as the attenuation constant
or attenuation factor of the medium. It is a measure of the spatial rate of decay of the wave
in the medium, measured in nepers per meter (Np/m) or in decibels per meter (dB/m). An
attenuation of 1 neper denotes a reduction to e~l of the original value whereas an increase
of 1 neper indicates an increase by a factor of e. Hence, for voltages

1 Np = 20 log10 e = 8.686 dB (10.35)

From eq. (10.23), we notice that if a = 0, as is the case for a lossless medium and free
space, a = 0 and the wave is not attenuated as it propagates. The quantity (3 is a measure
of the phase shift per length and is called the phase constant or wave number. In terms of
/?, the wave velocity u and wavelength X are, respectively, given by [see eqs. (10.7b) and
(10.8)]

CO
X =

2x
0

(10.36)

We also notice from eqs. (10.29) and (10.34) that E and H are out of phase by 0, at any
instant of time due to the complex intrinsic impedance of the medium. Thus at any time, E
leads H (or H lags E) by 6V. Finally, we notice that the ratio of the magnitude of the con-
duction current density J to that of the displacement current density Jd in a lossy medium
is

IX* 0)8
= tan I

or

tan 6 = —
coe

(10.37)
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where tan 6 is known as the loss tangent and d is the loss angle of the medium as illustrated
in Figure 10.6. Although a line of demarcation between good conductors and lossy di-
electrics is not easy to make, tan 6 or 6 may be used to determine how lossy a medium is.
A medium is said to be a good (lossless or perfect) dielectric if tan d is very small
(<j <SC we) or a good conductor if tan 0 is very large (a 5̂> we). From the viewpoint of
wave propagation, the characteristic behavior of a medium depends not only on its consti-
tutive parameters a, e, and fx but also on the frequency of operation. A medium that is re-
garded as a good conductor at low frequencies may be a good dielectric at high frequen-
cies. Note from eqs. (10.33) and (10.37) that

From eq. (10.14)

V X Hs = (o + jue)Es = jws 1 - E,

(10.38)

(10.39)

where

(10.40a)

or

ec = e (10.40b)

and e' = e, s" = a/w; sc is called the complex permittivity of the medium. We observe that
the ratio of e" to e' is the loss tangent of the medium; that is,

e a
tan d = — = —

e we
(10.41)

In subsequent sections, we will consider wave propagation in other types of media,
which may be regarded as special cases of what we have considered here. Thus we will
simply deduce the governing formulas from those obtained for the general case treated in
this section. The student is advised not just to memorize the formulas but to observe how
they are easily obtained from the formulas for the general case.

Jds = Figure 10.6 Loss angle of a lossy medium.

J
J5 = oEs
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10.4 PLANE WAVES IN LOSSLESS DIELECTRICS

In a lossless dielectric, a <$C we. It is a special case of that in Section 10.3 except that

a - 0, e = eosr, n = fiofir

Substituting these into eqs. (10.23) and (10.24) gives

a = 0, /3 = WV/JLE

1 - TJXS

Also

and thus E and H are in time phase with each other.

(10.42)

(10.43a)

(10.43b)

(10.44)

i 0.5 PLANE WAVES IN FREE SPACE

This is a special case of what we considered in Section 10.3. In this case,

a - 0, e - eo, (10.45)

This may also be regarded as a special case of Section 10.4. Thus we simply replace e by
eo and \k by /xo in eq. (10.43) or we substitute eq. (10.45) directly into eqs. (10.23) and
(10.24). Either way, we obtain

a = 0, /3 = wV/xoso = —

u = = c, X =

(10.46a)

(10.46b)

where c — 3 X 108 m/s, the speed of light in a vacuum. The fact that EM wave travels in
free space at the speed of light is significant. It shows that light is the manifestation of an
EM wave. In other words, light is characteristically electromagnetic.
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By substituting the constitutive parameters in eq. (10.45) into eq. (10.33), dv = 0 and
V = ^oi where rjo is called the intrinsic impedance of free space and is given by

(10.47)

E = Eo - (3z)

then

H = Ho cos (ut - f3z) &y = —- cos(cof - (3z)

(10.48a)

(10.48b)

The plots of E and H are shown in Figure 10.7(a). In general, if a£, aH, and ak are unit
vectors along the E field, the H field, and the direction of wave propagation; it can be
shown that (see Problem 10.14)

ak X a£ = aH

or

X aH = -

Figure 10.7 (a) Plot of E and H as func-
tions of z at t = 0; (b) plot of E and H at
z = 0. The arrows indicate instantaneous
values.

(a)

-E = Eo cos oj/ ax

H = Ho cos ut ay

(b)
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or

aE X aH = ak (10.49)

Both E and H fields (or EM waves) are everywhere normal to the direction of wave prop-
agation, ak. That means, the fields lie in a plane that is transverse or orthogonal to the di-
rection of wave propagation. They form an EM wave that has no electric or magnetic field
components along the direction of propagation; such a wave is called a transverse electro-
magnetic (TEM) wave. Each of E and H is called a uniform plane wave because E (or H)
has the same magnitude throughout any transverse plane, defined by z = constant. The di-
rection in which the electric field points is the polarization of a TEM wave.3 The wave in
eq. (10.29), for example, is polarized in the ^-direction. This should be observed in Figure
10.7(b), where an illustration of uniform plane waves is given. A uniform plane wave
cannot exist physically because it stretches to infinity and would represent an infinite
energy. However, such waves are characteristically simple but fundamentally important.
They serve as approximations to practical waves, such as from a radio antenna, at distances
sufficiently far from radiating sources. Although our discussion after eq. (10.48) deals with
free space, it also applies for any other isotropic medium.

0.6 PLANE WAVES IN GOOD CONDUCTORS

This is another special case of that considered in Section 10.3. A perfect, or good conduc-
tor, is one in which a Ŝ> we so that a/we —> °o; that is,

a — °°, e = so, JX = fionr

Hence, eqs. (10.23) and (10.24) become

a = 13 =

Also,

and thus E leads H by 45°. If

E = Eoe~azcos(a)t - j8z) ax

(10.50)

(10.51a)

(10.51b)

(10.52)

(10.53a)

3Some texts define polarization differently.
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then

H = az cos(co? — &z — 45°) a.. (10.53b)

Therefore, as E (or H) wave travels in a conducting medium, its amplitude is attenuated by
the factor e~az. The distance <5, shown in Figure 10.8, through which the wave amplitude
decreases by a factor e~l (about 37%) is called skin depth or penetration depth of the
medium; that is,

or

a
(10.54a)

The skin depth is a measure of the depth to which an EM wave can penetrate the
medium.

Equation (10.54a) is generally valid for any material medium. For good conductors,
eqs. (10.51a) and (10.54a) give

<5 = —^ (10.54b)

The illustration in Figure 10.8 for a good conductor is exaggerated. However, for a
partially conducting medium, the skin depth can be considerably large. Note from
eqs. (10.51a), (10.52), and (10.54b) that for a good conductor.

ao a8
(10.55)

Figure 10.8 Illustration of skin depth.
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TABLE 10.2 Skin

Frequency (Hz)

Skin depth (mm)

Depth in

10 60

20.8 8.6

Copper*

100

6.6

500

2.99

104

0.66 6.6

108

X 10~3

1010

6.6 x 10"4

*For copper, a = 5.8 X IO7 mhos/m, fi = ft,,, <5 = 66.1/ vf (in mm).

Also for good conductors, eq. (10.53a) can be written as

E = Eae~dh cos o>t--)ax

showing that 5 measures the exponential damping of the wave as it travels through the con-
ductor. The skin depth in copper at various frequencies is shown in Table 10.2. From the
table, we notice that the skin depth decreases with increase in frequency. Thus, E and H
can hardly propagate through good conductors.

The phenomenon whereby field intensity in a conductor rapidly decreases is known as
skin effect. The fields and associated currents are confined to a very thin layer (the skin) of
the conductor surface. For a wire of radius a, for example, it is a good approximation at
high frequencies to assume that all of the current flows in the circular ring of thickness 5 as
shown in Figure 10.9. Skin effect appears in different guises in such problems as attenua-
tion in waveguides, effective or ac resistance of transmission lines, and electromagnetic
shielding. It is used to advantage in many applications. For example, because the skin
depth in silver is very small, the difference in performance between a pure silver compo-
nent and a silver-plated brass component is negligible, so silver plating is often used to
reduce material cost of waveguide components. For the same reason, hollow tubular con-
ductors are used instead of solid conductors in outdoor television antennas. Effective elec-
tromagnetic shielding of electrical devices can be provided by conductive enclosures a few
skin depths in thickness.

The skin depth is useful in calculating the ac resistance due to skin effect. The resis-
tance in eq. (5.16) is called the dc resistance, that is,

aS
(5.16)

Figure 10.9 Skin depth at high frequencies, 5 <SC a.
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We define the surface or skin resistance Rs (in fl/m2) as the real part of the 77 for a good
conductor. Thus from eq. (10.55)

(10.56)

This is the resistance of a unit width and unit length of the conductor. It is equivalent to the
dc resistance for a unit length of the conductor having cross-sectional area 1 X 5 . Thus for
a given width w and length €, the ac resistance is calculated using the familiar dc resistance
relation of eq. (5.16) and assuming a uniform current flow in the conductor of thickness 6,
that is,

obw w
(10.57)

where S 8w. For a conductor wire of radius a (see Figure 10.9), w = 2ira, so

_J__
/?ac _ ff27ra6 a

fl^~~~^~26

(77ra2

Since 6 <3C a at high frequencies, this shows that /?ac is far greater than Rdc. In general, the
ratio of the ac to the dc resistance starts at 1.0 for dc and very low frequencies and in-
creases as the frequency increases. Also, although the bulk of the current is nonuniformly
distributed over a thickness of 56 of the conductor, the power loss is the same as though it
were uniformly distributed over a thickness of 6 and zero elsewhere. This is one more
reason why 5 is referred to as the skin depth.

EXAMPLE 10.2
A lossy dielectric has an intrinsic impedance of 200 /30° fi at a particular frequency. If, at
that frequency, the plane wave propagating through the dielectric has the magnetic field
component

H = 10e"°"cos(cof--xJa>,A/m

find E and a. Determine the skin depth and wave polarization.

Solution:

The given wave travels along ax so that ak = ax; aH = ay, so

- a £ = a* X aH = ax x ay = az

or

aE = - a z
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AlsoWo = 10, so

H,
- = 77 = 200 rW = 200 eJ*16 -> Eo = 2000e"r/6

Except for the amplitude and phase difference, E and H always have the same form. Hence

E = Re (2000e ; 7 rV7V"'a£)

or

E = - 2 e ~ M cosf cot - - + - ) az kV/m
V 2 6 /

Knowing that /3 = 1/2, we need to determine a. Since

and

»-<*/¥ K H =
1 +

CT

COS

1 +
coe

+ 1

1/2

- 1

+ 1

But — = tan 2(L = tan 60° = V l Hence,
we '

2 -

2+ lJ V3

or

a = -4= = F = 0.2887 Np/m4= = F
V3 2V3

and

m5 = - = 2 V 3 = 3.4641
a

The wave has an Ez component; hence it is polarized along the z-direction.
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PRACTICE EXERCISE 10.2

A plane wave propagating through a medium with er — 8, ixr - 2 has E = 0.5
e~^3 sin(108f - @z) ax V/m. Determine

(a) 0

(b) The loss tangent

(c) Wave impedance

(d) Wave velocity

(e) H field

Answer: (a) 1.374 rad/m, (b) 0.5154, (c) 177.72 /13.63° 0, (d) 7.278 X 107 m/s,
(e) 2.%\le~M sin(1081 - 0z - 13.63°)ay mA/m.

EXAMPLE 10.3 In a lossless medium for which -q = 60ir, ixr = 1, and H = —0.1 cos (cof — z) ax +
0.5 sin (cor — z)&y A/m, calculate er, co, and E.

Solution:

In this case, a = 0, a = 0, and /3 = 1, so

/Xo 12O-7T

or

120TT 120x
e r = = ^ — = 2 -> er = 4

60TT

2co

c

or

co =
1 (3 X 108)

= 1.5 X 108rad/s

From the given H field, E can be calculated in two ways: using the techniques (based on
Maxwell's equations) developed in this chapter or directly using Maxwell's equations as in
the last chapter.

Method 1: To use the techniques developed in this chapter, we let

E = H, + H2
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where Hj = -0.1 cos (uf - z) ax and H2 = 0.5 sin (wt - z) ay and the corresponding
electric field

E = E, + E7

where Ej = Elo cos (cof - z) a£i and E2 = E2o sin (cof - z) aEi. Notice that although H
has components along ax and ay, it has no component along the direction of propagation; it
is therefore a TEM wave.
ForE b

afi] = -(a* X aHl) = - ( a , X -a x ) = a,

E\o = V Hlo = 60TT (0.1) = 6TT

Hence

ForE,

= 6x cos {bit — z) av

aEl = ~{akx aH) = -{az X ay) = ax

E2o = V H2o = 60TT (0.5) = 30x

Hence

E2 = 30TT sin {wt - z)ax

Adding E) and E2 gives E; that is,

E = 94.25 sin (1.5 X 108f - z) ax + 18.85 cos (1.5 X 108? - z) ay V/m

Method 2: We may apply Maxwell's equations directly.

1
V X H = iE + s •

0

because a = 0. But

V X H =

dt

JL JL A.
dx dy dz
Hx(z) Hv(z) 0

dHy dHx

= H2o cos {bit - z) ax + Hlo sin (wf - z)ay

where Hlo = -0.1 and//2o = 0.5. Hence

i f W W

E = - VxH(i ( = — sin (wf - z) a, cos (cor - z) a,,
e J eco eco '

= 94.25 sin(cor - z)ax+ 18.85 cos(wf - z) a, V/m
as expected.
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PRACTICE EXERCISE 10.3

A plane wave in a nonmagnetic medium has E = 50 sin (10 t + 2z) ay V/m. Find

(a) The direction of wave propagation

(b) A,/, and sr

(c) H

Answer: (a) along -z direction, (b) 3.142 m, 15.92 MHz, 36, (c) 0.7958
sin(108f + 2z) ax A/m.

EXAMPLE 10.4
A uniform plane wave propagating in a medium has

E = 2e'az sin (108f - /3z) ay V/m.

If the medium is characterized by er = 1, \ir = 20, and a = 3 mhos/m, find a, /3, and H.

Solution:

We need to determine the loss tangent to be able to tell whether the medium is a lossy di-
electric or a good conductor.

a
we

108 X 1 X
10

ro = 3393

36TT

showing that the medium may be regarded as a good conductor at the frequency of opera-
tion. Hence,

a= (3 =
4TT X 10~7 X 20(108)(3) 1/2

Also

= 61.4
a = 61.4 Np/m, /3 = 61.4 rad/m

4TT X 10"' X 20(10s)

a

8OO7T

1/2

tan 20 = — = 3393 = 45° = TT/4

Hence

H = Hoe~az sin [ at - &z



10.6 PLANE WAVES IN GOOD CONDUCTORS 433

where

and

aH = ak X aE = az X ay = -ax

Thus

H -69.1 e"61'4zsin - 61.42z J ax mA/m

PRACTICE EXERCISE 10.4

A plane wave traveling in the +)>-direction in a lossy medium (er = 4, \xr = 1,
cr = 10"2 mhos/m) has E = 30 cos (109?r t + x/4) az V/m at y = 0. Find

(a) E at y = 1 m, / = 2 ns

(b) The distance traveled by the wave to have a phase shift of 10°

(c) The distance traveled by the wave to have its amplitude reduced by 40%

(d) H at y = 2 m, t = 2 ns

Answer: (a) 2.787az V/m, (b) 8.325 mm, (c) 542 mm, (d) -4.71a, mA/m

XAMPLE10.5
A plane wave E = Eo cos (u>t - j3z) ax is incident on a good conductor at z = 0. Find the
current density in the conductor.

Solution:

Since the current density J = CTE, we expect J to satisfy the wave equation in eq. (10.17),
that is,

V2JS - T
2JS = 0

Also the incident E has only an x-component and varies with z. Hence J = Jx(z, t) ax and

l _ _ 2
, 2 5X ^ sx

UZ

which is an ordinary differential equation with solution (see Case 2 of Example 6.5)

7 = Ae~yz + Be+yz
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The constant B must be zero because Jsx is finite as z~> °°. But in a good conductor,
a ^> we so that a = /3 = 1/5. Hence

and

or

7 = a + jf3 = a(l + j) =

= Ae~*

(1 + j)

where Jsx (0) is the current density on the conductor surface.

PRACTICE EXERCISE 10.5

Due to the current density of Example 10.5, find the magnitude of the total current
through a strip of the conductor of infinite depth along z and width w along y.

Answer:
V~2

EXAMPLE 10.6
For the copper coaxial cable of Figure 7.12, let a = 2 mm, b = 6 mm, and t = 1 mm. Cal-
culate the resistance of 2 m length of the cable at dc and at 100 MHz.

Solution:

Let

R = Ro + Ri

where Ro and Rt are the resistances of the inner and outer conductors.
Atdc,

/?„ = — =

aira2 5.8 X 107TT[2 X 10~3]2
= 2.744 mfi

aS oir[[b + t]2 - b2] air[t2 + 2bt\
2

~ 5.8 X 107TT [1 + 12] X 10"6

= 0.8429 mO

Hence Rdc = 2.744 + 0.8429 = 3.587 mfi
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A t / = 100 MHz,

Rsl _ I

w o82ira 2-KO. V o

2

2-K X 2 X 10"3

= 0.41 fl

TT X 10s X 4?r X 10"

5.8 X 107

Since 6 = 6.6 /xm <$C t = 1 mm, H1 = 2TT£ for the outer conductor. Hence,

w 2-Kb V a

2TT X 6 X 10
= 0.1384 fi

- 3

TT X 10s X 4TT X

5.8 X 107

Hence,

Rac = 0.41 + 0.1384 = 0.5484 U

which is about 150 times greater than Rdc. Thus, for the same effective current i, the ohmic
loss (i2R) of the cable at 100 MHz is far greater than the dc power loss by a factor of 150.

PRACTICE EXERCISE 10.6

For an aluminum wire having a diameter 2.6 mm, calculate the ratio of ac to dc re-
sistance at

(a) 10 MHz

(b) 2 GHz

Answer: (a) 24.16, (b) 341.7.

0.7 POWER AND THE POYNTING VECTOR

As mentioned before, energy can be transported from one point (where a transmitter is
located) to another point (with a receiver) by means of EM waves. The rate of such energy
transportation can be obtained from Maxwell's equations:

V X E = -J
dt

dE
—
dt

(10.58a)

(10.58b)
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Dotting both sides of eq. (10.58b) with E gives

E - ( V X H) = oE2 + E - e —

ef

But for any vector fields A and B (see Appendix A. 10)

V • (A X B) = B • (V X A) - A • (V X B).

Applying this vector identity to eq. (10.59) (letting A = H and B = E) gives

dEH • (V X E) + V • (H X E) = oEz + E • e
dt

From eq. (10.58a),

and thus eq. (10.60) becomes

_tdF?

2 dt
dE2

at

Rearranging terms and taking the volume integral of both sides,

V • (E X H) dv =
dt

— oE dv

Applying the divergence theorem to the left-hand side gives

(E X H) • dS =
dt

-v ss -v

Total power Rate of decrease in Ohmic power
leaving the volume = energy stored in electric — dissipated

and magnetic fields

(10.59)

(10.60)

(10.61)

(10.62)

- EE2 + - fiH2 \dv - I oE2 dv (10.63)

(10.64)

Equation (10.63) is referred to as Poynting's theorem.4 The various terms in the equation
are identified using energy-conservation arguments for EM fields. The first term on the
right-hand side of eq. (10.63) is interpreted as the rate of decrease in energy stored in the
electric and magnetic fields. The second term is the power dissipated due to the fact that
the medium is conducting (a # 0). The quantity E X H on the left-hand side of eq. (10.63)
is known as the Poynting vector SP in watts per square meter (W/m2); that is,

2P = E X H (10.65)

4After J. H. Poynting, "On the transfer of energy in the electromagnetic field," Phil. Trans., vol. 174,
1883, p. 343.
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It represents the instantaneous power density vector associated with the EM field at a given
point. The integration of the Poynting vector over any closed surface gives the net power
flowing out of that surface.

Poynting's theorem stales th;it the nel power flowing out of a given volume i i\
equal to the lime rate of decrease in the energy stored wilhin r minus the conduction
losses.

The theorem is illustrated in Figure, 10.10.
It should be noted that 9s is normal to both E and H and is therefore along the direc-

tion of wave propagation ak for uniform plane waves. Thus

ak = aE X aH (10.49)

The fact that 2P points along ak causes 2P to be regarded derisively as a "pointing" vector.
Again, if we assume that

then

E(z, t) = Eoe
 az cos (ut - f3z) ax

U(Z, 0 = T-T e'az cos {at - j3z - 9,) a,

Power out Figure 10.10 Illustration of power balance
for EM fields.

Power in
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and

E2

<3>(z, 0 = 7-7 e~2az cos (cot - fiz) cos (cot - Hz - 0J a,

M
e 2az [cos 6 + cos (2cot - 2/3z - 6 )] a-

(10.66)

since cos A cos B = — [cos (A — 5) + cos (A + B)]. To determine the time-average

Poynting vector 2?ave(z) (in W/m2), which is of more practical value than the instantaneous
Poynting vector 2P(z, t), we integrate eq. (10.66) over the period T = 2ir/u>; that is,

dt (10.67)

It can be shown (see Prob. 10.28) that this is equivalent to

(10.68)

By substituting eq. (10.66) into eq. (10.67), we obtain

J

(10.69)

The total time-average power crossing a given surface S is given by

p — \ Of, (10.70)

We should note the difference between 2?, S?ave, and Pave. SP(*> y. z. 0 i s m e Poynting
vector in watts/meter and is time varying. 2PaVe0c, y, z) also in watts/meter is the time
average of the Poynting vector S?; it is a vector but is time invariant. Pave is a total time-
average power through a surface in watts; it is a scalar.

EXAMPLE 10.7
In a nonmagnetic medium

E = 4 sin (2TT X 107 - 0.8*) a, V/m
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Find

(a) er, r;

(b) The time-average power carried by the wave

(c) The total power crossing 100 cm2 of plane 2x + y = 5

Solution:

(a) Since a — 0 and (3 ¥= co/c, the medium is not free space but a lossless medium.

(3 = 0.8, co = 27r X 107, fx = [io (nonmagnetic), e = eoe r

Hence

or

= co V lie = co V iioeosr = — V e r

13c _ 0.8(3 X 108) _ 12
r " co ~ 2TT X 107

 IT

sr = 14.59

8

= 98.7 0

= - sin2(cor - /3x)

I

UOir = 120. • f2 = 10.2

= M = ^
2TJ 2 X IOTT2

= 81 axmW/m2

(c) On plane 2x + y = 5 (see Example 3.5 or 8.5),

2a, + a,,

V5

Hence the total power is

Pav, =

= (81 X 10"X) • (100 X 1(

162 X 10~5

- = 724.5 /tW

2ax

V5
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PRACTICE EXERCISE 10.7

In free space, H = 0.2 cos (uit — /3x) az A/m. Find the total power passing through:

(a) A square plate of side 10 cm on plane x + z = 1

(b) A circular disc of radius 5 cm on plane x = 1.

Answer: (a) 0, (b) 59.22 mW.

10.8 REFLECTION OF A PLANE WAVE
AT NORMAL INCIDENCE

So far, we have considered uniform plane waves traveling in unbounded, homogeneous
media. When a plane wave from one medium meets a different medium, it is partly re-
flected and partly transmitted. The proportion of the incident wave that is reflected or trans-
mitted depends on the constitutive parameters (e, ju, a) of the two media involved. Here we
will assume that the incident wave plane is normal to the boundary between the media;
oblique incidence of plane waves will be covered in the next section after we understand
the simpler case of normal incidence.

Suppose that a plane wave propagating along the +z-direction is incident normally on
the boundary z = 0 between medium 1 (z < 0) characterized by er,, eu fix and medium
2 (z > 0) characterized by a2, e2, /*2>

 as shown in Figure 10.11. In the figure, subscripts /,
r, and t denote incident, reflected, and transmitted waves, respectively. The incident, re-
flected, and transmitted waves shown in Figure 10.11 are obtained as follows:

Incident Wave:

(E,, H,) is traveling along +az in medium 1. If we suppress the time factor eJo" and assume
that

Els(z) = Eioe-y'z ax (10.71)

then

H,,(z) = Hioe-"z a, = ^ e~™ av (10.72)

Reflected Wave:

(En Hr) is traveling along -&z in medium 1. If

Era(z) = Ery
z ax (10.73)
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medium 1 (ol . e,.

H,0
(incident wave)

H,

(reflected wave)

medium 2 (o2,^2^2)

H,0 • •»
(transmitted wave)

2 = 0

Figure 10.11 A plane wave incident normally on an interface between
two different media.

then

KM) = Hmey'\-ay) = — ewa,, (10.74)

where Era has been assumed to be along ax; we will consistently assume that for normal in-
cident E,, Er, and E, have the same polarization.

Transmitted Wave:

(E,, Ht) is traveling along +az in medium 2. If

then

(10.75)

(10.76)

In eqs. (10.71) to (10.76), Eio, Ero, and Eto are, respectively, the magnitudes of the incident,
reflected, and transmitted electric fields at z = 0.

Notice from Figure 10.11 that the total field in medium 1 comprises both the incident
and reflected fields, whereas medium 2 has only the transmitted field, that is,

Ej = E, + E n H, = H; + Hr

E2 = E,, H2 = Hr

At the interface z = 0, the boundary conditions require that the tangential components
of E and H fields must be continuous. Since the waves are transverse, E and H fields
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are entirely tangential to the interface. Hence at z = 0, Eltan = E2tan and H,tan = H2tan

imply that

E,(0) + Er(0) = E,(0)

H,(0) + Hr(0) = H,(0)

From eqs. (10.77) and (10.78), we obtain

Em =

and

Eu, =

Eio + Ero = Eto

- (Elo - Ero) = —

12
E
'-'lO

(10.77)

(10.78)

(10.79)

(10.80)

We now define the reflection coefficient T and the transmission coefficient T from
eqs. (10.79) and (10.80) as

or

and

+ li

F = VF

(10.81a)

(10.81b)

or

Note that

T =
Eio

F = rF-

1. 1 + T = T

2. Both F and r are dimensionless and may be complex.
3. o s jr| < l

(10.82a)

(10.82b)

(10.83)

The case considered above is the general case. Let us now consider a special case
when medium 1 is a perfect dielectric (lossless, O\ = 0) and medium 2 is a perfect con-
ductor (a2 —

 cc). For this case, r/2 = 0; hence, T = -1, and T = 0, showing that the wave
is totally reflected. This should be expected because fields in a perfect conductor must
vanish, so there can be no transmitted wave (E2 = 0). The totally reflected wave combines
with the incident wave to form a standing wave. A standing wave "stands" and does not
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travel; it consists of two traveling waves (E, and Er) of equal amplitudes but in opposite di-
rections. Combining eqs. (10.71) and (10.73) gives the standing wave in medium 1 as

But

Hence,

or

Thus

or

Els = E,,. + E ra = (Eioe
 y'z + Eroe

y'z) ax

E, , = -Eio(e
i0'z - e--^z) ax

E, = Re (E]se
M)

E{ = 2Eio sin (3^ sin ut ax

(10.84)

(10.85)

(10.86)

By taking similar steps, it can be shown that the magnetic field component of the wave is

2Eio
Hi = cos p,z cos u>t av (10.87)

A sketch of the standing wave in eq. (10.86) is presented in Figure 10.12 for t = 0, 778,
774, 3778, 772, and so on, where T = 2TT/W. From the figure, we notice that the wave does
not travel but oscillates.

When media 1 and 2 are both lossless we have another special case (a{ = 0 = a2). In
this case, ^ and rj2

 a r e r e a l a nd so are F and T. Let us consider the following cases:

CASE A.

If r/2 > Jji, F > 0. Again there is a standing wave in medium 1 but there is also a transmit-
ted wave in medium 2. However, the incident and reflected waves have amplitudes that are
not equal in magnitude. It can be shown that the maximum values of |EX j occur at

or

mr

^l^-inax

2 '

= WE

n = 0, 1, 2, . . . (10.:
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• JX

Figure 10.12 Standing waves E = 2Eio sin /3,z sin oit &x; curves
0, 1, 2, 3, 4, . . . are, respectively, at times t = 0, 778, TIA, 37/8, 772,. . .;
X = 2x7/3,.

and the minimum values of |Et | occur at

-/3,zmin = (2« + 1)

or

+ (2w + 1)
2/3,

w — u, l , z, (10.89)

CASE B.

If r/2 < r/!, T < 0. For this case, the locations of |Ej| maximum are given by eq. (10.89)
whereas those of |EX | minimum are given by eq. (10.88). All these are illustrated in Figure
10.13. Note that

1. |H] j minimum occurs whenever there is |Ei | maximum and vice versa.
2. The transmitted wave (not shown in Figure 10.13) in medium 2 is a purely travel-

ing wave and consequently there are no maxima or minima in this region.

The ratio of |Ei |max to |E, |min (or |Hj |max to |Hj |min) is called the standing-wave ratio
s; that is,

s =
Mi
IH,

l + r |
l - r

(10.90)
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o, --0 a, =0

Hgure 10.13 Standing waves due to reflection at an interface between two
lossless media; X = 2ir/f3i.

or

s - 1

s + 1
(10.91)

Since |F| :£ 1, it follows that 1 < s < °°. The standing-wave ratio is dimensionless and it
is customarily expressed in decibels (dB) as

s indB = 201og10i
f (10.92)

\MPLE 10.8
In free space (z ^ 0), a plane wave with

H = 10 cos (108f - 0z) ax mA/m

is incident normally on a lossless medium (e = 2eo, p = 8jiio) in region z > 0. Determine
the reflected wave H n Er and the transmitted wave Hr, Er.

Solution:

This problem can be solved in two different ways.

Method 1: Consider the problem as illustrated in Figure 10.14. For free space,

10s

c 3 X 108

= 7?o = 1207T
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I free space

Figure 10.14 For Example 10.8.

lossless dielectric

For the lossless dielectric medium,

/— / / o) 4
ft, = coV/xe = w\VosoV/x,£ r = — • (4) = 4/3, = -

! Given that H, = 10 cos (108r - (3^) ax, we expect that

where

I and

Hence,

Now

f = £ i o cos (108f

X a .̂ = ax X a, = -ay

io = 10

E,- = - 10rjo cos (108? - /3,z) a,, mV/m

! Thus

r

Eio

E r = - — rj0 cos f 108f + - z ) &y mV/m
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from which we easily obtain Hr as

Similarly,

Hr = cos ( 108f + - z ) ax mA/m

F 4 4
^ = r = l + T = - or Ew = -Eio

Thus

E, = Eto cos (108f - /32z) aEi

where a£i = a£. = - a r Hence,

440

3
Er = - — rjocos ( 108? - -z}aymV/m

from which we obtain

Ht = — cos (108f - -zjax mA/m

Method 2: Alternatively, we can obtain H r and H, directly from H, using

Thus

= - F and — = T

1 1 0

Hro - ——Hio - —

and

to 3 2r?o " 3 '° 3

10 o
H, = - — cos (108? + j3iz) ax mA/m

20
H, = — cos (108f - P2z) ax mA/m

as previously obtained.
Notice that the boundary conditions at z = 0, namely,

40 o
E,<0) + Er(0) = E,(0) = -— vo cos (108?) ay
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and

20 o
H,<0) + Hr(0) = H,(0) = — cos (108r) ax

are satisfied. These boundary conditions can always be used to cross-check E and H.

PRACTICE EXERCISE 10.8

A 5-GHz uniform plane wave Efa = 10 e~jl3z ax V/m in free space is incident nor-
mally on a large plane, lossless dielectric slab (z > 0) having s = 4e0, /u. = /x0. Find
the reflected wave ErJ and the transmitted wave Ets.

Answer: -3.333 expO'&z) ax V/m, 6.667 exp(-jP2z) a* V/m where p2 = Wi =
200TT/3.

EXAMPLE 10.9
Given a uniform plane wave in air as

E, = 40 cos (at - Pz) ax + 30 sin (wt - /?z) a}, V/m

(a) FindH,.

(b) If the wave encounters a perfectly conducting plate normal to the z axis at z = 0, find
the reflected wave Er and Hr.

(c) What are the total E and H fields for z < 0?

(d) Calculate the time-average Poynting vectors for z < 0 and z > 0.

Solution:

(a) This is similar to the problem in Example 10.3. We may treat the wave as consisting of
two waves En and E,2, where

En = 40 cos (wf - Pz) ax, E;2 = 30 sin (wt - /3z) ay

At atmospheric pressure, air has er = 1.0006 = 1. Thus air may be regarded as free space.
Let H, = Hn + H,-2.

where

H n = HiUl cos (ait - &z) aHl

= Eil0 40

120TT 3TT

a//, = a t X a £ = a, X ax = ay



Hence

Similarly,

where

Hence

and
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Hn = — cos (ut - j3z) ay
3TT

I,-2 = Hi2o sin (ut - /3z) a#2

= Ei2o 30 = 1

»?o 1207T 47T

= aj. X a £ = az X ay = - a x

H,2 = ——- sin (cor - /3z)
4TT

= sin (ut - j8z) ax H cos (art - /3z) av mA/m
4TT 3TT

This problem can also be solved using Method 2 of Example 10.3.

(b) Since medium 2 is perfectly conducting,

02 „ .

that is,

r = - 1 , T = 0

showing that the incident E and H fields are totally reflected.

F = r F = — F-

Hence,

Er = - 4 0 cos (ut + $z) ax - 30 sin (ut + (3z) ay V/m

Hr can be found from Er just as we did in part (a) of this example or by using Method 2 of
the last example starting with H,. Whichever approach is taken, we obtain

Hr = — cos (ut + |Sz) av sin (ut + |Sz)ax A/m
i-w 4x
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(c) The total fields in air

E, = E, + Er and H, = H, + Hr

can be shown to be standing wave. The total fields in the conductor are

E2 = Er = 0, H2 = H, = 0.

(d) For z < 0,

™ _ I E , /

For z > 0 ,

1 2 2

= T — [Eioaz - Emaz]
2»?

1 2 + 302)
240TT

= 0

[(402 + 302)az - (402 + 302)aJ

op — |E2

2rj2

= ^ a 7 = 0

because the whole incident power is reflected.

PRACTICE EXERCISE 10.9

The plane wave E = 50 sin (o)t — 5x) ay V/m in a lossless medium (n = 4/*o,
e = so) encounters a lossy medium (fi = no, e = 4eo, <r = 0.1 mhos/m) normal to
the x-axis at x = 0. Find

(a) F, T, and s

(b) E randH r

(c) E randH,

(d) The time-average Poynting vectors in both regions

Answer: (a) 0.8186 /171.1°, 0.2295 /33.56°, 10.025, (b) 40.93 sin (ait + 5x +
171.9°) ay V/m, -54.3 sin (at + 5x + 171.9° az mA/m,

-6.02U(c) 11.47 e~6-UZI*sin (cor -7.826x + 33.56°) ay V/m, 120.2 e
M - 7.826x - 4.01°) a, mA/m, (d) 0.5469 &x W/m2, 0.5469 exp
(-12.04x)axW/m2.

sin
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10.9 REFLECTION OF A PLANE WAVE
\T OBLIQUE INCIDENCE

We now consider a more general situation than that in Section 10.8. To simplify the analy-
sis, we will assume that we are dealing with lossless media. (We may extend our analysis
to that of lossy media by merely replacing e by sc.) It can be shown (see Problems 10.14
and 10.15) that a uniform plane wave takes the general form of

E(r, t) = Eo cos(k • r - cof)
= Re [Eoe

Kkr-wt)]
(10.93)

where r = xax + yay + zaz is the radius or position vector and k = kxax + kyay + kzaz is
the wave number vector or the propagation vector; k is always in the direction of wave
propagation. The magnitude of k is related to a> according to the dispersion relation

k2 = k2
x k\, k] = (10.94)

Thus, for lossless media, k is essentially the same as (3 in the previous sections. With the
general form of E as in eq. (10.93), Maxwell's equations reduce to

k X E =

k X H = -

k H = 0

k - E = 0

(10.95a)

(10.95b)

(10.95c)

(10.95d)

showing that (i) E, H, and k are mutually orthogonal, and (ii) E and H lie on the plane

k • r = kjc + kyy + kzz = constant

From eq. (10.95a), the H field corresponding to the E field in eq. (10.93) is

77
(10.96)

Having expressed E and H in the general form, we can now consider the oblique inci-
dence of a uniform plane wave at a plane boundary as illustrated in Figure 10.15(a). The
plane denned by the propagation vector k and a unit normal vector an to the boundary is
called the plane of incidence. The angle 0, between k and an is the angle of incidence.

Again, both the incident and the reflected waves are in medium 1 while the transmit-
ted (or refracted wave) is in medium 2. Let

E,- = Eio cos (kixx + kiyy + kizz - us-t)

Er = Ero cos (krxx + kny + krzz - cV)

E, = Ero cos (ktxx + ktyy + ktzz - u,t)

(10.97a)

(10.97b)

(10.97c)
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medium 1 (ej , M[)

(3, sin 6,.

kiz = (?! cos 8,-

medium

(a)

kr- = (3, cos Br

kr = (3

(b)

(3, sin 9 r

(3, sin 0,

' , z = (3, cos 8,

Figure 10.15 Oblique incidence of a plane wave: (a) illustration of 0,, 6r, and 0,;
(b) illustration of the normal and tangential components of k.

where kh kr, and k, with their normal and tangential components are shown in Figure
10.15(b). Sincejhetangential component of E must be; continuous_at the: boundary z = 0,

E,<z = 0) + Er(z = 0) = = 0) (10.98)

The only way this boundary condition will be satisfied by the waves in eq. (10.97) for all x
and y is that

1 . CO,- = U)r = O) r = CO

•) h. = K _ JL J.

- • "-ix Krx *-tx Kx

o. K.ly ft-ry "•/y ^y

Condition 1 implies that the frequency is unchanged. Conditions 2 and 3 require that the
tangential components of the propagation vectors be continuous (called the phase match-
ing conditions). This means that the propagation vectors k,, kt, and kr must all lie in the
pJ.anejDf incidence^Thus, by conditions 2 and 3,

fe; sin %i = kr sin 6r

kj sin 61 = k, sin 0,

(10.99)

(10.100)
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where 8r is the angle of reflection and 6, is the angle of transmission. But for lossless
media,

kt = kr = /3, = co

From eqs. (10.99) and (10.101a), it is clear that

(10.101a)

(10.101b)

(10.102)

so that the angle of reflection 8r equals the angle of incidence 0, as in optics. Also from
eqs. (10.100) and (10.101),

(10.103)
sin 8i k, Hi

where u = ai/k is the phase velocity. Equation (10.103) is the well-known Snell's law,
which can be written as

nx sin 0, = n2 sin 0, (10.104)

where nx = c\n\e\ = c^u\ a nd "2 = c v ine2 = C^U2 &?£ tn e refractive indices of the
media.

Based on these general preliminaries on oblique incidence, we will now specifically
consider two special cases: one with the E field perpendicular to the plane of incidence, the
other with the E field parallel to it. Any other polarization may be considered as a linear
combination of these two cases.

A. Parallel Polarization

This case is illustrated in Figure 10.16 where the E field lies in the xz-plane, the plane of
incidence. In medium 1, we have both incident and reflected fields given by

Efa = £,o(cos 0,- a, - sin 0,- az) «,-#.<* ™ «<+*«»«,)

H — i° ~-jPi(* s i n ^i+z cos 9,.)

Ers = Ero(coserax + &meraz)e-J0'(xsmf)^cos^

p
H ^ro -/flrfxsin 0,-z cos 0.)„ = - - — e a,,

(10.105a)

(10.105b)

(10.106a)

(10.106b)

where fil = co V ̂ is,. Notice carefully how we arrive at each field component. The
trick in deriving the components is to first get the polarization vector k as shown in
Figure 10.15(b) for incident, reflected, and transmitted waves. Once k is known, we
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Figure 10.16 Oblique incidence with E par-
allel to the plane of incidence.

medium 1 z - 0 medium 2

define Es such that V • E.v = 0 or k • E s = 0 and then H s is obtained from H s =
k E

— X E , = a* X - .

The transmitted fields exist in medium 2 and are given by

E,s = £M(cos 0, ax - sin 0, a,) e->&usine,+Jcose,)

H ( i = - ^ e ^ « x s m fl, + z cos 0,)

(10.107a)

(10.107b)

where f32 = o> V /u2e2. Should our assumption about the relative directions in eqs. (10.105)
to (10.107) be wrong, the final result will show us by means of its sign.

Requiring that dr = dj and that the tangential components of E and H be continuous at
the boundary z — 0, we obtain

(Ei0 + Ero) cos 0,- = E,o cos 0t

— (£,„ - Em) = — Eto

Expressing Em and Eta in terms of Eio, we obtain

_ Ero. _ 1\1 COS 0, ~ •>?! COS 0,-

£ , o 7j2 cos 0, + rjj cos 0 ;

or

and

£ t o _ 2r;2 cos 0,

Eio 7]2 cos 0, + r\ | cos 0,

(10.108a)

(10.108b)

(10.109a)

(10.109b)

(10.110a)
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or

E,o ~ T\\Eia (10.110b)

Equations (10.109) and (10.110) are called Fresnel's equations. Note that the equations
reduce to eqs. (10.81) and (10.82) when 0,- = 0, = 0 as expected. Since 0,- and d, are related
according to Snell's law of eq. (10.103), eqs. (10.109) and (10.110) can be written in terms
of 9j by substituting

cos 0, = V l - sin2 6>r = V l - (w2/H,)2sin2 0,-

From eqs. (10.109) and (10.110), it is easily shown that

(10.111)

= Til
l!

fcos6t\
Vcos 0,7

(10.112)

From eq. (10.109a), it is evident that it is possible that T\\ = 0 because the numerator
is the difference of two terms. Under this condition, there is no reflection (Em = 0) and the
incident angle at which this takes place is called the Brewster angle 0B||. The Brewster
angle is also known as the polarizing angle because an arbitrarily polarized incident wave
will be reflected with only the component of E perpendicular to the plane of incidence. The
Brewster effect is utilized in a laser tube where quartz windows are set at the Brewster
angle to control polarization of emitted light. The Brewster angle is obtained by setting
0, = dB when Tn = 0 in eq. (10.109), that is,

or

r,22(l - sin20r)

Introducing eq. (10.103) or (10.104) gives

- sin20B||)

(10.113)

It is of practical value to consider the case when the dielectric media are not only lossless
but nonmagnetic as well—that is, fxx = JX2 = / v For this situation, eq. (10.113) becomes

sin2 0B|| =
1

- > sin 0Rl, =

or

tan 0B,, = A / — = —

showing that there is a Brewster angle for any combination of 8! and e2.

(10.114)
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B. Perpendicular Polarization

In this case, the E field is perpendicular to the plane of incidence (the xz-plane) as shown
in Figure 10.17. This may also be viewed as the case where H field is parallel to the plane
of incidence. The incident and reflected fields in medium 1 are given by

p — p -j73iCtsin0j+zcose:) ,
a,,

H,-s = —- ( -cos 6, ax + sin 0,- a,) e

Hlrs — tLrOt Ay

Urs = —- (cos 6r ax + sin 6r az) e~jl

while the transmitted fields in medium 2 are given by

E _ p -j/32(x sin 9,+z cos 9,) c

'av

EloH,s = ^f (-cos 6, ax + sin 9, az)
V

(10.115a)

(10.115b)

(10.116a)

(10.116b)

(10.117a)

(10.117b)

Notice that in defining the field components in eqs. (10.115) to (10.117), Maxwell's equa-
tions (10.95) are always satisfied. Again, requiring that the tangential components of E and
H be continuous at z = 0 and setting dr equal to 6h we get

p. _i_ p = p

— (E,o - Ero) cos dj = — Elo cos Bt

Expressing Ero and Et0 in terms of Eio leads to

tLro

Eio

V2

V2

cos 6

cos 6,- + r

j COS

! COS

(10.118a)

(10.118b)

(10.119a)

E,-

Figure 10.17 Oblique incidence with E per-
pendicular to the plane of incidence.
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or

and

ro ^ J_ io

Eio ri2 cos 6,• + vl cos 9,

(10.119b)

(10.120a)

or

Eto - (10.120b)

which are the Fresnel's equations for perpendicular polarization. From eqs. (10.119) and
(10.120), it is easy to show that

1 + r ± = TL (10.121)

which is similar to eq. (10.83) for normal incidence. Also, when 9/ = 9, = 0, eqs. (10.119)
and (10.120) become eqs. (10.81) and (10.82) as they should.

For no reflection, TL = 0 (or Er = 0). This is the same as the case of total transmis-
sion (TX = 1). By replacing 0, with the corresponding Brewster angle 9B±, we obtain

t\2 cos 9B± = ry,cos 9,

or

- sin20()

Incorporating eq. (10.104) yields

sin2 9Bx =
AM 62

(10.122)

Note that for nonmagnetic media (ft, = A*2 = AO, sin2 0B± ""* °° i n eq- (10.122), so 9BL

does not exist because the sine of an angle is never greater than unity. Also if /x, + JX2 and
6] = e2, eq. (10.122) reduces to

sin 1

or

(10.123)

Although this situation is theoretically possible, it is rare in practice.
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EXAMPLE 10.10
An EM wave travels in free space with the electric field component

E , = 100e-'<0-866v+a5j)axV/m

Determine

(a) co and X

(b) The magnetic field component

(c) The time average power in the wave

Solution:

(a) Comparing the given E with

E = E eikT = E eJ
{k'x+k<y+k'z)

 a

it is clear that

kx = 0, ky = 0.866, kz = 0.5

Thus

But in free space,

Hence,

k= Vk2
x + ky + k\ = V(0.866)2 + (0.5)2 = 1

/ co 2TT

k = 13 = coV/i020 = — = —
C A

co = kc = 3 X 10*rad/s

X = — = 2TT = 6.283 m
k

(b) From eq. (10.96), the corresponding magnetic field is given by

Hs = — k X E.
^iCO

(0.866ay + 0.5az)

~ 4x X 10"7 X 3 X 108
X 100a re

j k r

or

H, = (1.33 av - 2.3 a,) e
m*66v+(l5z> mA/m

(c) The time average power is

(100)2

2(120TT)
(0.866 av + 0.5 a,)

= 11.49av + 6.631 a,W/m2
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XAMPLE 10.11

PRACTICE EXERCISE 10.10

Rework Example 10.10 if

£ = (10

in free space.

5a2) cos(cof + 2y - Az) V/m

Answer: (a) 1.342 X 109 rad/s, 1.405 m, (b) -29.66 cos (1.342 X 109f + 2y-
Az) ax mA/m, (c) -0.07415 ay + 0.1489 a, W/m2.

A uniform plane wave in air with

E = 8 cos (at - Ax - 3z) av V/m

is incident on a dielectric slab (z ^ 0) with fxr = 1.0, er = 2.5, a = 0. Find

(a) The polarization of the wave

(b) The angle of incidence

(c) The reflected E field

(d) The transmitted H field

Solution:
(a) From the incident E field, it is evident that the propagation vector is

Hence,

k, = 4a, + 3a_, -»£,- = 5 = coV/u,0e0 =

= 5c = 15 X 108 rad/s.

A unit vector normal to the interface (z = 0) is az. The plane containing k and a- is
y = constant, which is the jcz-plane, the plane of incidence. Since E, is normal to this
plane, we have perpendicular polarization (similar to Figure 10.17).

(b) The propagation vectors are illustrated in Figure 10.18 where it is clear that

tan0,- = — = -->0,- = 53.13°
kiz 3

Alternatively, without Figure 10.18, we can obtain 0, from the fact that 0, is the angle
between k and an, that is,

cos 0,- = ak • an =
3a,

or

0,- = 53.13°
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j (c) An easy way to find E r is to use eq. (10.116a) because we have noticed that this
1 problem is similar to that considered in Section 10.9(b). Suppose we are not aware of this.
I Let

j Er = Ero cos (cor - kr • r) ay

> which is similar to form to the given E,. The unit vector ay is chosen in view of the fact that
i the tangential component of E must be continuous at the interface. From Figure 10.18,

k r = krx ax — krz az

where

• krx = kr sin 9n krz = kr cos 6r

But 6r = Oj and kr = k}• = 5 because both kr and k{ are in the same medium. Hence,

kr = Aax - 3az

To find Em, we need 6t. From Snell's law

sin 6, = — sin 0, =
n2

sin 53.13°

sin 8'i

2.5

or

6, = 30.39°

Eio

7]2 COS 0; - IJi COS 0,

rj! cos 6tcos

Figure 10.IS Propagation vectors of
ExamplelO.il.
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where rjl = rjo = 377, n]2 =
377

= 238.4

Hence,

and

238.4 cos 35.13° - 377 cos 30.39°
1 ~~ 238.4 cos 53.13° + 377 cos 30.39° ~

Em = T±Eio = -0.389(8) = -3.112

E, = -3.112 cos (15 X 108f - Ax + 3z)ayV/m

(d) Similarly, let the transmitted electric field be

E, = Eto cos (ut - k, • r) ay

where

W 1

c

From Figure 10.18,

k, = j32 = w V

_ 15 X 108

3 X 108

ktx = k, sin 6, = 4

kR = ktcos6, = 6.819

or

k, = 4ax + 6.819 az

Notice that kix = krx = ktx as expected.

_Ew__ 2 7]2 COS dj

Eio i)2 cos dj + 7)] cos 6,

2 X 238.4 cos 53.13°
~ 238.4 cos 53.13° + 377 cos 30.39°
= 0.611

The same result could be obtained from the relation T±= \ + I \ . Hence,

Eto = TLEio = 0.611 X 8 = 4.888

Ef = 4.888 cos (15 X 108r -Ax- 6.819z) ay
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From E,, H, is easily obtained as

7.906(238.4) a, cos («r - k • r)

H( = (-17.69 ax + 10.37 az) cos (15 X \(ft -Ax- 6.819z) mA/m.

PRACTICE EXERCISE 10.11

If the plane wave of Practice Exercise 10.10 is incident on a dielectric medium
having a = 0, e — 4eo, /x = /to and occupying z ^ 0 , calculate

(a) The angles of incidence, reflection, and transmission

(b) The reflection and transmission coefficients

(c) The total E field in free space

(d) The total E field in the dielectric

(e) The Brewster angle.

Answer: (a) 26.56°, 26.56°, 12.92°, (b) -0.295, 0.647, (c) (10 ay + 5az) cos
(at + 2y - 4z) + (-2.946a, + 1.473az) cos (cat + 2y + 4z) V/m,
(d) (7.055a, + 1.618az) cos (wf + 2y - 8.718z) V/m, (e) 63.43°.

SUMMARY 1. The wave equation is of the form

dt2

2d
2<P

- u — T = 0
dz

with the solution

4> = A sin (wf - /3z)

where u = wave velocity, A = wave amplitude, co = angular frequency (=2TT/), and
)3 = phase constant. Also, (3 = OJ/M = 2TT/X or M = fk = X/r, where X = wavelength
and T = period.

2. In a lossy, charge-free medium, the wave equation based on Maxwell's equations is of
the form

V2AS - 72A, = 0

where As is either Es or Hs and y = a + jf3 is the propagation constant. If we assume
Es = Exs(z) &x, we obtain EM waves of the form

E(z, t) = Eoe'az cos (cof - Pz) ax

H(z, r) = Hoe~az cos (wt - 0z - 0,) av
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where a = attenuation constant, j3 = phase constant, 77 = |r/|/fln = intrinsic imped-
ance of the medium. The reciprocal of a is the skin depth (5 = I/a). The relationship
between /3, w, and X as stated above remain valid for EM waves.

3. Wave propagation in other types of media can be derived from that for lossy media as
special cases. For free space, set a = 0, e = sQ, fi = /xo; for lossless dielectric media,
set a = 0, e = eosr, and n = jxofxr\ and for good conductors, set a — °°, e = ea,
H = fio, or a/we —> 0.

4. A medium is classified as lossy dielectric, lossless dielectric or good conductor depend-
ing on its loss tangent given by

tan 6 =
Js

\h,
a

coe

where ec = e' - je" is the complex permittivity of the medium. For lossless dielectrics
tan0 ^C 1, for good conductors tan d Ĵ> 1, and for lossy dielectrics tan 6 is of the
order of unity.

5. In a good conductor, the fields tend to concentrate within the initial distance 6 from the
conductor surface. This phenomenon is called skin effect. For a conductor of width w
and length i, the effective or ac resistance is

awd

where <5 is the skin depth.
6. The Poynting vector, 9\ is the power-flow vector whose direction is the same as the di-

rection of wave propagation and magnitude the same as the amount of power flowing
through a unit area normal to its direction.

f = E X H , 9>ave = 1/2 Re (E, X H*)

7. If a plane wave is incident normally from medium 1 to medium 2, the reflection coeffi-
cient F and transmission coefficient T are given by

12

Eio V2 + V

The standing wave ratio, s, is defined as

= i^= 1 + r

s =

8. For oblique incidence from lossless medium 1 to lossless medium 2, we have the
Fresnel coefficients as

rj2cos 6, - r] | cos 0,

r/2 cos 6, + rjt cos 0/ II =
2?j2 cos 6j

1)2 COS dt + Tfj] COS dj
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for parallel polarization and

r)2 COS 6/ — 7)i COS 8t

i)2 cos 6i + r)i cos 6,

for perpendicular polarization. As in optics,

T±_ =
2ry2 COS Oj

rj2 cos 6i + rjj cos

sin i
sin 0, 02

Total transmission or no reflection (F = 0) occurs when the angle of incidence 0, is
equal to the Brewster angle.

10.1 Which of these is not a correct form of the wave Ex = cos (ut —

(a) cos (Pz ~ ut)

(b) sin (Pz - ut - TT/2)

(2-Kt 2TT:

(c) cos I — —

\ 1 A

(d) Re (e-/(w'"/3z))

(e) cos 0(z ~ ut)
10.2 Identify which of these functions do not satisfy the wave equation:

(a) 50eM '~3z )

(b) sinw(10z + 5t)

(c) (x + 2tf

• _, (d) cos2(>> + 50

(e) sin x cos t

—> (f) cos (5y + 2x)

10.3 Which of the following statements is not true of waves in general?

-~"> (a) It may be a function of time only.

(b) It may be sinusoidal or cosinusoidal.

(c) It must be a function of time and space.

(d) For practical reasons, it must be finite in extent.

10.4 The electric field component of a wave in free space is given by E = 10 cos
(107f + kz) av, V/m. It can be inferred that

(a) The wave propagates along av.

(b) The wavelength X = 188.5 m.
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(c) The wave amplitude is 10 V/m.

(d) The wave number k = 0.33 rad/m.

(e) The wave attenuates as it travels.

10.5 Given that H = 0.5 e
rect?

sin (106? - 2x) a, A/m, which of these statements are incor-

(a) a = 0.1 Np/m

- (b) 0 = - 2 rad/m

(c) co = 106rad/s

(d) The wave travels along ax.

(e) The wave is polarized in the z-direction.

. (f) The period of the wave is 1 /ts.

10.6 What is the major factor for determining whether a medium is free space, lossless di-
electric, lossy dielectric, or good conductor?

(a) Attenuation constant

(b) Constitutive parameters (a, e, f£)

(c) Loss tangent

(d) Reflection coefficient

10.7 In a certain medium, E = 10 cos (108r — 3y) ax V/m. What type of medium is it?

(a) Free space

(b) Perfect dielectric

(c) Lossless dielectric

(d) Perfect conductor

10.8 Electromagnetic waves travel faster in conductors than in dielectrics.

(a) True

(b) False

10.9 In a good conductor, E and H are in time phase.

(a) True

— y (b) False

10.10 The Poynting vector physically denotes the power density leaving or entering a given
volume in a time-varying field.

— ^ (a) True

(b) False

Answers: 10.1b, 10.2d,f, 10.3a, 10.4b,c, 10.5b,f, 10.6c, 10.7c, 10.8b, 10.9b, 10.10a.
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PROBLEMS
10.1 An EM wave propagating in a certain medium is described by

E = 25 sin (2TT X 106f ™ 6x) a, V/m

(a) Determine the direction of wave propagation.

(b) Compute the period T, the wavelength X, and the velocity u.

(c) Sketch the wave at t = 0, 778, 774, 772.

10.2 (a) Derive eqs. (10.23) and (10.24) from eqs. (10.18) and (10.20).

(b) Using eq. (10.29) in conjunction with Maxwell's equations, show that

V =
y

(c) From part (b), derive eqs. (10.32) and (10.33).

10.3 At 50 MHz, a lossy dielectric material is characterized by e = 3.6e0, p = 2.1/to, and
a = 0.08 S/m. If E, = 6e~yx az V/m, compute: (a) y, (b) X, (c) u, (d) r/, (e) H,.

10.4 A lossy material has /x = 5fio, e = 2eo. If at 5 MHz, the phase constant is 10 rad/m, cal-
culate

(a) The loss tangent

(b) The conductivity of the material

(c) The complex permittivity

(d) The attenuation constant

(e) The intrinsic impedance

*10.5 A nonmagnetic medium has an intrinsic impedance 240 /30° 0. Find its

(a) Loss tangent

(b) Dielectric constant

(c) Complex permittivity

(d) Attenuation constant at 1 MHz

10.6 The amplitude of a wave traveling through a lossy nonmagnetic medium reduces by
18% every meter. If the wave operates at 10 MHz and the electric field leads the mag-
netic field by 24°, calculate: (a) the propagation constant, (b) the wavelength, (c) the skin
depth, (d) the conductivity of the medium.

10.7 Sea water plays a vital role in the study of submarine communications. Assuming that
for sea water, a = 4 S/m, sr = 80, \xr = 1, and / = 100 MHz, calculate: (a) the phase
velocity, (b) the wavelength, (c) the skin depth, (d) the intrinsic impedance.

10.8 In a certain medium with /x = /xo, e = 4e0,

H = \2e~0Ay sin (ir X 108/ - fiy) ax A/m

find: (a) the wave period T, (b) the wavelength X, (c) the electric field E, (d) the phase
difference between E and H.
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10.9 In a medium,

E = 16e"005x sin (2 X 10st - 2x) az V/m

find: (a) the propagation constant, (b) the wavelength, (c) the speed of the wave, (d) the
skin depth.

10.10 A uniform wave in air has

E = 10COS(2TT X 106f- 0z)av

(a) Calculate /3 and X.

(b) Sketch the wave at z = 0, A/4.

(c) FindH.

10.11 The magnetic field component of an EM wave propagating through a nonmagnetic
medium (p, = /xo) is

H = 25 sin (2 X 108? + 6x) ay mA/m

Determine:

(a) The direction of wave propagation.

(b) The permittivity of the medium.

(c) The electric field intensity.

10.12 If H = 10 sin (oof — 4z)ax mA/m in a material for which a = 0, ix = /xo, e = 4eo, cal-
culate u, X, and Jd.

10.13 A manufacturer produces a ferrite material with JX = 750/xo, e = 5eo, and a =
l (T 6 S/ma t l0MHz.

(a) Would you classify the material as lossless, lossy, or conducting?

(b) Calculate j3 and X.

(c) Determine the phase difference between two points separated by 2 m.

(d) Find the intrinsic impedance.

*10.14 By assuming the time-dependent fields E = E o e i ( k r "" ( ) and H = Hoe-/(k'r~*") where
k = kxax + ky&y + k-az is the wave number vector and r = xax + ya^ + zaz is the
radius vector, show that V X E = — dB/df can be expressed as k X E = /̂ wH and
deduce ak X aE = aH.

10.15 Assume the same fields as in Problem 10.14 and show that Maxwell's equations in a
source-free region can be written as

k - E = 0

k H = 0

k X E = wftH

k X H = -coeE
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From these equations deduce

&k X a£ = and ak X aw = —

10.16 The magnetic field component of a plane wave in a lossless dielectric [is

H = 30 sin (2-ir X 108f - 5*) az mA/m

(a) If> r = l.finde,..

(b) Calculate the wavelength and wave velocity.

(c) Determine the wave impedance.

(d) Determine the polarization of the wave.

(e) Find the corresponding electric field component.

(f) Find the displacement current density.

10.17 In a nonmagnetic medium,

E = 50 cos (109f - 8JC) ay + 40 sin (109f - 8x) az V/m

find the dielectric constant er and the corresponding H.

10.18 In a certain medium

E = 10 cos (2TT X 107r - Px)(ay + az) V/m

If ix = 50/*o, e = 2e0, and a = 0, find (3 and H.

10.19 Which of the following media may be treated as conducting at 8 MHz?

(a) Wet marshy soil (e = 15eo, /x = /xo, a = 10~2 S/m)

(b) Intrinsic germanium (e = 16e0, p = JXO, a = 0.025 S/m)

(c) Sea water (e = 81eo, ji = ixo, a = 25 S/m)

10.20 Calculate the skin depth and the velocity of propagation for a uniform plane wave at fre-
quency 6 MHz traveling in polyvinylchloride {p.r — 1, er = 4, tan 8V = 1 X 10~2).

10.21 A uniform plane wave in a lossy medium has a phase constant of 1.6 rad/m at 107 Hz and
its magnitude is reduced by 60% for every 2 m traveled. Find the skin depth and speed of
the wave.

10.22 (a) Determine the dc resistance of a round copper wire (a = 5.8 X 107 S/m,

jxr = 1, er = 1) of radius 1.2 mm and length 600 m.

(b) Find the ac resistance at 100 MHz.

(c) Calculate the approximate frequency where dc and ac resistances are equal.

10.23 A 40-m-long aluminum (a = 3.5 X 107 S/m, fir = 1, e r = 1) pipe with inner and
outer radii 9 mm and 12 mm carries a total current of 6 sin 106 irf A. Find the skin depth
and the effective resistance of the pipe.

10.24 Show that in a good conductor, the skin depth 8 is always much shorter than the wave-
length.
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10.25 Brass waveguides are often silver plated to reduce losses. If at least the thickness of
silver (/* = /xo, e = eo, a = 6.1 X 107 S/m) must be 55, find the minimum thickness
required for a waveguide operating at 12 GHz.

10.26 A uniform plane wave in a lossy nonmagnetic media has

E s = (5ax + 12ay)e~7Z, y = 0.2 + /3.4/m

(a) Compute the magnitude of the wave at z = 4 m.

(b) Find the loss in dB suffered by the wave in the interval 0 < z < 3 m.

(c) Calculate the Poynting vector at z = 4, t = 778. Take co = 108 rad/s.

10.27 In a nonmagnetic material,

H = 30 cos (2TT X 108f - 6x) a, mA/m

find: (a) the intrinsic impedance, (b) the Poynting vector, (c) the time-average power
crossing the surface x = 1,0 < y < 2, 0 < z < 3 m.

*10.28 Show that eqs. (10.67) and (10.68) are equivalent.

10.29 In a transmission line filled with a lossless dielectric (e = 4.5eo, fx = ix0),

E =
40

sin (ut - 2z) ap V/m

10.30

find: (a) co and H, (b) the Poynting vector, (c) the total time-average power crossing the
surface z = 1 m, 2 mm < p < 3 mm, 0 < <j> < 2TT.

(a) For a normal incidence upon the dielectric-dielectric interface for which
Mi = M2 = î cn w e define R and Tas the reflection and transmission coefficients for
average powers, i.e., Pr>avc = /?/>,>ve and Pume = TPiawe. Prove that

R = "l ~ "2

"I + «2
and T =

where M, and n2 are the reflective indices of the media.

(b) Determine the ratio iii/n2 so that the reflected and the transmitted waves have the

same average power.

10.31 The plane wave E = 30 cos(w? — z)ax V/m in air normally hits a lossless medium
(p, = no, e = 4eo) at z = 0. (a) Find F, r, and s. (b) Calculate the reflected electric and
magnetic fields.

10.32 A uniform plane wave in air with

H = 4 sin (wf — 5x) ay A/m

is normally incident on a plastic region with the parameters/x = fto, e = 4e0, andff = 0.
(a) Obtain the total electric field in air. (b) Calculate the time-average power density in the
plastic region, (c) Find the standing wave ratio.
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10.33 A plane wave in free space with E = 3.6 cos (ut — 3x) ay V/m is incident normally on
an interface at x = 0. If a lossless medium with a = 0, er = 12.5 exits for x & 0 and
the reflected wave has H r = —1.2 cos (ut + 3x) a- mA/m, find \x2.

10.34 Region 1 is a lossless medium for which y s 0, \x = /*„, e = 4eo, whereas region 2 is
free space, y < 0. If a plane wave E = 5 cos (108/ + /3y) a, V/m exists in region 1,
find: (a) the total electric field component of the wave in region 2, (b) the time-average
Poynting vector in region 1, (c) the time-average Poynting vector in region 2.

10.35 A plane wave in free space (z £ 0) is incident normally on a large block of material with
er = 12, \xr = 3, a = 0 which occupies z > 0. If the incident electric field is

E = 30 cos (ut - z) ay V/m

find: (a) u, (b) the standing wave ratio, (c) the reflected magnetic field, (d) the average
power density of the transmitted wave.

10.36 A 30-MHz uniform plane wave with

H = 10 sin (ut + fix) az mA/m

exists in region x > 0 having a = 0, e = 9eo, p = 4/io. At x = 0, the wave encounters
free space. Determine (a) the polarization of the wave, (b) the phase constant (3, (c) the
displacement current density in region x > 0, (d) the reflected and transmitted magnetic
fields, and (e) the average power density in each region.

10.37 A uniform plane wave in air is normally incident on an infinite lossless dielectric mater-
ial having e = 3eo and /x = /xo. If the incident wave is E, = 10 cos (ut — z) av V/m.
find:

(a) X and u of the wave in air and the transmitted wave in the dielectric medium

(b) The incident H, field

(c) Tandr

(d) The total electric field and the time-average power in both regions

*10.38 A signal in air (z S: 0) with the electric field component

E = 10 sin (ut + 3z) ax V/m

hits normally the ocean surface at z = 0 as in Figure 10.19. Assuming that the ocean
surface is smooth and that s = 80eo, \x = /io, a = 4 mhos/m in ocean, determine

(a) co

(b) The wavelength of the signal in air

(c) The loss tangent and intrinsic impedance of the ocean

(d) The reflected and transmitted E field

10.39 Sketch the standing wave in eq. (10.87) at t = 0, 7/8, 774, 37/8, 772, and so on, where
T = 2itlu.
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Figure 10.19 For Problem 10.38.

ocean

S = 80£ o , |U. = flo, (T = 4

10.40 A uniform plane wave is incident at an angle 0, = 45° on a pair of dielectric slabs joined
together as shown in Figure 10.20. Determine the angles of transmission 0t] and 6,2 in the
slabs.

10.41 Show that the field

E.v = 20 sin (kj) cos (kyy) az

10.42

where k2
x + k\ = aj2/ioeo, can be represented as the superposition of four propagating

plane waves. Find the corresponding H,.

Show that for nonmagnetic dielectric media, the reflection and transmission coefficients
for oblique incidence become

2 cos 0; sin 0,

r, =-

tan
tan

sin

(0r~

(0,4-

(0,-

»,)

sin (fit + 0,)'

sin (0, 4- 0;) cos (0, - 0,)

2 cos 6i sin 6,

sin (0, 4- 0,)

*10.43 A parallel-polarized wave in air with

E = (8a,. - 6a,) sin (cot - Ay - 3z) V/m

impinges a dielectric half-space as shown in Figure 10.21. Find: (a) the incidence angle
0,, (b) the time average in air (/t = pt0, e = e0), (c) the reflected and transmitted E
fields.

free space free space
Figure 10.2(1 For Problem 10.40.
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Figure 10.21 For Problem 10.43.

Air

(E = s0 , M- = i ( E = - 4 K , ,

10.44 In a dielectric medium (e = 9eo, n = M o) , a plane wave with

H = 0.2 cos (109f -lex- ay A/m

is incident on an air boundary at z = 0, find

(a) 0 rand0,

(b) k

(c) The wavelength in the dielectric and air

(d) The incident E

(e) The transmitted and reflected E

(f) The Brewster angle

* 10.45 A plane wave in air with

E = (8ax + 6a,. + 5aj) sin (wt + 3x - Ay) V/m

is incident on a copper slab in y > 0. Find u and the reflected wave. Assume copper is a
perfect conductor. (Hint: Write down the field components in both media and match the
boundary conditions.)

10.46 A polarized wave is incident from air to polystyrene with fx = no, e = 2.6e at Brewster
angle. Determine the transmission angle.
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TRANSMISSION LINES

There is a story about four men named Everybody, Somebody, Anybody, and

Nobody. There was an important job to be done, and Everybody was asked to do

it. Everybody was sure that Somebody would do it. Anybody could have done it,

but Nobody did it. Somebody got angry about that, because it was Everybody's

job. Everybody thought that Anybody could do it, and Nobody realized that

Everybody wouldn't do it. It ended up that Everybody blamed Somebody, when

actually Nobody did what Anybody could have done.

—ANONYMOUS

1.1 INTRODUCTION

Our discussion in the previous chapter was essentially on wave propagation in unbounded
media, media of infinite extent. Such wave propagation is said to be unguided in that the
uniform plane wave exists throughout all space and EM energy associated with the wave
spreads over a wide area. Wave propagation in unbounded media is used in radio or TV
broadcasting, where the information being transmitted is meant for everyone who may be
interested. Such means of wave propagation will not help in a situation like telephone con-
versation, where the information is received privately by one person.

Another means of transmitting power or information is by guided structures. Guided
structures serve to guide (or direct) the propagation of energy from the source to the load.
Typical examples of such structures are transmission lines and waveguides. Waveguides
are discussed in the next chapter; transmission lines are considered in this chapter.

Transmission lines are commonly used in power distribution (at low frequencies) and
in communications (at high frequencies). Various kinds of transmission lines such as the
twisted-pair and coaxial cables (thinnet and thicknet) are used in computer networks such
as the Ethernet and internet.

A transmission line basically consists of two or more parallel conductors used to
connect a source to a load. The source may be a hydroelectric generator, a transmitter, or an
oscillator; the load may be a factory, an antenna, or an oscilloscope, respectively. Typical
transmission lines include coaxial cable, a two-wire line, a parallel-plate or planar line, a
wire above the conducting plane, and a microstrip line. These lines are portrayed in Figure
11.1. Notice that each of these lines consists of two conductors in parallel. Coaxial cables are
routinely used in electrical laboratories and in connecting TV sets to TV antennas. Mi-
crostrip lines (similar to that in Figure 11. le) are particularly important in integrated circuits
where metallic strips connecting electronic elements are deposited on dielectric substrates.

Transmission line problems are usually solved using EM field theory and electric
circuit theory, the two major theories on which electrical engineering is based. In this

473
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(e)

Figure 11.1 Cross-sectional view of typical transmission lines: (a) coaxial line, (b) two-wire line,
(c) planar line, (d) wire above conducting plane, (e) microstrip line.

chapter, we use circuit theory because it is easier to deal with mathematically. The basic
concepts of wave propagation (such as propagation constant, reflection coefficient, and
standing wave ratio) covered in the previous chapter apply here.

Our analysis of transmission lines will include the derivation of the transmission-line
equations and characteristic quantities, the use of the Smith chart, various practical appli-
cations of transmission lines, and transients on transmission lines.

11.2 TRANSMISSION LINE PARAMETERS

It is customary and convenient to describe a transmission line in terms of its line parame-
ters, which are its resistance per unit length R, inductance per unit length L, conductance
per unit length G, and capacitance per unit length C. Each of the lines shown in Figure 11.1
has specific formulas for finding R, L, G, and C. For coaxial, two-wire, and planar lines, the
formulas for calculating the values of R, L, G, and C are provided in Table 11.1 The di-
mensions of the lines are as shown in Figure 11.2. Some of the formulas1 in Table 11.1
were derived in Chapters 6 and 8. It should be noted that

1. The line parameters R, L, G, and C are not discrete or lumped but distributed as
shown in Figure 11.3. By this we mean that the parameters are uniformly distrib-
uted along the entire length of the line.

'Similar formulas for other transmission lines can be obtained from engineering handbooks or data
books—e.g., M. A. R. Guston, Microwave Transmission-line Impedance Data. London: Van Nos-
trand Reinhold, 1972.
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TABLE 11.1 Distributed Line Parameters at High Frequencies*
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Parameters

R (fl/m)

L(H/m)

G (S/m)

C (F/m)

Coaxial Line Two-Wire Line

2x8(7,. La />
(6 «C a, c - b)

V. b
— l n -
2ir a

i n 6

a

2TTE

h ^

(8 a)

/i , d
— cosh —
•7T 2a

cosh- -
2a

cosh"1—
2a

Planar Line

w8oe

(8 « 0

w

ow

~d

BW

d
(w » aO

*6 = — j = = skin depth of the conductor; cosh ' — = In — if —
\Ar/"n n 2a a I 2a

2. For each line, the conductors are characterized by ac, /*c, ec = eo, and the homoge-
neous dielectric separating the conductors is characterized by a, fi, e.

3. G + MR; R is the ac resistance per unit length of the conductors comprising the line
and G is the conductance per unit length due to the dielectric medium separating
the conductors.

4. The value of L shown in Table 11.1 is the external inductance per unit length; that
is, L = Lext. The effects of internal inductance Lm (= Rlui) are negligible as high
frequencies at which most communication systems operate.

5. For each line,

G a
LC = /lie and —; = —

C £
(H.l)

As a way of preparing for the next section, let us consider how an EM wave propagates
through a two-conductor transmission line. For example, consider the coaxial line connect-
ing the generator or source to the load as in Figure 11.4(a). When switch S is closed,

Figure 11.2 Common transmission lines: (a) coaxial line, (b) two-wire
line, (c) planar line.
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series R and L

shunt G and C

Figure 11.3 Distributed parameters of a two-conductor transmission line.

the inner conductor is made positive with respect to the outer one so that the E field is ra-
dially outward as in Figure 11.4(b). According to Ampere's law, the H field encircles the
current carrying conductor as in Figure 11.4(b). The Poynting vector (E X H) points along
the transmission line. Thus, closing the switch simply establishes a disturbance, which
appears as a transverse electromagnetic (TEM) wave propagating along the line. This
wave is a nonuniform plane wave and by means of it power is transmitted through the line.

I—WV • •
S I

generator — coaxial line-

(a)

r
-»-| load

• E field

H field

(b)

Figure 11.4 (a) Coaxial line connecting the generator to the load;
(b) E and H fields on the coaxial line.
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11.3 TRANSMISSION LINE EQUATIONS

As mentioned in the previous section, a two-conductor transmission line supports a TEM
wave; that is, the electric and magnetic fields on the line are transverse to the direction of
wave propagation. An important property of TEM waves is that the fields E and H are
uniquely related to voltage V and current /, respectively:

(11.2)V = - E • d\, I = <p H • d\

In view of this, we will use circuit quantities V and / in solving the transmission line
problem instead of solving field quantities E and H (i.e., solving Maxwell's equations and
boundary conditions). The circuit model is simpler and more convenient.

Let us examine an incremental portion of length Az of a two-conductor transmission
line. We intend to find an equivalent circuit for this line and derive the line equations.
From Figure 11.3, we expect the equivalent circuit of a portion of the line to be as in
Figure 11.5. The model in Figure 11.5 is in terms of the line parameters R, L, G, and C,
and may represent any of the two-conductor lines of Figure 11.3. The model is called the
L-type equivalent circuit; there are other possible types (see Problem 11.1). In the model
of Figure 11.5, we assume that the wave propagates along the +z-direction, from the gen-
erator to the load.

By applying Kirchhoff's voltage law to the outer loop of the circuit in Figure 11.5, we
obtain

V(z, t)=RAz I(z, t) + L Az
dt

+ V(z + Az, t)

or

V(z + Az, t) - V(z, t)

Az
= RI{z,t) + L

dl(z, t)
dt

(11.3)

I(z,t)
•y — A / W

To generator

V(z, t)

-+ - ••— — o

V(z + Az, t)
To load

GAz • : CAz

r
z z + Az

Figure 11.5 L-type equivalent circuit model of a differential length
Az of a two-conductor transmission line.
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Taking the limit of eq. (11.3) as Az -> 0 leads to

dt
(11.4)

Similarly, applying Kirchoff's current law to the main node of the circuit in Figure 11.5
gives

I(z, t) = I(z + Az, t) + A/

= I(z + Az, t) + GAz V(z + Az, t) + C Az -
dV(z + Az,t)

or

As A^ —> 0, eq. (11.5) becomes

dt

dt
(11.5)

at
(11.6)

If we assume harmonic time dependence so that

V(z, t) = Re [Vs(z) eJu"]

I(z, t) = Re [Is(z) eJ"'] (11.7b)

where Vs(z) and Is(z) are the phasor forms of V(z, i) and I(z, t), respectively, eqs. (11.4) and
(11.6) become

_dV^
) dz

dz

In the differential eqs. (11.8) and (11.9), Vs and Is are coupled. To separate them, we take
the second derivative of Vs in eq. (11.8) and employ eq. (11.9) so that we obtain

= (R + juL) I3

uQ Vs

dz
juL)(.G + jo>Q Vs

or

dz
(ll.lOi
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where

| 7 = a + jf3 = V(R + juL)(G + ju (11.11)

By taking the second derivative of Is in eq. (11.9) and employing eq. (11.8), we get

(11.12)

We notice that eqs. (11.10) and (11.12) are, respectively, the wave equations for voltage
and current similar in form to the wave equations obtained for plane waves in eqs. (10.17)
and (10.19). Thus, in our usual notations, y in eq. (11.11) is the propagation constant (in
per meter), a is the attenuation constant (in nepers per meter or decibels2 per meter), and (3
is the phase constant (in radians per meter). The wavelength X and wave velocity u are, re-
spectively, given by

X =
2ir

(11.13)

,—fK (11.14)

The solutions of the linear homogeneous differential equations (11.10) and (11.12) are
similar to Case 2 of Example 6.5, namely,

Vs(z) =
(11.15)

and

(11.16)

where Vg, Vo, 7tt, and Io are wave amplitudes; the + and — signs, respectively, denote
wave traveling along +z- and -z-directions, as is also indicated by the arrows. Thus, we
obtain the instantaneous expression for voltage as

V(z, t) = Re [Vs(z) eM]
= V+ e'az cos (oit - fa) + V~ eaz cos {at + /3z) (11.17)

The characteristic impedance Zo of the line is the ratio of positively traveling
voltage wave to current wave at any point on the line.

2Recall from eq. (10.35) that 1 Np = 8.686 dB.
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Zo is analogous to 77, the intrinsic impedance of the medium of wave propagation. By sub-
stituting eqs. (11.15) and (11.16) into eqs. (11.8) and (11.9) and equating coefficients of
terms eyz and e~lz, we obtain

V R + jo)L

1
(11.18)

or

R + juL
= Ro+jXo I (11.19)

where Ro and Xo are the real and imaginary parts of Zo. Ro should not be mistaken for R—
while R is in ohms per meter; Ro is in ohms. The propagation constant y and the character-
istic impedance Zo are important properties of the line because they both depend on the line
parameters R, L, G, and C and the frequency of operation. The reciprocal of Zo is the char-
acteristic admittance Yo, that is, Yo = 1/ZO.

The transmission line considered thus far in this section is the lossy type in that the
conductors comprising the line are imperfect (ac =£ °°) and the dielectric in which the con-
ductors are embedded is lossy (a # 0). Having considered this general case, we may now
consider two special cases of lossless transmission line and distortionless line.

A. Lossless Line (R = 0 = G)

A transmission line is said lo be lossless if the conductors of the line are perfect
(<rt. ~ oc) and the dielectric medium separating them is lossless (a — 0).

For such a line, it is evident from Table 11.1 that when ac — °° and a — 0.

' i R = 0 = G (11.2

This is a necessary condition for a line to be lossless. Thus for such a line, eq. (11.201
forces eqs. (11.11), (11.14), and (11.19) to become

a = 0, 7 = 7 / 3 = ju VLC

- W - 1

~P VLC

(11.21a.

(11.21b.

(11.21c



11.3 TRANSMISSION LINE EQUATIONS

B. Distortionless Line {R/L = G/C)

481

A signal normally consists of a band of frequencies; wave amplitudes of different fre-
quency components will be attenuated differently in a lossy line as a is frequency depen-
dent. This results in distortion.

A distortionless line is one in which the attenuation constant a is frequency inde-
pendent while the phase constant /i is linearly dependent on frequency.

From the general expression for a and /3 [in eq. (11.11)], a distortionless line results if the
line parameters are such that

\ R _G \

\~L~~C \
(11.22)

Thus, for a distortionless line,

or

a = VRG, (3 = u (11.23a)

showing that a does not depend on frequency whereas 0 is a linear function of frequency.
Also

_ R_ L_
~^G VC K° JX°

or

and

(11.23b)

u = — =0 VLC

Note that

(11.23c)

1. The phase velocity is independent of frequency because the phase constant /? lin-
early depends on frequency. We have shape distortion of signals unless a and u are
independent of frequency.

2. u and Zo remain the same as for lossless lines.
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TABLE 11.2 Transmission Line Characteristics

Propagation Constant Characteristic Impedance
Case 7 = a + yp Zo = Ro + jXo

General V(R + jo)L)(G + jui

Lossless 0 + jcovLC

Distortionless VSG + joivLC

3. A lossless line is also a distortionless line, but a distortionless line is not necessar-
ily lossless. Although lossless lines are desirable in power transmission, telephone
lines are required to be distortionless.

A summary of our discussion is in Table 11.2. For the greater part of our analysis, we
shall restrict our discussion to lossless transmission lines.

EXAMPLE 11.1
An air line has characteristic impedance of 70 fi and phase constant of 3 rad/m at
100 MHz. Calculate the inductance per meter and the capacitance per meter of the line.

Solution:

An air line can be regarded as a lossless line since a — 0. Hence

R = 0 = G and a = 0

13 = LC

Dividing eq. (11.1.1) by eq. (11.1.2) yields

or

(11.1.1)

(11.1.2)

c =
0 2ir X 100 X 106(70)

= 68.2 pF/m

From eq. (11.1.1),

= R2
OC = (70)2(68.2 X 10~12) = 334.2 nH/m
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PRACTICE EXERCISE 11.1

A transmission line operating at 500 MHz has Zo = 80 0, a = 0.04 Np/m, /3
1.5 rad/m. Find the line parameters R, L, G, and C.

Answer: 3.2 0/m, 38.2 nH/m, 5 X 10"4 S/m, 5.97 pF/m.

XAMPLE 11.2
A distortionless line has Zo = 60 fl, a = 20 mNp/m, u = 0.6c, where c is the speed of light
in a vacuum. Find R, L, G, C, and X at 100 MHz.

Solution:

For a distortionless line,

RC= GL or G =
RC

and hence

= VRG = R
L Zo

CO 1

or

But

LC

From eq. (11.2.2b),

R = a Zo = (20 X 10~3)(60) = 1.2 fi/m

Dividing eq. (11.2.1) by eq. (11.2.3) results in

L = A. = w = 333 j j j j ^

M 0.6 (3 X 108)

From eq. (11.2.2a),

\ ce2 400 X IP ' 6

G = — = = 333 uS/m
fl 1.2 ^

(11.2.1)

(11.2.2a)

(11.2.2b)

(11.2.3)
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Multiplying eqs. (11.2.1) and (11.2.3) together gives

or

C = 1 1
uZ0 0.6 (3 X 108) 60

= 92.59 pF/m

u 0.6 (3 X 10s)
A = — = z = l.o m

/ 108

PRACTICE EXERCISE 11.2

A telephone line has R = 30 0/km, L = 100 mH/km, G = 0, and C = 20 jtF/km. At
/ = 1 kHz, obtain:

(a) The characteristic impedance of the line

(b) The propagation constant

(c) The phase velocity

Answer: (a) 70.75/-1.367° Q, (b) 2.121 X 10~4 + 78.888 X 10"3/m, (c) 7.069 X
105 m/s.

11.4 INPUT IMPEDANCE, SWR, AND POWER

Consider a transmission line of length €, characterized by y and Zo, connected to a load ZL

as shown in Figure 11.6. Looking into the line, the generator sees the line with the load as
an input impedance Zin. It is our intention in this section to determine the input impedance,
the standing wave ratio (SWR), and the power flow on the line.

Let the transmission line extend from z = 0 at the generator to z = € at the load. First
of all, we need the voltage and current waves in eqs. (11.15) and (11.16), that is

ys(z) = y^e~TZ + V~eyz (H-24)

V+ V
Is(z) = —e TZ eyz (11.25)

where eq. (11.18) has been incorporated. To find V* and V~, the terminal conditions must
be given. For example, if we are given the conditions at the input, say

Vo = V(Z = 0), /„ = I(z = 0) (11.26)
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(y, z0) zL

+

FISJUIT U.6 (a) Input impedance due to a line terminated by a
load; (b) equivalent circuit for finding Vo and Io in terms of Zm at
the input.

substituting these into eqs. (11.24) and (11.25) results in

V + = ^ ( V +ZJ)
V O ~ V v O ' ^ 0 * 0 /

V-=\{NO-ZJO)

(11.27a)

(11.27b)

If the input impedance at the input terminals is Zin, the input voltage Vo and the input
current Io are easily obtained from Figure 11.6(b) as

°

On the other hand, if we are given the conditions at the load, say

VL = V(z = €), /L = I(z = €)

Substituting these into eqs. (11.24) and (11.25) gives

-{VL

(11.28)

(11.29)

(11.30a)

(11.30b)
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Next, we determine the input impedance Zin = Vs(z)/Is(z) at any point on the line. At
the generator, for example, eqs. (11.24) and (11.25) yield

Vs(z) (11.31)

Substituting eq. (11.30) into (11.31) and utilizing the fact that

= cosh y£,
yt —/(

eJ - e y
= sinh y( (11.32a)

or

we get

tanh-y€ =
sinh yi e7

cosh y( e7

7 = 7
ZL + Zo tanh yt
Zo + ZL tanh yi

(lossy)

(11.32b)

(11.33)

Although eq. (11.33) has been derived for the input impedance Zin at the generation end, it
is a general expression for finding Zin at any point on the line. To find Zin at a distance V
from the load as in Figure 11.6(a), we replace t by €'. A formula for calculating the hyper-
bolic tangent of a complex number, required in eq. (11.33), is found in Appendix A.3.

For a lossless line, y = j/3, tanh//3€ = j tan /?€, and Zo = Ro, so eq. (11.33) becomes

ZL + jZ0 tan

Zo + jZL tan j
(lossless) (11.34)

showing that the input impedance varies periodically with distance € from the load. The
quantity /3€ in eq. (11.34) is usually referred to as the electrical length of the line and can
be expressed in degrees or radians.

We now define TL as the voltage reflection coefficient (at the load). TL is the ratio of
the voltage reflection wave to the incident wave at the load, that is,

V
(11.35)

Substituting V~ and VQ m eq. (11.30) into eq. (11.35) and incorporating VL = ZJL gives

zL-zo

zL + zo
(11.361
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The voltage reflection coefficient at any point on the line is the ratio of the magni-
tude of the reflected voltage wave to that of the incident wave.

That is,

T(z) =

But z = ( — £'. Substituting and combining with eq. (11.35), we get

-2yf (11.37)

The current reflection coefficient at any point on the line is negative of the voltage
reflection coefficient at that point.

Thus, the current reflection coefficient at the load is 1^ ey<11^ e y< = —TL.
Just as we did for plane waves, we define the standing wave ratio s (otherwise denoted

by SWR) as

1 +
' min 'min ^ \ L

(11.38)

It is easy to show that /max = Vmax/Zo and /min = Vmin/Zo. The input impedance Zin in
eq. (11.34) has maxima and minima that occur, respectively, at the maxima and minima of
the voltage and current standing wave. It can also be shown that

(11.39a)

and

l^inlmin
/max

(11.39b)

As a way of demonstrating these concepts, consider a lossless line with characteristic
impedance of Zo = 50 U. For the sake of simplicity, we assume that the line is terminated
in a pure resistive load ZL = 100 0 and the voltage at the load is 100 V (rms). The condi-
tions on the line are displayed in Figure 11.7. Note from the figure that conditions on the
line repeat themselves every half wavelength.
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- 5 0 V

I I I _ 2A

1 A

2
3X
4

jr

X
2

•n

2
X
4
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0 wavelength

Figure 11.7 Voltage and current wave patterns on a lossless line
terminated by a resistive load.

As mentioned at the beginning of this chapter, a transmission is used in transferring
power from the source to the load. The average input power at a distance € from the load is
given by an equation similar to eq. (10.68); that is

where the factor \ is needed since we are dealing with the peak values instead of the rms
values. Assuming a lossless line, we substitute eqs. (11.24) and (11.25) to obtain

r ixT+ i2

+ Fe"2-"3* — r*e2/(3*)
? ' I 7

Since the last two terms are purely imaginary, we have

+ 2

27 (1- If) (11.40)
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The first term is the incident power Ph while the second term is the reflected power Pr.
Thus eq. (11.40) may be written as

P = P- — P
rt r, rr

where Pt is the input or transmitted power and the negative sign is due to the negative-
going wave since we take the reference direction as that of the voltage/current traveling
toward the right. We should notice from eq. (11.40) that the power is constant and does not
depend on € since it is a lossless line. Also, we should notice that maximum power is de-
livered to the load when Y = 0, as expected.

We now consider special cases when the line is connected to load ZL = 0, ZL = o°,
and ZL = Zo. These special cases can easily be derived from the general case.

A. Shorted Line (Z, = 0)

For this case, eq. (11.34) becomes

ZL=0
= jZo tan (3€

Also,

(11.41a)

(11.41b)

We notice from eq. (11.41a) that Zin is a pure reactance, which could be capacitive or in-
ductive depending on the value of €. The variation of Zin with ( is shown in Figure 11.8(a).

B. Open-Circuited Line (ZL =

In this case, eq. (11.34) becomes

and

Zoc = lim Zin = -—°— = -jZo cot /3€
zL^» j tan j8€

r t = i,

(11.42a)

(11.42b)

The variation of Zin with t is shown in Figure 11.8(b). Notice from eqs. (11.41a) and
(11.42a) that

^ (11.43)

C. Matched Line (ZL = ZJ

This is the most desired case from the practical point of view. For this case, eq. (11.34)
reduces to

7—7 (11.44a)
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Inductive

Capacitive

Inductive

Capacitive

11.8 Input impedance of
a lossless line: (a) when shorted,
(b) when open.

and

.5 = 1 (11.44b)

that is, Vo = 0, the whole wave is transmitted and there is no reflection. The incident
power is fully absorbed by the load. Thus maximum power transfer is possible when a
transmission line is matched to the load.

EXAMPLE 11.3 A certain transmission line operating at co = 106 rad/s has a = 8 dB/m, /? = 1 rad/m, and
Zo = 60 + j40 Q, and is 2 m long. If the line is connected to a source of 10/0^ V, Zs =
40 ft and terminated by a load of 20 + j50 ft, determine

(a) The input impedance

(b) The sending-end current

(c) The current at the middle of the line
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i Solution:

(a) Since 1 Np = 8.686 dB,

8
= 0.921 Np/m

" 8.686

7 = a +j(5 = 0.921 + j \ /m

yt = 2(0.921 + . / l ) = 1.84 + j2

Using the formula for tanh(x + jy) in Appendix A.3, we obtain

tanhT€ = 1.033 -70.03929

° \ 7 _l_ r

\Za + *

= (60 + 740)
20 +7'5O + (60 +740X1.033 -70.03929) I
60 + 740 + (20 + 75O)(l.O33 - 70.03929) J

Zin = 60.25 + 7'38.79 U

(b) The sending-end current is /(z = 0) = /o. From eq. (11.28),

V,, 10
Kz = 0) Zm + Zg 60.25 + j38.79 + 40

= 93.03/-21.15°mA

(c) To find the current at any point, we need V^ and V^. But

Io = I(z = 0) = 93.03/-21.15°mA

Vo = ZJO = (71.66/32.77°)(0.09303/-21.15°) = 6.667/1.1.62° V

From eq. (11.27),

= - [6.667/11.62° + (60 + 740)(0.09303/-21.15°)] = 6.687/12.08°

V; = ^(V o - ZJO) = 0.0518/260°

At the middle of the line, z = ill, yz = 0.921 + 7I. Hence, the current at this point is

(6.687 e

60 + 740

(0.0518e /260>a921+/1

60 + ;40
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Note that j l is in radians and is equivalent to j'57.3°. Thus,

Uz = €/2) =
0.05l8ej26a°e

26a°e032lei573°

72. l^33"69" 72.1e
3369°

= 0.0369e~'7891° - 0.001805e>283'61°
= 6.673 - j'34.456 raA
= 35.10/281° mA

PRACTICE EXERCISE 11.3

A 40-m-long transmission line shown in Figure 11.9 has Vg = 15//O2Vrms, Zo =
30 + j'60 Q, and VL = 5/-48° Vms. If the line is matched to the load, calculate:

(a) The input impedance Zin

(b) The sending-end current lm and voltage Vm

(c) The propagation constant y

Answer: (a) 30+./60Q, (b) 0.U2/-63.430 A, 7.5/O^V^, (c) 0.0101 +
j0.2094 lm.

Zo = 30+y60
v, z.

-40m-

iyurc il.'l For Practice Exercise 11.3.

11.5 THESMSTH CHART

Prior to the advent of digital computers and calculators, engineers developed all sorts of
aids (tables, charts, graphs, etc.) to facilitate their calculations for design and analysis. To
reduce the tedious manipulations involved in calculating the characteristics of transmis-
sion lines, graphical means have been developed. The Smith chart3 is the most commonly
used of the graphical techniques. It is basically a graphical indication of the impedance of
a transmission line as one moves along the line. It becomes easy to use after a small
amount of experience. We will first examine how the Smith chart is constructed and later

3Devised by Phillip H. Smith in 1939. See P. H. Smith, "Transmission line calculator." Electronics,
vol. 12, pp. 29-31, 1939 and P. H. Smith, "An improved transmission line calculator." Electronics,
vol. 17, pp. 130-133,318-325, 1944.
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Figure 11.10 Unit circle on which the Smith chart is
constructed.

* • ! %

employ it in our calculations of transmission line characteristics such as TL, s, and Zin. We
will assume that the transmission line to which the Smith chart will be applied is lossless
(Zo = Ro) although this is not fundamentally required.

The Smith chart is constructed within a circle of unit radius (|F| ^ 1) as shown in
Figure 11.10. The construction of the chart is based on the relation in eq. (11.36)4; that is,

zL-zo (11.45)

or

r = (11.46)

where F r and F, are the real and imaginary parts of the reflection coefficient F.
Instead of having separate Smith charts for transmission lines with different charac-

teristic impedances such as Zo = 60,100, and 120 fl, we prefer to have just one that can be
used for any line. We achieve this by using a normalized chart in which all impedances are
normalized with respect to the characteristic impedance Zo of the particular line under con-
sideration. For the load impedance ZL, for example, the normalized impedance ZL is given
by

(11.47)

(11.48a)

Substituting eq. (11.47) into eqs. (11.45) and (11.46) gives

or

ZL = r + jx =
(1 + (11.48b)

"Whenever a subscript is not attached to F, we simply mean voltage reflection coefficient at the load
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Normalizing and equating components, we obtain

i - r? - r?
r?

X =
2I\-

- r / + r?

Rearranging terms in eq. (11.49) leads to

1 + r
r? = 1 + r

2 !

and

X
i

Each of eqs. (11.50) and (11.51) is similar to

(x - hf + (y - kf = a2

(11.49a)

(11.49b)

(11.50)

(11.51)

(11.52)

which is the general equation of a circle of radius a, centered at (h, k). Thus eq. (11.50) is
an r-circle (resistance circle) with

center at (TV, T,) =

radius =

1 + r

1

,0

1 + r

(11.53a)

(11.53b)

For typical values of the normalized resistance r, the corresponding centers and radii of the
r-circles are presented in Table 11.3. Typical examples of the r-circles based on the data in

TABLE 113 Radii and Centers of r-Circles
for Typical Values of r

Normalized Resistance (r)

0
1/2
1

2
5

V1 + r /

1
2/3
1/2

1/3
1/6
0

/ r

\1 + r

(0,0)
(1/3,0)

(1/2, 0)
(2/3, 0)
(5/6, 0)

(1,0)

/
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Figure 11.11 Typical r-circles for r = 0,0.5,
1,2, 5, =o.

Table 11.3 are shown in Figure 11.11. Similarly, eq. (11.51) is an x-circle (reactance circle)
with

center at (Tr, T,) = ( 1, -

radius = -
x

(11.54a)

(11.54b)

Table 11.4 presents centers and radii of the x-circles for typical values of x, and Figure
11.12 shows the corresponding plots. Notice that while r is always positive, x can be posi-
tive (for inductive impedance) or negative (for capacitive impedance).

If we superpose the r-circles and x-circles, what we have is the Smith chart shown in
Figure 11.13. On the chart, we locate a normalized impedance z = 2 + j , for example, as
the point of intersection of the r = 2 circle and the x = 1 circle. This is point Px in Figure
11.13. Similarly, z = 1 - 7 0.5 is located at P2, where the r = 1 circle and the x = -0.5
circle intersect.

Apart from the r- and x-circles (shown on the Smith chart), we can draw the s-circles
or constant standing-wave-ratio circles (always not shown on the Smith chart), which are
centered at the origin with s varying from 1 to 00. The value of the standing wave ratio s is

TABLE 11.4 Radii and Centers of x-Circles

for Typical Value of x

Normalized Reactance (x) Radius -
V *

Center 1 , -
x

0
±1/2
±1

± 2

±5

oc

2

1

1/2

1/5

0

(1,
(1,

(1,

(1,

(1,

(1,

= 0 )

±2)

±1)
±1/2)
±1/5)
0)
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+ 0,1)
0.5

Figure 11.12 Typical ^-circles for x = 0, ± 1/2,
± 1 , ±2 , ±5 , ±oo.

+ 0,-0

Figure 11.13 Illustration of the r-, x-, and ^-circles on the Smith chart.
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determined by locating where an s-circle crosses the Tr axis. Typical examples of ^-circles
for s = 1,2, 3, and °° are shown in Figure 11.13. Since |F| and s are related according to
eq. (11.38), the ^-circles are sometimes referred to as |F|-circles with |F| varying linearly
from 0 to 1 as we move away from the center O toward the periphery of the chart while s
varies nonlinearly from 1 to =°.

The following points should be noted about the Smith chart:

1. At point Psc on the chart r = 0, x = 0; that is, ZL = 0 + jQ showing that Psc repre-
sents a short circuit on the transmission line. At point Poc, r = °° and x = =°, or
ZL = =c +70C, which implies that Poc corresponds to an open circuit on the line.
Also at Poc, r = 0 and x = 0, showing that Poc is another location of a short circuit
on the line.

2. A complete revolution (360°) around the Smith chart represents a distance of A/2
on the line. Clockwise movement on the chart is regarded as moving toward the
generator (or away from the load) as shown by the arrow G in Figure 11.14(a) and
(b). Similarly, counterclockwise movement on the chart corresponds to moving
toward the load (or away from the generator) as indicated by the arrow L in Figure
11.14. Notice from Figure 11.14(b) that at the load, moving toward the load does
not make sense (because we are already at the load). The same can be said of the
case when we are at the generator end.

3. There are three scales around the periphery of the Smith chart as illustrated in
Figure 11.14(a). The three scales are included for the sake of convenience but they
are actually meant to serve the same purpose; one scale should be sufficient. The
scales are used in determining the distance from the load or generator in degrees or
wavelengths. The outermost scale is used to determine the distance on the line from
the generator end in terms of wavelengths, and the next scale determines the dis-
tance from the load end in terms of wavelengths. The innermost scale is a protrac-
tor (in degrees) and is primarily used in determining 6^; it can also be used to de-
termine the distance from the load or generator. Since a A/2 distance on the line
corresponds to a movement of 360° on the chart, A distance on the line corresponds
to a 720° movement on the chart.

720° (11.55)

Thus we may ignore the other outer scales and use the protractor (the innermost
scale) for all our dr and distance calculations.
Knax occurs where Zin max is located on the chart [see eq. (11.39a)], and that is on
the positive Tr axis or on OPOC in Figure 11.14(a). Vmin is located at the same point
where we have Zin min on the chart; that is, on the negative Tr axis or on OPsc in
Figure 11.14(a). Notice that Vmax and Vmin (orZjnmax andZinmin) are A/4 (or 180°)
apart.
The Smith chart is used both as impedance chart and admittance chart (Y = 1/Z).
As admittance chart (normalized impedance y = YIYO = g + jb), the g- and b-
circles correspond to r- and x-circles, respectively.
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(a)

C-*-

-*- I.

Geneni toi Transmission line

(h)

Load

Figure 11.14 (a) Smith chart illustrating scales around the periphery and
movements around the chart, (b) corresponding movements along the trans-
mission line.

Based on these important properties, the Smith chart may be used to determine,
among other things, (a) T = \T\/6r and s; (b) Zin or Ym; and (c) the locations of Vmax and
Vmin provided that we are given Zo, ZL, and the length of the line. Some examples will
clearly show how we can do all these and much more with the aid of the Smith chart, a
compass, and a plain straightedge.
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EXAMPLE 11.4
A 30-m-long lossless transmission line with Zo = 50 Q operating at 2 MHz is terminated
with a load ZL = 60 + j40 0. If u = 0.6c on the line, find

(a) The reflection coefficient V

(b) The standing wave ratio s

(c) The input impedance

Solution:

This problem will be solved with and without using the Smith chart.

Method 1: (Without the Smith chart)

ZL - Zo 60 + 7 4 0 - 5 0 _ 10 + j40
(a) r = ZL + Zo 50 + j40 + 50 110+ ;40

= 0.3523/56°

I±jT| = !±
K ' \ - \T\ 1 - 0.3523

(c) Since u = u/fi, or fi = W/M,

• (2 X 106)(30) 2TT

u 0.6 (3 X 108)

Note that fit is the electrical length of the line.

L + 7'ZO tan £

= 120°

_ Z o + 7'ZL tan £
50(60 +7'40 +750tanl20°)
[50 +y(60 +740) tan 120°]

= ^
(5 + 4 V 3 - j6V3)

, / = 23.97 +71.35 0

Method 2: (Using the Smith chart).

(a) Calculate the normalized load impedance

h± 6 0 +
ZLYO 50

= 1.2 +7O.8

Locate zL on the Smith chart of Figure 11.15 at point P where the r = 1.2 circle and the
x = 0.8 circle meet. To get V at zL, extend OP to meet the r = 0 circle at Q and measure OP
and 0 g . Since OQ corresponds to |T| = 1, then at P,

OP_

OQ

3.2 cm

9.1cm
= 0.3516
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56°

Figure 11.15 For Example 11.4.

Note that OP = 3.2 cm and OQ = 9.1 cm were taken from the Smith chart used by the
author; the Smith chart in Figure 11.15 is reduced but the ratio of OPIOQ remains the
same.

Angle 0r is read directly on the chart as the angle between OS and OP; that is

Thus

6T = angle POS = 56°

T = 0.3516/56°

(b) To obtain the standing wave ratio s, draw a circle with radius OP and center at O.
This is the constant s or \T\ circle. Locate point S where the ^-circle meets the Fr-axis.
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[This is easily shown by setting T; = 0 in eq. (11.49a).] The value of r at this point is s;
that is

5 = r(forr > 1)
= 2.1

(c) To obtain Zin, first express € in terms of X or in degrees.

u 0.6 (3 X 108)

2 X 106 = 90 m

Since X corresponds to an angular movement of 720° on the chart, the length of the line
corresponds to an angular movement of 240°. That means we move toward the generator
(or away from the load, in the clockwise direction) 240° on the s-circle from point P to
point G. At G, we obtain

Hence

zin = 0.47 + yO.035

50(0.47 +70.035) = 23.5 + jl.15 0

Although the results obtained using the Smith chart are only approximate, for engineering
purposes they are close enough to the exact ones obtained in Method 1.

PRACTICE EXERCISE 11.4

A 70-Q lossless line has s = 1.6 and 0 r = 300°. If the line is 0.6X long, obtain

(a) T,ZL,Zin

(b) The distance of the first minimum voltage from the load

Answer: (a) 0.228 /300°, 80.5 V/33.6 fi, 47.6 - yl7.5 Q, (b) X/6.

EXAMPLE 11.5
A 100 + 7'150-C load is connected to a 75-fl lossless line. Find:

(a) T

(b) s

(c) The load admittance YL

(d) Zin at 0.4X from the load

(e) The locations of Vmax and Vmin with respect to the load if the line is 0.6X long

(f) Zin at the generator.
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Solution:

(a) We can use the Smith chart to solve this problem. The normalized load impedance is

ZL 100 + /150
* = •£ = —^-=1.33+/2 -

We locate this at point P on the Smith chart of Figure 11.16. At P, we obtain

Hence,

1 ' OQ 9.1cm

0r = angle POS = 40°

T = 0.659 740°

Figure 11.16 For Example 11.5.
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Check:

- zoT

ZL + Zo TooT/150 + 75
= 0.659 /4(F

(b) Draw the constant s-circle passing through P and obtain

s = 4.82

Check:

1 + | r | 1 + 0.659
S = T^W\ = 1^659 = ^

(c) To obtain YL, extend PO to POP' and note point P' where the constant ^-circle meets
POP'. At P', obtain

yL = 0.228 - jO.35

The load admittance is

= YoyL = — (0.228 - jO.35) = 3.04 - ;4.67 mS

Check:

Y,= — =
ZL 100+J150

= 3.07 - J4.62 mS

(d) 0.4X corresponds to an angular movement of 0.4 X 720° = 288° on the constant .?-
circle. From P, we move 288° toward the generator (clockwise) on the ^-circle to reach
point R. At R,

Hence

Check:

X-m = 0.3 + J0.63

Zin = ZoZm = 75 (0.3 + y0.63)
= 22.5 + J41.25 0

= Y (0.4A) = 360° (0.4) = 144°

_ ZL + jZo tan j8€

° [Zo + jZL tan /3€
= 75(100 +J150 + / ,

l7T+y(100 +^
= 54.41/65.25°
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or

Zin = 21.9+y47.6O

(e) 0.6X corresponds to an angular movement of

0.6 X 720° = 432° = 1 revolution + 72°

Thus, we start from P (load end), move along the ^-circle 432°, or one revolution plus
72°, and reach the generator at point G. Note that to reach G from P, we have passed
through point T (location of Vmin) once and point S (location of Vmax) twice. Thus, from
the load,

lstVmax is located at
40°

X = 0.055X

2ndTmax is located at 0.0555X + - = 0.555X

and the only Vmin is located at 0.055X + X/4 = 0.3055X

(f) At G (generator end),

Zin= 1.8-;2.2

Zin = 75(1.8 -J2.2) = 135 - jl65 Q.

This can be checked by using eq. (11.34), where /?€ = ~ (0.6X) = 216°.
X

We can see how much time and effort is saved using the Smith chart.

PRACTICE EXERCISE 11.5

A lossless 60-fi line is terminated by a 60 + y'60-fl load.

(a) Find T and s. If Zin = 120 - y'60 fi, how far (in terms of wavelengths) is the load
from the generator? Solve this without using the Smith chart.

(b) Solve the problem in (a) using the Smith chart. Calculate Zmax and Zin min. How
far (in terms of X) is the first maximum voltage from the load?

Answer: (a) 0.4472/63.43°, 2.618, - (1 + An), n = 0, 1, 2, . . ., (b) 0.4457/62°,

2.612, - (1 + 4n), 157.1 0, 22.92 Q, 0.0861 X.
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11.6 SOME APPLICATIONS OF TRANSMISSION LINES

Transmission lines are used to serve different purposes. Here we consider how transmis-
sion lines are used for load matching and impedance measurements.'

A. Quarter-Wave Transformer (Matching)

When Zo # ZL, we say that the load is mismatched and a reflected wave exists on the line.
However, for maximum power transfer, it is desired that the load be matched to the trans-
mission line (Zo = Z[) so that there is no reflection (|F| = Oors = 1). The matching is
achieved by using shorted sections of transmission lines.

We recall from eq. (11.34) that when t = X/4 or (3€ = (2TT/X)(X/4) = TT/2,

in °

that is

or

Zo + jZL tan TT/2 J

zo ~ z L

1

= > Yin = Z L

(11.56)

(11.57)

Thus by adding a X/4 line on the Smith chart, we obtain the input admittance correspond-
ing to a given load impedance.

Also, a mismatched load ZL can be properly matched to a line (with characteristic im-
pedance Zo) by inserting prior to the load a transmission line X/4 long (with characteristic
impedance Zo') as shown in Figure 11.17. The X/4 section of the transmission line is called
a quarter-wave transformer because it is used for impedance matching like an ordinary
transformer. From eq. (11.56), Z'o is selected such that (Zin = Zo)

z: = (11.58)

Figure 11.17 Load matching using a X/4 transformer.

Z'
\ Z L
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Figure 11.18 Voltage standing-
wave pattern of mismatched load:
(a) without a A/4 transformer,
(b) with a A/4 transformer.

(a)

where Z'o, Zo and ZL are all real. If, for example, a 120-0 load is to be matched to a 75-fi
line, the quarter-wave transformer must have a characteristic impedance of V (75)( 120) —
95 fi. This 95-fl quarter-wave transformer will also match a 75-fl load to a 120-fi line. The
voltage standing wave patterns with and without the X/4 transformer are shown in Figure
11.18(a) and (b), respectively. From Figure 11.18, we observe that although a standing
wave still exists between the transformer and the load, there is no standing wave to the left
of the transformer due to the matching. However, the reflected wave (or standing wave) is
eliminated only at the desired wavelength (or frequency / ) ; there will be reflection at a
slightly different wavelength. Thus, the main disadvantage of the quarter-wave trans-
former is that it is a narrow-band or frequency-sensitive device.

B. Single-Stub Tuner (Matching)

The major drawback of using a quarter-wave transformer as a line-matching device is
eliminated by using a single-stub tuner. The tuner consists of an open or shorted section of
transmission line of length d connected in parallel with the main line at some distance (
from the load as in Figure 11.19. Notice that the stub has the same characteristic imped-
ance as the main line. It is more difficult to use a series stub although it is theoretically fea-
sible. An open-circuited stub radiates some energy at high frequencies. Consequently,
shunt short-circuited parallel stubs are preferred.

As we intend that Zin = Zo, that is, zin = 1 or yin = 1 at point A on the line, we first
draw the locus y = 1 + jb(r = 1 circle) on the Smith chart as shown in Figure 11.20. If a
shunt stub of admittance ys = —jb is introduced at A, then

jb ~jb= (11.59!

Figure 11.19 Matching with a single-stub tuner.

shorted stub
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Figure 11.20 Using the Smith chart to
determine € and d of a shunt-shorted

locusofj>=l+/6 single-stub tuner.
(/• = 1 circle)

as desired. Since b could be positive or negative, two possible values of € (<X/2) can be
found on the line. At A, ys = —jb, € = £A and at B, ys = jb, £ = iB as in Figure 11.20. Due
to the fact that the stub is shorted {y'L = °°), we determine the length d of the stub by
finding the distance from Psc (at which z'L = 0 + jO) to the required stub admittance ys. For
the stub at A, we obtain d = dA as the distance from P to A', where A' corresponds to
ys = —jb located on the periphery of the chart as in Figure 11.20. Similarly, we obtain
d = dB as the distance from Psc to B' (ys = jb).

Thus we obtain d = dA and d = dB, corresponding to A and B, respectively, as
shown in Figure 11.20. Note that dA + dB = A/2 always. Since we have two possible
shunted stubs, we normally choose to match the shorter stub or one at a position closer
to the load. Instead of having a single stub shunted across the line, we may have two
stubs. This is called double-stub matching and allows for the adjustment of the load
impedance.

C. Slotted Line (Impedance Measurement)

At high frequencies, it is very difficult to measure current and voltage because measuring
devices become significant in size and every circuit becomes a transmission line. The
slotted line is a simple device used in determining the impedance of an unknown load at
high frequencies up into the region of gigahertz. It consists of a section of an air (lossless)
line with a slot in the outer conductor as shown in Figure 11.21. The line has a probe, along
the E field (see Figure 11.4), which samples the E field and consequently measures the po-
tential difference between the probe and its outer shield.

The slotted line is primarily used in conjunction with the Smith chart to determine
the standing wave ratio .v (the ratio of maximum voltage to the minimum voltage) and the
load impedance ZL. The value,of s is read directly on the detection meter when the load
is connected. To determine ZL, we first replace the load by a short circuit and note the
locations of voltage minima (which are more accurately determined than the maxima
because of the sharpness of the turning point) on the scale. Since impedances repeat
every half wavelength, any of the minima may be selected as the load reference point. We
now determine the distance from the selected reference point to the load by replacing the
short circuit by the load and noting the locations of voltage minima. The distance € (dis-
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To Generator

To detector

Probe- slotted line

0 V 50 cm \ _ . , , t
1 I I , j | To load or short

/ • • , . ) • , . , ) • • . , / , , . , ! , , , , l , , , , l , , , , ! , , , , I , , , , ! , , , , I / + .
\ /

calibrated scale

(a)

-X. /2-

25

A'

' Load

p 1 Short

50 cm

(b)

Figure 11.21 (a) Typical slotted line; (b) determining the location of the
load Z t and Vmin on the line.

tance of Vmin toward the load) expressed in terms of X is used to locate the position of the
load of an s-circle on the chart as shown in Figure 11.22. We could also locate the load by
using €', which is the distance of Vmin toward the generator. Either i or €' may be used to
locate ZL.

The procedure involved in using the slotted line can be summarized as follows:

1. With the load connected, read s on the detection meter. With the value of s, draw
the s-circle on the Smith chart.

2. With the load replaced by a short circuit, locate a reference position for zL at a
voltage minimum point.

3. With the load on the line, note the position of Vmin and determine i.
4. On the Smith chart, move toward the load a distance € from the location of V ^ .

Find ZL at that point.

s-circle

i = distance toward load Figure 11.22 Determining the load imped-
' = distance toward generator ance from the Smith chart using the data

obtained from the slotted line.
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EXAMPLE 11.6 With an unknown load connected to a slotted air line, 5 = 2 is recorded by a standing wave
indicator and minima are found at 11 cm, 19 cm, . . . on the scale. When the load is re-
placed by a short circuit, the minima are at 16 cm, 24 cm, . . . . If Zo = 50 Q, calculate X,
/ , and ZL.

Solution:

Consider the standing wave patterns as in Figure 11.23(a). From this, we observe that

- = 1 9 - 1 1 = 8 cm or X = 1 6 c m

^ ^ i ^ = 1.875 GHz
A 16 X 1CT

Electrically speaking, the load can be located at 16 cm or 24 cm. If we assume that the load
is at 24 cm, the load is at a distance € from Vmin, where

€ = 2 4 - 1 9 = 5 cm = — X = 0.3125 X
16

Figure 11.23 Determining ZL using the
slotted line: (a) wave pattern, (b) Smith

with load c h a r t f o r Example 11.6.

with short
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This corresponds to an angular movement of 0.3125 X 720° = 225° on the s = 2 circle.
By starting at the location of Vmin and moving 225° toward the load (counterclockwise), we
reach the location of zL as illustrated in Figure 11.23(b). Thus

and

ZL = Zj,L = 50 (1.4 + y0.75) = 70 + /37.5 fi

PRACTICE EXERCISE 11.6

The following measurements were taken using the slotted line technique: with load,
s - 1.8, Vmax occurred at 23 cm, 33.5 cm,. . .; with short, s = °°, Vmax occurred at
25 cm, 37.5 cm,. . . . If Zo = 50 0, determine ZL.

Answer: 32.5 - jll.5 fi.

EXAMPLE 11.7
Antenna with impedance 40 +J30Q is to be matched to a 100-fl lossless line with a
shorted stub. Determine

(a) The required stub admittance

(b) The distance between the stub and the antenna

(c) The stub length

(d) The standing wave ratio on each ratio of the system

Solution:

(a) ZL = -77
40 + y30

100
= 0.4 + j0.3

Locate zL on the Smith chart as in Figure 11.24 and from this draw the s-circle so that yL

can be located diametrically opposite zL. Thus yL = 1.6 - jl.2. Alternatively, we may find
yL using

zL

100

40 + ;30
= 1.6 - 7 I . 2

Locate points A and B where the s-circle intersects the g = 1 circle. At A, ys — -yl.04 and
at B, ys = +/1.04. Thus the required stub admittance is

Ys = Yoys = ±j\M^= ±jl0.4 mS

Both j'10.4 mS and —jlOA mS are possible values.
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= /1.04

Figure 11.24 For Example 11.7.

(b) From Figure 11.24, we determine the distance between the load (antenna in this case)
yL and the stub. At A,

AtB:

(62° -39°)
720°
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(c) Locate points A' and B' corresponding to stub admittance —71.04 and 71.04, respec-
tively. Determine the stub length (distance from Psc to A' and B')\

dA =
720°

272°X

720°

X = 0.1222X

= 0.3778X

Notice that dA + dB = 0.5X as expected.

(d) From Figure 11.24, s = 2.7. This is the standing wave ratio on the line segment
between the stub and the load (see Figure 11.18);*= 1 to the left of the stub because the
line is matched, and s = °° along the stub because the stub is shorted.

PRACTICE EXERCISE 11.7

A 75-0 lossless line is to be matched to a 100 — y'80-fl load with a shorted stub.
Calculate the stub length, its distance from the load, and the necessary stub admit-
tance.

Answer: £A = 0.093X, lB = 0.272X, dA = 0.126X, dB = 0.374X, ±yl2.67 mS.

11.7 TRANSIENTS ON TRANSMISSION LINES

In our discussion so far, we have assumed that a transmission line operates at a single fre-
quency. In some practical applications, such as in computer networks, pulsed signals may
be sent through the line. From Fourier analysis, a pulse can be regarded as a superposition
of waves of many frequencies. Thus, sending a pulsed signal on the line may be regarded
as the same as simultaneously sending waves of different frequencies.

As in circuit analysis, when a pulse generator or battery connected to a transmission
line is switched on, it takes some time for the current and voltage on the line to reach
steady values. This transitional period is called the transient. The transient behavior just
after closing the switch (or due to lightning strokes) is usually analyzed in the frequency
domain using Laplace transform. For the sake of convenience, we treat the problem in the
time domain.

Consider a lossless line of length € and characteristic impedance Zo as shown in
Figure 11.25(a). Suppose that the line is driven by a pulse generator of voltage Vg with in-
ternal impedance Zg at z = 0 and terminated with a purely resistive load ZL. At the instant
t = 0 that the switch is closed, the starting current "sees" only Zg and Zo, so the initial sit-
uation can be described by the equivalent circuit of Figure 11.25(b). From the figure, the
starting current at z = 0, t = 0+ is given by

7(0, 0+) = /„ = (11.60)
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2 = 0

(b)

Figure 11.25 Transients on a transmission line: (a) a line driven by a
pulse generator, (b) the equivalent circuit at z = 0, t = 0+.

and the initial voltage is

zg + z0
 g (11.61)

After the switch is closed, waves I+ = Io and V+ = Vo propagate toward the load at the
speed

1
u =

VLC
(11.62)

Since this speed is finite, it takes some time for the positively traveling waves to reach the
load and interact with it. The presence of the load has no effect on the waves before the
transit time given by

(11.63)

After ti seconds, the waves reach the load. The voltage (or current) at the load is the sum
of the incident and reflected voltages (or currents). Thus

, to = v+ + v =vo + rLvo = (i + rt)vo

and

l(i, to — 1 + I — l0 — \.Ll0 - (I — V L)l0

where TL is the load reflection coefficient given in eq. (11.36); that is,

T, ZL - Zo

(11.64)

(11.65)

(11.66)

The reflected waves V = rLVo and / = — r t / 0 travel back toward the generator in addi-
tion to the waves Vo and /o already on the line. At time t = 2fb the reflected waves have
reached the generator, so

V(0, 2tO = V+ + V~ = TGTLVO TL)VO
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r--rL
z = 8

(a) (b)

Figure 11.26 Bounce diagram for (a) a voltage wave, and (b) a
current wave.

or

and

or

V(0, 2t{)

0,2t{) = i+ +r

(11.67)

- rL)/o

where FG is the generator reflection coefficient given by

Zg - Zo

(11.68)

(11.69)

Again the reflected waves (from the generator end) V+ = TGTLVO and / + = TQTJO prop-
agate toward the load and the process continues until the energy of the pulse is actually ab-
sorbed by the resistors Zg and ZL.

Instead of tracing the voltage and current waves back and forth, it is easier to keep
track of the reflections using a bounce diagram, otherwise known as a lattice diagram. The
bounce diagram consists of a zigzag line indicating the position of the voltage (or current)
wave with respect to the generator end as shown in Figure 11.26. On the bounce diagram,
the voltage (or current) at any time may be determined by adding those values that appear
on the diagram above that time.

EXAMPLE 11.8
For the transmission line of Figure 11.27, calculate and sketch

(a) The voltage at the load and generator ends for 0 < t < 6 fx&

(b) The current at the load and generator ends for 0 < t < 6 /*s
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Figure 11.27 For Example

515

zo = 50 a

ii = 108m/s 200 n

100 m

Solution:

(a) We first calculate the voltage reflection coefficients at the generator and load ends.

_ Zg - Zo _ 100 - 50 _ J_
G ~ Zg + Zo ~ 100 + 50 ~ !3

_ ZL - Zo _ 200 - 50 _ 3

200 + 50

€ 100 ,
The transit time t. = — = —r = 1 us.

u 108

The initial voltage at the generator end is

Z 50
" • • ^ " • = -i»m-4V

The 4 V is sent out to the load. The leading edge of the pulse arrives at the load at t = t, =
1 us. A portion of it, 4(3/5) = 2.4 V, is reflected back and reaches the generator at t =
2tl = 2 us. At the generator, 2.4(1/3) = 0.8 is reflected and the process continues. The
whole process is best illustrated in the voltage bounce diagram of Figure 11.28.

V = 7.2 + 0.48 + 0.16 = 7.84

K = 7.84 + 0.096 + 0.032 = 7.968

V= 7.68 + 0.16 + 0.096 = 7.936

' V = 7.936 + 0.03 + 0.02 = 7.986

Figure 11.28 Voltage bounce diagram for Example 11.8.
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From the bounce diagram, we can sketch V(0, t) and V((, t) as functions of time as
shown in Figure 11.29. Notice from Figure 11.29 that as t -> °°, the voltages approach an
asymptotic value of

This should be expected because the equivalent circuits at t = 0 and t = °° are as shown in
Figure 11.30 (see Problem 11.46 for proof).

(b) The current reflection coefficients at the generator and load ends are —FG = —1/3 and
—TL = —3/5, respectively. The initial current is

V(0,t) Volts

7.968

Figure 11.29 Voltage (not to
scale): (a) at the generator end,
(b) at the load end.

2.4

I
L. 0.8

10
• t (MS)

(a)

V(H,t)

7.68 7.936

6.4

2.4

0.48 0.16
_ ^ _ _ / J

\8 10
0.096

(b)

tins)
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(a) (b)

Figure 11.30 Equivalent circuits for the line in Figure 11.27 for (a) t = 0, and
(b) / = °°.

Again, 7(0, t) and /(€, ?) are easily obtained from the current bounce diagram shown in
Figure 11.31. These currents are sketched in Figure 11.32. Note that /(€, 0 = V(€, t)IZL.
Hence, Figure 11.32(b) can be obtained either from the current bounce diagram of Figure
11.31 or by scaling Figure 11.29(b) by a factor of \IZL = 1/200. Notice from Figures
11.30(b) and 11.32 that the currents approach an asymptotic value of

12
Z, + ZL 300

= 40 mA

z = £ , r = 3/5

7 = 41.6 1.92 + 0.64=40.32

Figure 11.31 Current bounce diagram for Example 11.8.
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/(0, 0 mA

80

48
41.6 40

16

/(8,0mA

3.2 ,0.64

8 \ __10

v -0.384

-48

(a)

Figure 11.32 Current (not to scale):
(a) at the generator end, (b) at the
load end, for Example 11.8.

r ^ J f - - i t - ^ . - l — - / < /is)

/(/is)

PRACTICE EXERCISE 11.8

Repeat Example 11.8 if the transmission line is

(a) Short-circuited

(b) Open-circuited

Answer: (a) See Figure 11.33
(b) See Figure 11.34



/ '(M-s)

V(0,t)

4V 4V

4/3

1

4/9

»_

/(O, t)

-4/3
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160 mA
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106.67

80

80/9

-80/3
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80 mA
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80
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80/9

/((is)

Figure 11.33 For Practice Exercise 11.8(a). 519
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t)

8V

4V

1

1 -

10.67

4/3
» • - • •

1 '-

11.55

4/9

1

12V

0

/(«, t)

0A

0

V(0, t)

• tins)

AV

9.333

4V

4/3

1

- ——
4=

i i . i l

4/9

12V

1 1 •-
0

1(0, t)

80 mA 80

80/3 8 0 / 3

| 80/9 8 2 / 9

1 1 »-

-80/3

Figure 11.34 For Practice Exercise 11.8(b).
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EXAMPLE 11.9
A 75-fi transmission line of length 60 m is terminated by a 100-fi load. If a rectangular
pulse of width 5 /xs and magnitude 4 V is sent out by the generator connected to the line,
sketch 7(0, t) and /(€, t) for 0 < t < 15 /xs. Take Zg = 25 Q and u = 0.1c.

Solution:

In the previous example, the switching on of a battery created a step function, a pulse of in-
finite width. In this example, the pulse is of finite width of 5 /xs. We first calculate the
voltage reflection coefficients:

- z o

7+7
L + £o

The initial voltage and transit time are given by

75

Too

t\ = - =
60

O.I (3 X 1O8)
= 2,

The time taken by Vo to go forth and back is 2f ] = 4 /xs, which is less than the pulse dura-
tion of 5 /is. Hence, there will be overlapping.

The current reflection coefficients are

and - r G = -

The initial current /„ =
100

= 40 mA.

Let i and r denote incident and reflected pulses, respectively. At the generator end:

0 < t < 5 /xs, Ir = Io = 40 mA

4 < t < 9, /,• = — (40) = -5.714

Ir = | (-5.714) = -2.857

< t < 13, /,• = — (-2.857) = 0.4082

Ir = -(0.4082) = 0.2041
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12 < t < 17, 7, = —(0.2041) = -0.0292

Ir = - ( -0 .0292) = -0.0146

and so on. Hence, the plot of 7(0, 0 versus t is as shown in Figure 11.35(a).

1(0, () mA

40

1 1 1
2 4

31 43

1
6

-

1

0.6123

8

2.857

714

—-•
*l /I
10/
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.959 "

0.4082

/ 0.5685

* ! /

12
1 1

—hr14~

-0.0146

1 /l 1 1 ,
J.

/ -0.0438
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V(i,t) Volts

3.429

-8.571

.185

(a)

-0.0306 0.0176

I / l I I I I I I I I L
S- 10—12 14
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Figure 11.35 For Example 11.9 (not to scale).

'(MS)

• /(MS)

0 1 1 |

34.3

1 1
4

n i

i i

6

3

|

8

|

46

1
10

0.1

J |

76

1 1

14
I I I .



11.7 TRANSIENTS ON TRANSMISSION LINES • 523

At the load end:

0 < t < 2 iis, V = 0

2 < t < 7, V, = 3

Vr = - (3) = 0.4296

6 < t < 11, V,= — (0.4296) = -0.2143

Vr = - ( -0 .2143) = -0.0306

10 < t < 14, Vf = — (-0.0306) = 0.0154

Vr = -(0.0154) = 0.0022

and so on. From V(£, t), we can obtain /(€, t) as

The plots of V((, t) and /(€, t) are shown in Figure 11.35(b) and (c).

PRACTICE EXERCISE 11.9

Repeat Example 11.9 if the rectangular pulse is replaced by a triangular pulse of
Figure 11.36.

Answer: (/o)max = 100 mA. See Figure 11.37 for the current waveforms.

10 V

Figure 11.36 Triangular pulse of Practice Exercise 11.9.

'(/•is)
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1(0, t) mA

-100

Figure il.37 Current waves for
Practice Exercise 11.9.

1.521

8 10
•-21.43
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^- 85.71
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12
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11.8 MICROSTRIP TRANSMISSION LINES

Microstrip lines belong to a group of lines known as parallel-plate transmission lines. They
are widely used in present-day electronics. Apart from being the most commonly used
form of transmission lines for microwave integrated circuits, microstrips are used for
circuit components such as filters, couplers, resonators, antennas, and so on. In comparison
with the coaxial line, the microstrip line allows for greater flexibility and compactness of
design.

A microstrip line consists of a single ground plane and an open strip conductor sepa-
rated by dielectric substrate as shown in Figure 11.38. It is constructed by the photographic
processes used for integrated circuits. Analytical derivation of the characteristic properties

Strip
conductor

Figure 11.38 Microstrip line.

Ground plane
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of the line is cumbersome. We will consider only some basic, valid empirical formulas nec-
essary for calculating the phase velocity, impedance, and losses of the line.

Due to the open structure of the microstrip line, the EM field is not confined to the di-
electric, but is partly in the surrounding air as in Figure 11.39. Provided the frequency is
not too high, the microstrip line will propagate a wave that, for all practical purposes, is a
TEM wave. Because of the fringing, the effective relative permittivity eeff is less than the
relative permittivity er of the substrate. If w is the line width and h is the substrate thick-
ness, an a approximate value of eeff is given by

Seff -
(er (Sr -

2Vl + I2h/w
(11.70)

The characteristic impedance is given by the following approximate formulas:

7 =

60 (%h vtA
In I — + - ,V hj

1 1207T

[w/h + 1.393 + 0.667 In (w/h + 1.444)]'

wlh <

w/h > 1
j (11.71)

The characteristic impedance of a wide strip is often low while that of a narrow strip is
high.

Magnetic field

Electric field

Figure 11.39 Pattern of the EM field of a microstrip line. Source: From
D. Roddy, Microwave Technology, 1986, by permission of Prentice-
Hall.
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For design purposes, if er and Zo are known, the ratio wlh necessary to achieve Zo is
given by

w

e2A - 2 '

-\B- \ -

2er

where

\n{B - 1) + 0.39 -

A = ^
60

0.61

J +
60 V 2 er + 1

wlh < 2

w/h > 2

(11.72)

ZoVer

From the knowledge of eeff and Zo, the phase constant and the phase velocity of a
wave propagating on the microstrip are given by

c

c
u =

(11.74a)

(11.74b)

where c is the speed of light in a vacuum. The attenuation due to conduction (or ohmic)
loss is (in dB/m)

ar = 8.686 —±- (11.75)

where /?, = — is the skin resistance of the conductor. The attenuation due to dielectric
ac8

loss is (in dB/m)

ad — 27.3
fceff l)er tanfl

(sr - 1) e,
(11.76)

:eff

where \ = u/f is the line wavelength and tan 6 = alice is the loss tangent of the substrate.
The total attenuation constant is the sum of the ohmic attenuation constant ac and the di-
electric attenuation constant ad, that is,

a = ac + ad (11.771

Sometimes ad is negligible in comparison with ac. Although they offer an advantage of
flexibility and compactness, the microstrip lines are not useful for long transmission due to
excessive attenuation.
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EXAMPLE 11.10
A certain microstrip line has fused quartz (er = 3.8) as a substrate. If the ratio of line width
to substrate thickness is wlh = 4.5, determine

(a) The effective relative permittivity of the substrate

(b) The characteristic impedance of the line

(c) The wavelength of the line at 10 GHz

Solution:

(a) For wlh = 4.5, we have a wide strip. From eq. (11.70),

4.8 2.8 12

(b) From eq. (11.71),

Z n =
1207T

( c ) X = r c

V3.131[4.5 + 1.393 + 0.667 In (4.5 + 1.444)]
= 9.576 fi

3 X 108

eeff 1O'UV3.131
= 1.69 X 10"2m = 16.9 mm

PRACTICE EXERCISE 11.10

Repeat Example 11.10 for wlh = 0.8.

Answer: (a) 2.75, (b) 84.03 fi, (c) 18.09 mm.

EXAMPLE 11.11
At 10 GHz, a microstrip line has the following parameters:

h = 1 mm

w = 0.8 mm

er = 6.6

tan 6 = 10~4

ac = 5.8 X 107 S/m

Calculate the attenuation due to conduction loss and dielectric loss.
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Solution:

The ratio wlh = 0.8. Hence from eqs. (11.70) and (11.71)

7.2 5.6

60

12

8 0.8

= 4.3

= 67.17 0

The skin resistance of the conductor is

7T X 10 X 109 X 4TT X 10~ 7

5.8 X 107

= 2.609 X 10~2 Q/m2

Using eq. (11.75), we obtain the conduction attenuation constant as

2.609 X 10~2

ac = 8.686 X
0.8 X 10~3 X 67.17

= 4.217 dB/m

To find the dielectric attenuation constant, we need X.

3 X 10s

10 X 10 9V43
= 1.447 X 10"zm

Applying eq. (11.76), we have

-43.492 X 6.6 X 10

5.6 X 4.3 X 1.447 X 10~2

= 0.1706 dB/m

ad = 27.3 X

PRACTICE EXERCISE 11.11

Calculate the attenuation due to ohmic losses at 20 GHz for a microstrip line con-
structed of copper conductor having a width of 2.5 mm on an alumina substrate.
Take the characteristic impedance of the line as 50 U.

Answer: 2.564 dB/m.

SUMMARY 1. A transmission line is commonly described by its distributed parameters R (in 0/m), L
(in H/m), G (in S/m), and C (in F/m). Formulas for calculating R, L, G, and C are pro-
vided in Table 11.1 for coaxial, two-wire, and planar lines.
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2. The distributed parameters are used in an equivalent circuit model to represent a differ-
ential length of the line. The transmission-line equations are obtained by applying
Kirchhoff's laws and allowing the length of the line to approach zero. The voltage and
current waves on the line are

V(z, t) = V+e~az cos (cor - Pz) + V~eaz cos (cor + (3z)

I(z, t) = — e~az cos (cor - &) - — eaz cos (cor + fc)
Zo A)

showing that there are two waves traveling in opposite directions on the line.
3. The characteristic impedance Zo (analogous to the intrinsic impedance rj of plane waves

in a medium) of a line is given by

Zn =
R + jaL

G + jaC

and the propagation constant y (in per meter) is given by

7 = a + 7/8 = V(R + jo>L)(G

The wavelength and wave velocity are

x = ~ « = ̂  = f;

4. The general case is that of the lossy transmission line (G # 0 # 7?) considered earlier.
For a lossless line, /? = 0 = G; for a distortionless line, RIL = GIC. It is desirable that
power lines be lossless and telephone lines be distortionless.

5. The voltage reflection coefficient at the load end is defined as

L v+

and the standing wave ratio is

i- =

zL- zo

zL + zo

\rL\

where ZL is the load impedance.
6. At any point on the line, the ratio of the phasor voltage to phasor current is the imped-

ance at that point looking towards the load and would be the input impedance to the line
if the line were that long. For a lossy line,

ZL + Zo tanh -)

Zo + ZL tanh -)

where i is the distance from load to the point. For a lossless line (a — 0), tanh yt =
7 tan /3€; for a shorted line, ZL = 0; for an open-circuited line, ZL = °°; and for a
matched line, ZL = Zo.
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7. The Smith chart is a graphical means of obtaining line characteristics such as T, s, and
Zin. It is constructed within a circle of unit radius and based on the formula for TL given
above. For each r and x, it has two explicit circles (the resistance and reactance circles)
and one implicit circle (the constant ^-circle). It is conveniently used in determining the
location of a stub tuner and its length. It is also used with the slotted line to determine
the value of the unknown load impedance.

8. When a dc voltage is suddenly applied at the sending end of a line, a pulse moves forth
and back on the line. The transient behavior is conveniently analyzed using the bounce
diagrams.

9. Microstrip transmission lines are useful in microwave integrated circuits. Useful for-
mulas for constructing microstrip lines and determining losses on the lines have been
presented.

11.1 Which of the following statements are not true of the line parameters R, L, G, and C?

(a) R and L are series elements.

(b) G and C are shunt elements.

(0 G = i

(d) LC = tie and RG = ae.

(e) Both R and G depend on the conductivity of the conductors forming the line.

(f) Only R depends explicitly on frequency.

(g) The parameters are not lumped but distributed.

11.2 For a lossy transmission line, the characteristic impedance does not depend on

(a) The operating frequency of the line

(b) The length of the line

(c) The load terminating the line

(d) The conductivity of the conductors

(e) The conductivity of the dielectric separating the conductors

11.3 Which of the following conditions will not guarantee a distortionless transmission line?

(a) R = 0 = G

(b) RC = GL

(c) Very low frequency range (R 55> uL, G Ŝ> aC)

(d) Very high frequency range (R <3C OJL, G <«C WC)

11.4 Which of these is not true of a lossless line?

(a) Zin = -)Za for a shorted line with € = A/8.

(b) Zin = yoo for a shorted line with € = A/4.
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(c) Zin = jZ0 for an open line with ( = X/2.

(d) Zin = Zo for a matched line.

(e) At a half-wavelength from a load, Zin = ZL and repeats for every half-wavelength
thereafter.

11.5 A lossless transmission line of length 50 cm with L = 10 ;U,H/m, C = 40 pF/m is oper-
ated at 30 MHz. Its electrical length is

(a) 20X

(b) 0.2X

(c) 108°

(d) 40TT

(e) None of the above

11.6 Match the following normalized impedances with points A, B, C, D, and E on the Smith
chart of Figure 11.40.

(i) 0 + jO

(iii) 0 — y'l

(V) oc + jco

(vii) \Z-m

(ii) 1 + jO

(iv) 0 + j \

(vi) \Zm

(viii) Matched load (r = 0)

11.7 A 500-m lossless transmission line is terminated by a load which is located at P on the
Smith chart of Figure 11.41. If X = 150 m, how many voltage maxima exist on the line?

(a) 7

(b) 6

(c) 5

(d) 3

(e) None

Figure 11.40 For Review Question 11.6.
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± 1 8 0

-150

Figure 11.41 For Review Question 11.7.

- 9 0 °

11.8 Write true (T) or false (F) for each of the following statements.

(a) All r- and x-circles pass through point (Fr, F,) = (1,0).

(b) Any impedance repeats itself every X/4 on the Smith chart.

(c) An s = 2 circle is the same as |F | = 0.5 circle on the Smith chart.

(d) The basic principle of any matching scheme is to eliminate the reflected wave
between the source and the matching device.

(e) The slotted line is used to determine ZL only.

(f) At any point on a transmission line, the current reflection coefficient is the recipro-
cal of the voltage reflection coefficient at that point.

11.9 In an air line, adjacent maxima are found at 12.5 cm and 37.5 cm. The operating fre-
quency is

(a) 1.5 GHz

(b) 600 MHz

(c) 300 MHz

(d) 1.2 GHz

11.10 Two identical pulses each of magnitude 12 V and width 2 us are incident at t = 0 on a
lossless transmission line of length 400 m terminated with a load. If the two pulses are
separated 3 /is (similar to the case of Figure 11.53) and u = 2 X 108 m/s, when does the
contribution to VL(€, i) by the second pulse start overlapping that of the first?

(a) t = 0.5 ixs

(b) t = 2 us

(c) t = 5 ^s

(d) t = 5.5 us

(e) t = 6 us

Answers: ll.lc,d,e, 11.2b,c, 11.3c, 11.4a,c, 11.5c, 11.6(i)D,B, (ii) A, (iii)E, (iv)C, (v)B,
(vi) D, (vii) B, (viii) A, 11.7a, 11.8 (a) T, (b) F, (c) F, (d) T, (e) F, (f) F, 11.9b,
ll.lOe.
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. 11.1 An air-filled planar line with w = 30 cm, d = 1.2 cm, t = 3 mm has conducting plates
PROBLEMS j w i t h ^ = ? x 1Q7 s / m C a k u l a t e ^ L c a n d G a t 5 0 0 M H z

11.2 The copper leads of a diode are 16 mm in length and have a radius of 0.3 mm. They are
separated by a distance of 2 mm as shown in Figure 11.42. Find the capacitance between
the leads and the ac resistance at 10 MHz.

*11.3 In Section 11.3, it was mentioned that the equivalent circuit of Figure 11.5 is not the only
possible one. Show that eqs. (11.4) and (11.6) would remain the same if the II-type and
T-type equivalent circuits shown in Figure 11.43 were used.

11.4 A 78-fi lossless planar line was designed but did not meet a requirement. What fraction
of the widths of the strip should be added or removed to get the characteristic impedance
of 75 0?

•r
16 mm Figure 11 42 The diode of Problem 11.2.

RAz + Az, 0

G . «-~ az <
, t)

(a)

wv-

;CAz K(z + A z , / )

- c> - - * - - - - -• o -

(b)

Figure 11.41 For Problem 11.3: (a) II-type equivalent circuit, (b) T-type equiva-
lent circuit.
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11.5 A telephone line has the following parameters:

R = 40 fi/m, G = 400 /iS/m, L = 0.2 /xH/m, C = 0.5 nF/m

(a) If the line operates at 10 MHz, calculate the characteristic impedance Zo and veloc-
ity u. (b) After how many meters will the voltage drop by 30 dB in the line?

11.6 A distortionless line operating at 120 MHz has R = 20 fi/m, L = 0.3 /xH/m, and
C = 63 pF/m. (a) Determine 7, u, and Zo. (b) How far will a voltage wave travel before
it is reduced to 20% of its initial magnitude? (c) How far will it travel to suffer a 45°
phase shift?

11.7 For a lossless two-wire transmission line, show that

1
(a) The phase velocity u = c =

LC

120
(b) The characteristic impedance Zo = —-j= cosh —

Is part (a) true of other lossless lines?

11.8 A twisted line which may be approximated by a two-wire line is very useful in the tele-
phone industry. Consider a line comprised of two copper wires of diameter 0.12 cm that
have a 0.32-cm center-to-center spacing. If the wires are separated by a dielectric mater-
ial with e = 3.5e0, find L, C, and Zo.

11.9 A lossless line has a voltage wave

V(z, t) = Vo sin(wr - fa)

Find the corresponding current wave.

11.10 On a distortionless line, the voltage wave is given by

V(€') = 120 e
0 0 0 2 5 r cos (108r + 2€') + 60<r0 0 0 2 5 r cos (108f - 2€')

where €' is the distance from the load. If ZL = 300 0, find: (a) a, @, and u, (b) Zo and

11.11 (a) Show that a transmission coefficient may be defined as

rL =

(b) Find TL when the line is terminated by: (i) a load whose value is nZo, (ii) an open
circuit, (iii) a short circuit, (iv) ZL = Zo (matched line).

11.12 A coaxial line 5.6 m long has distributed parameters R = 6.5 fi/m, L = 3.4/xH/m,
G = 8.4 mS/m, and C = 21.5 pF/m. If the line operates at 2 MHz, calculate the charac-
teristic impedance and the end-to-end propagation time delay
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Figure 11.44 For Problem 11.16.

i

11.13 A lossless transmission line operating at 4.5 GHz has L = 2.4 /xH/m and Zo = 85 fi.
Calculate the phase constant j3 and the phase velocity u.

11.14 A 50-fi coaxial cable feeds a 75 + J20-Q dipole antenna. Find T and s.

11.15 Show that a lossy transmission line of length € has an input impedance Zsc = Zo tanh yt
when shorted and Zoc = Zo coth y( when open. Confirm eqs. (11.37) and (11.39).

11.16 Find the input impedance of a short-circuited coaxial transmission line of Figure 11.44 if
Zn = 65 + j38 U, 7 = 0.7 + j2.5 /m,€ = 0.8 m.

11.17 Refer to the lossless transmission line shown in Figure 11.45. (a) Find T and s. (b) De-
termine Zin at the generator.

11.18 A quarter-wave lossless 100-fi line is terminated by a load ZL = 210 Q. If the voltage at
the receiving end is 80 V, what is the voltage at the sending end?

11.19 A 500-fi lossless line has VL = 10ey25° V, ZL = 50e>30°. Find the current at A/8 from the
load.

11.20 A 60-fi lossless line is connected to a source with Vg = 10/CT l/ms and Zg = 50 -
7'40 fi and terminated with a load j40 0. If the line is 100 m long and /3 = 0.25 rad/m,
calculate Zin and V at

(a) The sending end

(b) The receiving end

(c) 4 m from the load

(d) 3 m from the source

A/6

Zo = 50 Q 120 n

Figure 11.45 For Problem 11.17.
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ZL =60-/35

Figure 11.46 For Problem 11.22.

11.21 A lossless transmission line with a characteristic impedance of 75 fi is terminated by a
load of 120 Q. The length of the line is 1.25X. If the line is energized by a source of
100 V (rms) with an internal impedance of 50 fi, determine: (a) the input impedance, and
(b) the magnitude of the load voltage.

*11.22 Three lossless lines are connected as shown in Figure 11.46. Determine Zin.

*11.23 Consider the two-port network shown in Figure 11.47(a). The relation between the input
and output variables can' be written in matrix form as

C D\[-12_

For the lossy line in Figure 11.47(b), show that the ABCD matrix is

cosh yi Zo sinh yi

— sinh y( cosh y(

11.24 A 50-fi lossless line is 4.2 m long. At the operating frequency of 300 MHz, the input im-
pedance at the middle of the line is 80 — j60 U. Find the input impedance at the genera-
tor and the voltage reflection coefficient at the load. Take u = 0.8c.

11.25 A 60-fi air line operating at 20 MHz is 10 m long. If the input impedance is 90 + jl50 fi.
calculate ZL, T, and s.

11.26 A 75-Q transmission line is terminated by a load of 120 + ;80 fi. (a) Find T and s.
(b) Determine how far from the load is the input impedance purely resistive.

11.27 A 75-0 transmission line is terminated by a load impedance ZL. If the line is 5X/8 long,
calculate Zjn when: (a) ZL = j45 U, (b) ZL = 25 - j65.

o

(a)

Figure 11.47 For Problem 11.23.
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11.28 Determine the normalized input impedance at A/8 from the load if: (a) its normalized im-
pedance is 2 + j , (b) its normalized admittance is 0.2 — j'0.5, (c) the reflection coeffi-
cient at the load is 0.3 + jOA.

11.29 A transmission line is terminated by a load with admittance YL = (0.6 4- ;'0.8)/Zo. Find
the normalized input impedance at A/6 from the load.

11.30 An 80-ft transmission line operating at 12 MHz is terminated by a load ZL. At 22 m from
the load, the input impedance is 100 - j'120 ft. If M = 0.8c,

(a) Calculate TL, Z inmax, andZm m m .

(b) Find ZL, s, and the input impedance at 28 m from the load.

(c) How many Zin max and Zin min are there between the load and the 100 — j\2Q ft input

impedance?

11.31 An antenna, connected to a 150-ft lossless line, produces a standing wave ratio of 2.6. If
measurements indicate that voltage maxima are 120 cm apart and that the last maximum
is 40 cm from the antenna, calculate

(a) The operating frequency

(b) The antenna impedance

(c) The reflection coefficient. Assume that u = c.

11.32 The observed standing-wave ratio on a 100-ft lossless line is 8. If the first maximum
voltage occurs at 0.3A from the load, calculate the load impedance and the voltage re-
flection coefficient at the load.

11.33 A 50-fl line is terminated to a load with an unknown impedance. The standing wave ratio
s = 2.4 on the line and a voltage maximum occurs A/8 from the load, (a) Determine the
load impedance, (b) How far is the first minimum voltage from the load?

11.34 A 75-fl lossless line is terminated by an unknown load impedance ZL. If at a distance
0.2A from the load the voltage is Vs = 2 + j V while the current is 10 mA. Find ZL

and s.

11.35 Two A/4 transformers in tandem are to connect a 50-fl line to a 75-ft load as in Figure
11.48.

(a) Determine the characteristic impedance Zol if Zo2 = 30 ft and there is no reflected
wave to the left of A.

(b) If the best results are obtained when

Zo2

determine Zol and Zo2 for this case.

11.36 Two identical antennas, each with input impedance 74 0 are fed with three identical
50-fi quarter-wave lossless transmission lines as shown in Figure 11.49. Calculate the
input impedance at the source end.
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zo = so n

Figure 11.48 Double section trans-
former of Problem 11.35.

75 n

11.37 If the line in the previous problem is connected to a voltage source 120 V with internal
impedance 80 fi, calculate the average power delivered to either antenna.

11.38 Consider the three lossless lines in Figure 11.50. If Zo = 50 fi, calculate:

(a) Zin looking into line 1 • . .. o

(b) Zin looking into line 2 N

(c) Zin looking into line 3

11.39 A section of lossless transmission line is shunted across the main line as in Figure 11.51.
If €j = X/4, €2 = X/8, and £3 = 7X/8, find y-m, yin2, and y^ given that Zo = 100 0.
ZL = 200 + j l 50 fi. Repeat the calculations if the shorted section were open.

11.40 It is desired to match a 50-fi line to a load impedance of 60 — j50 fi. Design a 50-fi stub
that will achieve the match. Find the length of the line and how far it is from the load.

11.41 A stub of length 0.12X is used to match a 60-fi lossless line to a load. If the stub is located
at 0.3X from the load, calculate

(a) The load impedance ZL

(b) The length of an alternative stub and its location with respect to the load

(c) The standing wave ratio between the stub and the load

11.42 On a lossless line, measurements indicate s = 4.2 with the first maximum voltage at X/-
from the load. Determine how far from the load a short-circuited stub should be locatec
and calculate its length.

A/4
74 n Figure 11.49 For Problems 11.36 and 11.37.

A/4

A/4
74 O

\
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200 Q. F i g u r e H- 5 0 F o r Problem 11.38.

11.43 A 60-0 lossless line terminated by load ZL has a voltage wave as shown in Figure 11.52.
. Find s, F, andZL.

11.44 The following slotted-line measurements were taken on a 50-0 system. With load:
s = 3.2, adjacent V^,, occurs at 12 cm and32 cm (high numbers on the load side); with
short circuit: Vmin occurs at 21 cm. Find the operating frequency and the load impedance.

11.45 A 50-0 air slotted line is applied in measuring a load impedance. Adjacent minima are
found at 14 cm and 22.5 cm from the load when the unknown load is connected and
Vmax = 0.95 V and Vmin = 0.45 V. When the load is replaced by a short circuit, the
minima are 3.2 cm to the load. Determine s,f, T, and ZL.

**11.46 Show that for a dc voltage Vg turned on at t — 0 (see Figure 11.30), the asymptotic
values (t <SC €/«) of V(£, t) and /(€, t) are

Voo = and ico

11.47 A 60-fi lossless line is connected to a 40-0 pulse generator. The line is 6 m long and is
terminated by a load of 100 0. If a rectangular pulse of width 5/x and magnitude 20 V is
sent down the line, find V(0, t) and /(€, t) for 0 < t < 10 jus. Take u = 3 X 108 m/s.

11.48 The switch in Figure 11.53 is closed at t = 0. Sketch the voltage and current at the right
side of the switch for 0 < t < 6€/u. Take Zo = 50 0 and t/u = 2 /xs. Assume a lossless
transmission line.

Figure 11.51 For Problem 11.39.
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50 45 40 35 30 25 20 15 10 5 0

Zo = 60 n

Figure 11.52 For Problem 11.43.

/K&&3&

11.49 For the system shown in Figure 11.54, sketch V(l, t) and /(€, f) for 0 < f < 5 ^s.

*11.50 Refer to Figure 11.55, where Zg = 25 Q, Zo = 50 0, ZL = 150 Q, € = 150 m, u = c. If
at f = 0, the pulse shown in Figure 11.56 is incident on the line

(a) Draw the voltage and current bounce diagrams.

(b) Determine V(0, 0, V(€, t), 1(0, t), and /(€, f) for 0 < f < 8 /as.

11.51 A microstrip line is 1 cm thick and 1.5 cm wide. The conducting strip is made of brass
(oc = 1.1 X 107S/m) while the substrate is a dielectric material with er = 2.2 and
tan 9 =0.002. If the line operates at 2.5 GHz, find: (a) Zo and eeff, (b) ac and ad, (c) the
distance down the line before the wave drops by 20 dB.

11.52 A 50-fi microstrip line has a phase shift of 45° at 8 GHz. If the substrate thickness is
h = 8 mm with er = 4.6, find: (a) the width of the conducting strip, (b) the length of the
microstrip line.

11.53 An alumina substrate (s = 9.6eo) of thickness 2 mm is used for the construction of a mi-
crostrip circuit. If the circuit designer has the choice of making the line width to be
within 0.4 to 8.0 mm, what is the range of characteristic impedance of the line?

11.54 Design a 75-fl microstrip line on a 1.2-mm thick-duroid (er = 2.3) substrate. Find the
width of the conducting strip and the phase velocity.

27 V Z0,y 0.5 Zo

Figure 11.53 For Problem 11.48.



PROBLEMS - 541

100 v

Figure 11.54 For Problem 11.49.

ioo a

200 m

z t

V

Figure 11.55 For Problem 11.50.

15 V

-15 V--

Figure 11.56 Two rectangular pulses of Problem
11.50.



Chapter

WAVEGUIDES

If a man writes a better book, preaches a better sermon, or makes a better mouse-
trap than his neighbor, the world will make a beaten path to his door.

—RALPH WALDO EMERSON

12.1 INTRODUCTION

As mentioned in the preceding chapter, a transmission line can be used to guide EM
energy from one point (generator) to another (load). A waveguide is another means of
achieving the same goal. However, a waveguide differs from a transmission line in some
respects, although we may regard the latter as a special case of the former. In the first
place, a transmission line can support only a transverse electromagnetic (TEM) wave,
whereas a waveguide can support many possible field configurations. Second, at mi-
crowave frequencies (roughly 3-300 GHz), transmission lines become inefficient due to
skin effect and dielectric losses; waveguides are used at that range of frequencies to obtain
larger bandwidth and lower signal attenuation. Moreover, a transmission line may operate
from dc ( / = 0) to a very high frequency; a waveguide can operate only above a certain
frequency called the cutoff frequency and therefore acts as a high-pass filter. Thus, wave-
guides cannot transmit dc, and they become excessively large at frequencies below mi-
crowave frequencies.

Although a waveguide may assume any arbitrary but uniform cross section, common
waveguides are either rectangular or circular. Typical waveguides1 are shown in Figure
12.1. Analysis of circular waveguides is involved and requires familiarity with Bessel
functions, which are beyond our scope.2 We will consider only rectangular waveguides. By
assuming lossless waveguides (ac — °°, a ~ 0), we shall apply Maxwell's equations with
the appropriate boundary conditions to obtain different modes of wave propagation and the
corresponding E and H fields. _ ;

542

For other t\pes of waveguides, see J. A. Seeger, Microwave Theory, Components and Devices. En-
glewood Cliffs, NJ: Prentice-Hall, 1986, pp. 128-133.
2Analysis of circular waveguides can be found in advanced EM or EM-related texts, e.g., S. Y. Liao.
Microwave Devices and Circuits, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1990, pp. 119-141.
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Figure 12.1 Typical waveguides.

Circular Rectangular

Twist 90° elbow

12.2 RECTANGULAR WAVEGUIDES

Consider the rectangular waveguide shown in Figure 12.2. We shall assume that the wave-
guide is filled with a source-free (pv = 0, J = 0) lossless dielectric material (a — 0) and
its walls are perfectly conducting (ac — °°). From eqs. (10.17) and (10.19), we recall that
for a lossless medium, Maxwell's equations in phasor form become

kzEs = 0

= 0

(12.1)

(12.2)

Figure 12.2 A rectangular waveguide
with perfectly conducting walls, filled
with a lossless material.

/
( « , jX, <T = 0 )
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where

k = OJVUB (12.3)

and the time factor eJ01t is assumed. If we let

- (Exs, Eys, Ezs) and - (Hxs, Hys, Hzs)

each of eqs. (12.1) and (12.2) is comprised of three scalar Helmholtz equations. In other
words, to obtain E and H fields, we have to solve six scalar equations. For the z-compo-
nent, for example, eq. (12.1) becomes

d2Ezs

dx2 dy2 dz
(12.4)

which is a partial differential equation. From Example 6.5, we know that eq. (12.4) can be
solved by separation of variables (product solution). So we let

Ezs(x, y, z) = X(x) Y(y) Z(z) (12.5)

where X(x), Y(y), and Z(z) are functions of*, y, and z, respectively. Substituting eq. (12.5)
into eq. (12.4) and dividing by XYZ gives

x" r z" 2
— + — + — = -k2

X Y Z
(12.6)

Since the variables are independent, each term in eq. (12.6) must be constant, so the equa-
tion can be written as

-k\ - k) + y2 = -k2 (12.7)

where -k2, -k2, and y2 are separation constants. Thus, eq. (12.6) is separated as

X" + k2
xX = 0 (12.8a)

r + k2
yY = 0 (12.8b)

Z" - T
2Z = 0 (12.8c)

By following the same argument as in Example 6.5, we obtain the solution to eq. (12.8) as

X(x) = c, cos k^x + c2 sin kyX

Y(y) = c3 cos kyy + c4 sin kyy

Z(z) = c5e
yz + c6e'7Z

Substituting eq. (12.9) into eq. (12.5) gives

Ezs(x, y, z) = (ci cos kxx + c2 sin k^Xci, cos kyy
+ c4 sin kyy) (c5e

yz + c6e~yz)

(12.9a)

(12.9b)

(12.9c)

(12.10)
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As usual, if we assume that the wave propagates along the waveguide in the +z-direction,
the multiplicative constant c5 = 0 because the wave has to be finite at infinity [i.e.,
Ezs(x, y, z = °°) = 0]. Hence eq. (12.10) is reduced to

Ezs(x, y, z) = (A; cos k^x + A2 sin cos kyy + A4 sin kyy)e (12.11)

where Aj = CiC6, A2 = c2c6, and so on. By taking similar steps, we get the solution of the
z-component of eq. (12.2) as

Hzs(x, y, z) = (Bi cos kpc + B2 sin ^ cos kyy + B4 sin kyy)e (12.12)

Instead of solving for other field component Exs, Eys, Hxs, and Hys in eqs. (12.1) and (12.2)
in the same manner, we simply use Maxwell's equations to determine them from Ezs and
HTS. From

and

V X E, = -y

V X H, = jtoeEs

we obtain

dE,<

dy

dHzs

dy

dExs

dz

dHxs

dz

dEys

dx

dHy,

dz

dHv,

dz

dx

dHz,

dx

9EX,

dy

dHx,

= jueExs

= J03flHys

dx dy

(12.13a)

(12.13b)

(12.13c)

(12.13d)

(12.13e)

(12.13f)

We will now express Exs, Eys, Hxs, and Hys in terms of Ezs and Hzs. For Exs, for example,
we combine eqs. (12.13b) and (12.13c) and obtain

dHz, 1 fd2Exs d2Ez.

dy 7C0/X \ dz oxdi
(12.14)

From eqs. (12.11) and (12.12), it is clear that all field components vary with z according to
e~yz, that is,

p~lz F
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Hence

and eq. (12.14) becomes

dEzs d Exx ,
— = ~yEzs, —j- = 7 EX:

dZ dz

dHa 1 { 2 dE^
jweExs = —— + - — I 7 Exs + 7——

dy joifi \ dx

or

1 , 2 , 2 ^ r 7 dEzs dHzs

—.— (7 + " V ) Exs = ~. — + ——
jii ju>n dx dy

Thus, if we let h2 = y2 + w2/xe = y2 + k2,

E 1 —- '__
7 dEzs jun dHzs

hl dx dy

Similar manipulations of eq. (12.13) yield expressions for Eys, Hxs, and Hys in terms of Ev

and Hzs. Thus,

(12.15a)

(12.15b)

(12.15c)

(12.15d)

Exs

EyS

M

Hys

h2 dx

7 dEzs

h2 dy

_ jue dEzs _

h2 dy

_ ja>e dEzs

jan dHz,

h2 dy

ju/x dHzs

h2 dx

7 dHzs

h2 dx

~~h2^T

where

h2 = y2 + k2 = k2
x + k] (12.16)

Thus we can use eq. (12.15) in conjunction with eqs. (12.11) and (12.12) to obtain Exs, Eys,
Hxs, and Hys.

From eqs. (12.11), (12.12), and (12.15), we notice that there are different types of field
patterns or configurations. Each of these distinct field patterns is called a mode. Four dif-
ferent mode categories can exist, namely:

1. Ea = 0 = Hzs (TEM mode): This is the transverse electromagnetic (TEM) mode,
in which both the E and H fields are transverse to the direction of wave propaga-
tion. From eq. (12.15), all field components vanish for Ezs = 0 = Hzs. Conse-
quently, we conclude that a rectangular waveguide cannot support TEM mode.
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Figure 12.3 Components of EM fields in a rectangular waveguide:
(a) TE mode Ez = 0, (b) TM mode, Hz = 0.

2. Ezs = 0, Hzs # 0 (TE modes): For this case, the remaining components (Exs and
Eys) of the electric field are transverse to the direction of propagation az. Under this
condition, fields are said to be in transverse electric (TE) modes. See Figure
12.3(a).

3. Ezs + 0, Hzs = 0 (TM modes): In this case, the H field is transverse to the direction
of wave propagation. Thus we have transverse magnetic (TM) modes. See Figure
12.3(b).

4. Ezs + 0, Hzs + 0 (HE modes): This is the case when neither E nor H field is trans-
verse to the direction of wave propagation. They are sometimes referred to as
hybrid modes.

We should note the relationship between k in eq. (12.3) and j3 of eq. (10.43a). The
phase constant /3 in eq. (10.43a) was derived for TEM mode. For the TEM mode, h = 0, so
from eq. (12.16), y2 = -k2 -» y = a + j/3 = jk; that is, /3 = k. For other modes, j3 + k.
In the subsequent sections, we shall examine the TM and TE modes of propagation sepa-
rately.

2.3 TRANSVERSE MAGNETIC (TM) MODES

For this case, the magnetic field has its components transverse (or normal) to the direction
of wave propagation. This implies that we set Hz = 0 and determine Ex, Ey, Ez, Hx, and Hv

using eqs. (12.11) and (12.15) and the boundary conditions. We shall solve for Ez and later
determine other field components from Ez. At the walls of the waveguide, the tangential
components of the E field must be continuous; that is,

= 0 at y = 0

y = b£,, = 0 at

Ezs = 0 at x = 0

£„ = 0 at x = a

(12.17a)

(12.17b)

(12.17c)

(12.17d)



548 Waveguides

Equations (12.17a) and (12.17c) require that A, = 0 = A3 in eq. (12.11), so eq. (12.11)
becomes

Ea = Eo sin kj sin kyy e~yz (12.18)

where Eo = A2A4. Also eqs. (12.17b) and (12.17d) when applied to eq. (12.18) require that

s i n ^ = 0, sinkyb = O (12.19)

This implies that

kxa = rrnr, m = 1 , 2 , 3 , . . . (12.20a)

kyb = nir, n = 1 , 2 , 3 , . . . (12.20b)

or

_ n7r

Ky —

b
(12.21)

The negative integers are not chosen for m and n in eq. (12.20a) for the reason given in
Example 6.5. Substituting eq. (12.21) into eq. (12.18) gives

E7. = Eo sin
. fnnrx\ . fniry\ '
in cm — \ o <c '

V a I sin
b ) '

(12.22)

We obtain other field components from eqs. (12.22) and (12.15) bearing in mind that
H7< = 0. Thus

(12.23a)

(12.23b)

(12.23c)

y fnw\ IT • fmirx\ (n*y\ -yz
— ' — l F

o sin I I cos I I e T

jus

Hys = - v (-j-) Eo cos sin (12.23d)

where

nir (12.24)

which is obtained from eqs. (12.16) and (12.21). Notice from eqs. (12.22) and (12.23) that
each set of integers m and n gives a different field pattern or mode, referred to as TMmn
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mode, in the waveguide. Integer m equals the number of half-cycle variations in the x-
direction, and integer n is the number of half-cycle variations in the v-direction. We also
notice from eqs. (12.22) and (12.23) that if (m, n) is (0, 0), (0, n), or (m, 0), all field com-
ponents vanish. Thus neither m nor n can be zero. Consequently, TMH is the lowest-order
mode of all the TMmn modes.

By substituting eq. (12.21) into eq. (12.16), we obtain the propagation constant

7 =
mir
a

nir

b
(12.25)

where k = u V ^ e as in eq. (12.3). We recall that, in general, y = a + j(3. In the case of
eq. (12.25), we have three possibilities depending on k (or w), m, and n:

CASE A (cutoff):

If

1c = w jus =
[b

7 = 0 or a = 0 = /3

The value of w that causes this is called the cutoff angular frequency o)c; that is,

1 / U T T I 2 Tmr"12

I « J U (12.26)

CASE B (evanescent):

If

TOTTT]2 Tnir

y = a,

In this case, we have no wave propagation at all. These nonpropagating or attenuating
modes are said to be evanescent.

CASE C (propagation):

If

^2 = oA mir

y =;/?, a = 0
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that is, from eq. (12.25) the phase constant (3 becomes

0 = - -L a nir (12.27)

This is the only case when propagation takes place because all field components will have
the factor e'yz = e~jl3z.

Thus for each mode, characterized by a set of integers m and n, there is a correspond-
ing cutoff frequency fc

The cutoff frequency is the operating frequencs below which allcnuaiion occurs
and above which propagation lakes place.

The waveguide therefore operates as a high-pass filter. The cutoff frequency is obtained
fromeq. (12.26) as

1

2-irVue
nnr
a

or

fc u
/ / N

// mu \)+ / N
/ nu\

(12.28)

where u' = = phase velocity of uniform plane wave in the lossless dielectric
fie

medium (a = 0, fi, e) filling the waveguide. The cutoff wave length \. is given by

or

X = (12.29)

Note from eqs. (12.28) and (12.29) that TMn has the lowest cutoff frequency (or the
longest cutoff wavelength) of all the TM modes. The phase constant /3 in eq. (12.27) can be
written in terms of fc as

= wV/xs^/ l - | -
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or

(12.30)

i

where j3' = oilu' = uVfie = phase constant of uniform plane wave in the dielectric
medium. It should be noted that y for evanescent mode can be expressed in terms of fc,
namely,

(12.30a)

The phase velocity up and the wavelength in the guide are, respectively, given by

w 2TT u \
(12.31)

The intrinsic wave impedance of the mode is obtained from eq. (12.23) as (y = jfi)

Ex Ey
I T M -

Hy Hx

we

or

»?TM = V (12.32)

where 17' = V/x/e = intrinsic impedance of uniform plane wave in the medium. Note the
difference between u', (3', and -q', and u, /3, and 77. The quantities with prime are wave
characteristics of the dielectric medium unbounded by the waveguide as discussed in
Chapter 10 (i.e., for TEM mode). For example, u' would be the velocity of the wave if
the waveguide were removed and the entire space were filled with the dielectric. The
quantities without prime are the wave characteristics of the medium bounded by the wave-
guide.

As mentioned before, the integers m and n indicate the number of half-cycle variations
in the x-y cross section of the guide. Thus for a fixed time, the field configuration of Figure
12.4 results for TM2, mode, for example.
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end view

n= 1

E field

H field

Figure 12.4 Field configuration for TM2] mode.

side view

12.4 TRANSVERSE ELECTRIC (TE) MODES

In the TE modes, the electric field is transverse (or normal) to the direction of wave propa-
gation. We set Ez = 0 and determine other field components Ex, Ey, Hx, Hy, and Hz from
eqs. (12.12) and (12.15) and the boundary conditions just as we did for the TM modes. The
boundary conditions are obtained from the fact that the tangential components of the elec-
tric field must be continuous at the walls of the waveguide; that is,

Exs =

Exs '-

Eys =

Eys =

= 0

= 0

= 0

= 0

From eqs. (12.15) and (12.33), the boundary

dHzs

dy

dHzs

= 0

= 0

at

at

at

at

y = 0

y = b

x = 0

x — a

conditions can be written as

at

at

y-0

y = b

(12.33a)

(12.33b)

(12.33c)

(12.33d)

(12.34a)

(12.34b)
dy

dHzs

dx

dHzs

dx

= 0

= 0

at

at

x = 0

x = a

Imposing these boundary conditions on eq. (12.12) yields

(m%x\ fmry\
Hzs = Ho cos cos e yz

\ a ) \ b J

(12.34c)

(12.34d)

(12.35)
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where Ho = BXBT,. Other field components are easily obtained from eqs. (12.35) and
(12.15) as

) e

mrx

(12.36a)

(12.36b)

(12.36c)

(12.36d)

where m = 0, 1, 2, 3 , . . .; and n = 0, 1, 2, 3 , . . .; /J and 7 remain as defined for the TM
modes. Again, m and n denote the number of half-cycle variations in the x-y cross section
of the guide. For TE32 mode, for example, the field configuration is in Figure 12.5. The
cutoff frequency fc, the cutoff wavelength Xc, the phase constant /3, the phase velocity up,
and the wavelength X for TE modes are the same as for TM modes [see eqs. (12.28) to
(12.31)].

For TE modes, (m, ri) may be (0, 1) or (1, 0) but not (0, 0). Both m and n cannot be
zero at the same time because this will force the field components in eq. (12.36) to vanish.
This implies that the lowest mode can be TE10 or TE01 depending on the values of a and b,
the dimensions of the guide. It is standard practice to have a > b so that I/a2 < 1/b2 in

u' u'
eq. (12.28). Thus TEi0 is the lowest mode because /CTE = — < /C.TK = —. This mode is

TE'° la Th°' 2b

top view

E field

//field

Figure 12.5 Field configuration for TE32 mode.
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called the dominant mode of the waveguide and is of practical importance. The cutoff fre-
quency for the TEH) mode is obtained from eq. (12.28) as (m = 1, n — 0)

Jc to 2a
(12.37)

and the cutoff wavelength for TE]0 mode is obtained from eq. (12.29) as

Xt,0 = 2a (12.38)

Note that from eq. (12.28) the cutoff frequency for TMn is

u'[a2 + b2]1'2

2ab

which is greater than the cutoff frequency for TE10. Hence, TMU cannot be regarded as the
dominant mode.

The dominant mode is the mode with the lowest cutoff frequency (or longest cutoff
wavelength).

Also note that any EM wave with frequency / < fCw (or X > XC]0) will not be propagated in
the guide.

The intrinsic impedance for the TE mode is not the same as for TM modes. From
eq. (12.36), it is evident that (y = jf3)

Ex Ey (J)fl
r'TE = jry

 = ~iTx
 = T

Ifi 1

or

VTE I

V

12

J

(12.39)

Note from eqs. (12.32) and (12.39) that r)TE and i?TM are purely resistive and they vary with
frequency as shown in Figure 12.6. Also note that

I?TE (12.40)

Important equations for TM and TE modes are listed in Table 12.1 for convenience and
quick reference.
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Figure 12.6 Variation of wave imped-
ance with frequency for TE and TM
modes.

TABLE 12.1 Important Equations for TM and TE Modes

TM Modes TE Modes

jP frmc\ fimrx\ . (n%y\ pn (rm\ fmirx\ . (rny\
—r I Eo cos sin e 7 £„ = —— I — Ho cos I sin I e '~

h \ a J \ a J \ b J h \ b J \ a ) \ b J
Exs =

—- \ — )Eo sin | cos -—- ) e 7Z

a J \ b
\ / niry

i I cos -—- | e
\ a J \ b

Eo sin I sin I — I e 1Z

\ a J \ b )
jus

Ezs = 0

Hys = —y
h \ a ) \ a ) V b

n*y i e-,,

. = 0

V =

j nnrx \ / rnry
Hzs = Ho cos cos —-x a V b

V =

where ^ = — + ^ . « ' =
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Fromeqs. (12.22), (12.23), (12.35), and (12.36), we obtain the field patterns for the TM
and TE modes. For the dominant TE]0 mode, m = landn = 0, so eq. (12.35) becomes

Hzs = Ho cos ( — | e -JPz

In the time domain,

Hz = Re (Hzse
M)

or

Hz = Ho cosf —

Similarly, from eq. (12.36),

= sin (

Hx = Ho sin ( —
\a

- fiz)

(12.41)

(12.42)

(12.43a)

(12.43b)

(12.43c)

Figure 12.7 Variation of the field components with x for TE]0 mode.

(b)
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Figure 12.8 Field lines for TE10

mode.

+ — Direction of
propagation

top view

If
Mi

'O

\ I
^-•--x 1 - * - - N \ \

(c)

E field

//field

Direction of
propagation

The variation of the E and H fields with x in an x-y plane, say plane cos(wf - |8z) = 1 for
Hz, and plane sin(of — j8z) = 1 for Ey and Hx, is shown in Figure 12.7 for the TE10 mode.
The corresponding field lines are shown in Figure 12.8.

EXAMPLE 12.1
A rectangular waveguide with dimensions a = 2.5 cm, b = 1 cm is to operate below
15.1 GHz. How many TE and TM modes can the waveguide transmit if the guide is filled
with a medium characterized by a = 0, e = 4 so, /*,. = 1 ? Calculate the cutoff frequencies
of the modes.

Solution:

The cutoff frequency is given by

m2

where a = 2.5b or alb = 2.5, and

u =
lie 'V-^r
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Hence,

c

\~a
3 X 108

4(2.5 X 10"
Vm2 + 6.25M2

or

fCmn = 3Vm 2 GHz (12.1.1)

We are looking for fCnm < 15.1 GHz. A systematic way of doing this is to fix m or n
and increase the other until fCnm is greater than 15.1 GHz. From eq. (12.1.1), it is evident
that fixing m and increasing n will quickly give us an fCnm that is greater than 15.1 GHz.

ForTE01 mode (m = 0, n = 1), fCm = 3(2.5) = 7.5 GHz

TE02 mode (m = 0,n = 2),/Co2 = 3(5) = 15 GHz

TE03 mode,/Cm = 3(7.5) = 22.5 GHz

Thus for fCmn < 15.1 GHz, the maximum n = 2. We now fix n and increase m until fCmn is
greater than 15.1 GHz.

For TE10 mode (m = 1, n = 0), /C|o = 3 GHz

TE2o mode,/C20 = 6 GHz

TE30 mode,/C3o = 9 GHz

TE40mode,/C40 = 12 GHz

TE50 mode,/Cjo = 1 5 GHz (the same as for TE02)

TE60mode,/C60 = 18 GHz.

that is, for/Cn < 15.1 GHz, the maximum m = 5. Now that we know the maximum m and
n, we try other possible combinations in between these maximum values.

F o r T E n , T M n (degenerate modes), fCu = 3\/T25 = 8.078 GHz

TE21, TM2I,/C2i = 3V10.25 = 9.6 GHz

TE3],TM31,/C31 = 3Vl5 .25 = 11.72 GHz

TE41, TM41,/C4] = 3V22.25 = 14.14 GHz

TE12, TM12,/Ci, = 3V26 = 15.3 GHz

Those modes whose cutoff frequencies are less or equal to 15.1 GHz will be
transmitted—that is, 11 TE modes and 4 TM modes (all of the above modes except TE i2,
TM12, TE60, and TE03). The cutoff frequencies for the 15 modes are illustrated in the line
diagram of Figure 12.9.
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TE4

TE,, TE30

9'

T E 3 TE41TE50,TE0

12 15
• /c(GHz)

TMU TM21 TM31 TM41

Figure 12.9 Cutoff frequencies of rectangular waveguide with
a = 2.5b; for Example 12.1.

PRACTICE EXERCISE 12.1

Consider the waveguide of Example 12.1. Calculate the phase constant, phase veloc-
ity and wave impedance for TEi0 and TMu modes at the operating frequency of
15 GHz.

Answer: For TE10, (3 = 615.6rad/m, u = 1.531 X 108m/s, rjJE = 192.4 0. For
TMn,i3 = 529.4 rad/m, K = 1.78 X 108m/s,rjTM = 158.8 0.

EXAMPLE 12.2
Write the general instantaneous field expressions for the TM and TE modes. Deduce those
for TEOi and TM12 modes.

Solution:

The instantaneous field expressions are obtained from the phasor forms by using

E = Re (Ese
J'*) and H = Re (Hse

jo")

Applying these to eqs. (12.22) and (12.23) while replacing y and jfi gives the following
field components for the TM modes:

sm*= iA ~r j E°cos

j3\nw~\ fmirx\ fmry\
= —A—-\EO sm cos —— si

\ a ) \ b J

(nvKx\ . fniry
in cm IE7 = En sin

= --£ [T\ Eo sm

" z )

cos
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H =y h2 En cos
I1 . (niry\ .

sin —— sm(a)t -
a J \ b J

(3z)

Hz = 0

Similarly, for the TE modes, eqs. (12.35) and (12.36) become

E= —
( mirx\ j mry\

, , Ho cos sin —— sin(uf
b \ \ a J \ b J -Pz)

w/x fmir] . (m-wx\ frnry\ .
= —r Ho sin cos si

h2 I a \ \ a J \ b J

7 = 0

Ho sin

/3 rn7r]
Hy = ~2 [~\ Ho cos

fniry\
cos —— sin(wr

b I
cos

\ a J \ b I

j sin (-y) sin(.t -2 [ \ Ho cos ^ j

jm-wx\ fniry\
H = Ho cos cos cos(co? - pz)

V a J \ b J

For the TE01 mode, we set m = 0, n = 1 to obtain

12

sin

hz= -

$b
Hy = - — //o sin

7T

iry\
Hz = Ho cos I — I cos(cof - /3z)

\b J

For the TM|2 mode, we set m = 1, n = 2 to obtain

cin — cir
(3 /TIA / X A . /27ry\ .

Ex = -j I - £o cos — sin — sin(cof - /3z)
a / \ b

cos I —— I sir

(TTX\ (2iry\
Ez = Eo sin — sin cos(o)fV a J \ b J
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Hr = — 'o sin I — ) cos ( ^^ ] sin(cof - /3z)

o>e fir\ I\x\ . (2wy\
Hy = —r — )EO cos — sin ~~— sm(ut -y h2 \aj \a J V b )

where

PRACTICE EXERCISE 12.2

An air-filled 5- by 2-cm waveguide has

Ezs = 20 sin 40irx sin 50?ry e"-"3" V/m

at 15 GHz.

(a) What mode is being propagated?

(b) Find |8.

(c) Determine EyIEx.

Answer: (a) TM2i, (b) 241.3 rad/m, (c) 1.25 tan 40wx cot 50-ry.

EXAMPLE 12.3
1 In a rectangular waveguide for which a = 1.5 cm, £ = 0.8 cm, a = 0, fi = JXO, and

e = 4eo,

Hx = 2 sin [ — ) cos sin (T X 10nt - 0z) A/m

Determine

(a) The mode of operation

(b) The cutoff frequency

(c) The phase constant /3

(d) The propagation constant y

(e) The intrinsic wave impedance 77.

Solution:

(a) It is evident from the given expression for Hx and the field expressions of the last
example that m = 1, n = 3; that is, the guide is operating at TMI3 or TE13. Suppose we
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choose TM13 mode (the possibility of having TE13 mode is left as an exercise in Practice
Exercise 12.3).

(b)

Hence

(c)

fcmn ~ 2 -

u =
fiB

fca

1
4 V [1.5 x icr 2] 2 [0.8 x icr2]r2 ]2

(V0.444 + 14.06) X 102 = 28.57 GHz

L/J
fc

100
co = 2TT/ = 7T X 10" or / = = 50 GHz

0 =
3 X 10s

(d) y =j0 = yl718.81/m

28.57

50
= 1718.81 rad/m

(e) , = V

= 154.7

£12

/
377 / _ I 28.5712

50

PRACTICE EXERCISE 12.3

Repeat Example 12.3 if TEn mode is assumed. Determine other field components
for this mode.

Answer: fc = 28.57 GHz, 0 = 1718.81 rad/m, ^ = ;/8, IJTE,, = 229.69 fi

£^ = 2584.1 cos ( — ) sin ( — ) sin(w/ - fa) V/m
\a J \ b J

Ev = -459.4 sin | — ) cos ( — J sin(cor - fa) V/m,
a J \ b J = 0

= 11.25 cos (—) sin( \ / ̂  \
TTJ: \ / 3;ry \
— I sin —— Ia) V b J

sin(a>f - |8z) A/m

= -7.96 cos — cos — - cos (at - fa) A/m
\ b J
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12.5 WAVE PROPAGATION IN THE GUIDE

Examination of eq. (12.23) or (12.36) shows that the field components all involve the
terms sine or cosine of (mi/a)i or (nirlb)y times e~yz. Since

sin 6» = — (eje - e~i6)
2/

cos 6 = - (eje + e jB)

(12.44a)

(12.44b)

a wave within the waveguide can be resolved into a combination of plane waves reflected
from the waveguide walls. For the TE]0 mode, for example,

(12.45)

c* = ~Hj*-J"

2x _

The first term of eq. (12.45) represents a wave traveling in the positive z-direction at an
angle

= tan (12.46)

with the z-axis. The second term of eq. (12.45) represents a wave traveling in the positive
z-direction at an angle —6. The field may be depicted as a sum of two plane TEM waves
propagating along zigzag paths between the guide walls at x = 0 and x = a as illustrated
in Figure 12.10(a). The decomposition of the TE!0 mode into two plane waves can be ex-
tended to any TE and TM mode. When n and m are both different from zero, four plane
waves result from the decomposition.

The wave component in the z-direction has a different wavelength from that of the
plane waves. This wavelength along the axis of the guide is called the waveguide wave-
length and is given by (see Problem 12.13)

X =
X'

(12.47)

where X' = u'/f.
As a consequence of the zigzag paths, we have three types of velocity: the medium ve-

locity u', the phase velocity up, and the group velocity ug. Figure 12.10(b) illustrates the re-
lationship between the three different velocities. The medium velocity u' = 1/V/xe is as
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Figure 12.10 (a) Decomposition of
TE10 mode into two plane waves;
(b) relationship between u', up, and

(a)

wave path

(ID

explained in the previous sections. The phase velocity up is the velocity at which loci of
constant phase are propagated down the guide and is given by eq. (12.31), that is,

«„ = 7T d2.48a)

or

Up cos e
(12.48b)

This shows that up > u' since cos 6 < 1. If u' = c, then up is greater than the speed of
light in vacuum. Does this violate Einstein's relativity theory that messages cannot travel
faster than the speed of light? Not really, because information (or energy) in a waveguide
generally does not travel at the phase velocity. Information travels at the group velocity,
which must be less than the speed of light. The group velocity ug is the velocity with which
the resultant repeated reflected waves are traveling down the guide and is given by

(12.49a)

or

uo = u' cos 6 = u' (12.49b)
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Although the concept of group velocity is fairly complex and is beyond the scope of this
chapter, a group velocity is essentially the velocity of propagation of the wave-packet en-
velope of a group of frequencies. It is the energy propagation velocity in the guide and is
always less than or equal to u'. From eqs. (12.48) and (12.49), it is evident that

upug = u'2 (12.50)

This relation is similar to eq. (12.40). Hence the variation of up and ug with frequency is
similar to that in Figure 12.6 for r;TE and rjTM.

EXAMPLE 12.4
A standard air-filled rectangular waveguide with dimensions a = 8.636 cm, b = 4.318 cm
is fed by a 4-GHz carrier from a coaxial cable. Determine if a TE10 mode will be propa-
gated. If so, calculate the phase velocity and the group velocity.

Solution:

For the TE10 mode, fc = u' 11a. Since the waveguide is air-filled, u' = c = 3 X 108.
Hence,

fc =
3 X 10*

= 1.737 GHz
2 X 8.636 X 10~2

As / = 4 GHz > fc, the TE10 mode will propagate.

u' 3 X 108

V l - (fjff V l - (1.737/4)2

= 3.33 X 108 m/s
16

g

9 X 10
j

3.33 X 108
= 2.702 X 108 m/s

PRACTICE EXERCISE 12.4

Repeat Example 12.4 for the TM n mode.

Answer: 12.5 X 108 m/s, 7.203 X 107 m/s.

12.6 POWER TRANSMISSION AND ATTENUATION

To determine power flow in the waveguide, we first find the average Poynting vector [from
eq. (10.68)],

(12.51)
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In this case, the Poynting vector is along the z-direction so that

1

_ \Ea-\
2 + \Eys\

2

2V

(12.52)

where rj = rjTE for TE modes or 77 = »/TM for TM modes. The total average power trans-
mitted across the cross section of the waveguide is

— \ at, . J C

(12.53)
- dy dx

=0 Jy=0

Of practical importance is the attenuation in a lossy waveguide. In our analysis thus
far, we have assumed lossless waveguides (a = 0, ac — °°) for which a = 0, 7 = j/3.
When the dielectric medium is lossy (a # 0) and the guide walls are not perfectly con-
ducting (ac =£ 00), there is a continuous loss of power as a wave propagates along the
guide. According to eqs. (10.69) and (10.70), the power flow in the guide is of the form

P = P e -2az (12.54)

In order that energy be conserved, the rate of decrease in Pave must equal the time average
power loss PL per unit length, that is,

P L = -
dPa.

dz

or

^ • * fl

In general,

= ac ad

(12.55)

(12.56)

where ac and ad are attenuation constants due to ohmic or conduction losses (ac # 00) and
dielectric losses (a ¥= 0), respectively.

To determine ad, recall that we started with eq. (12.1) assuming a lossless dielectric
medium (a = 0). For a lossy dielectric, we need to incorporate the fact that a =£ 0. All our
equations still hold except that 7 = jj3 needs to be modified. This is achieved by replacing
e in eq. (12.25) by the complex permittivity of eq. (10.40). Thus, we obtain

mir\ frnr\2
 2 (12.57)
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where

ec = e' - je" = s - j - (12.58)
CO

Substituting eq. (12.58) into eq. (12.57) and squaring both sides of the equation, we obtain

2 27 = ad 2 f t A = l - ^ ) +[~) -S
fiir

Equating real and imaginary parts,

\ a
+ \T) (12.59a)

2adf3d = co/xa or ad =

Assuming that ad <£. (3d, a
z
d - j3z

d = -/3J, so eq. (12.59a) gives

a )

(12.59b)

(12.60)

which is the same as (3 in eq. (12.30). Substituting eq. (12.60) into eq. (12.59b) gives

(12.61)

where rj' = V/x/e.
The determination of ac for TMmn and TEmn modes is time consuming and tedious. We

shall illustrate the procedure by finding ac for the TE10 mode. For this mode, only Ey, Hx,
and Hz exist. Substituting eq. (12.43a) into eq. (12.53) yields

a f b

- dxdy =
x=0 Jy= 2ir r)

dy sin — dx

'° ° a (12.62)

* ave

The total power loss per unit length in the walls is

y=o

\y=b + Pi \X=0

=O)
(12.63)
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since the same amount is dissipated in the walls y = 0 and y = b or x = 0 and x = a. For
the wall y = 0,

TJC j {\Hxs\
l+ \Hzs\

z)dx
a #2 2

7TJC
H2

nsin2 — Hz
o cos1 — dx\ (12.64)

£ 1 +
7T

where Rs is the real part of the intrinsic impedance t\c of the conducting wall. From eq.
(10.56),

1

ar8
(12.65)

where 5 is the skin depth. Rs is the skin resistance of the wall; it may be regarded as the re-
sistance of 1 m by 5 by 1 m of the conducting material. For the wall x = 0,

C I (\Hzs\
z)dy H2

ody

RJbHl
(12.66)

Substituting eqs. (12.64) and (12.66) into eq. (12.63) gives

(12.67)

Finally, substituting eqs. (12.62) and (12.67) into eq. (12.55),

?2 2

2ir r/

ar = (12.68a)

It is convenient to express ac. in terms of/ and fc. After some manipulations, we obtain for
the TE10 mode

2RS k
L/

(12.68b)
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By following the same procedure, the attenuation constant for the TEm« modes (n + 0) can
be obtained as

(12.69)
r

md for the TMmn

- 'fc

J.

2 (l 1I

modes as

" c TM

OH2

2/?,

2 m

(bid?
'fViblaf

, 2

+ n2

m2 +

m2 +

kV

n2 \

\f<}2)
[f\)

(12.70)

The total attenuation constant a is obtained by substituting eqs. (12.61) and (12.69) or
(12.70) into eq. (12.56).

12.7 WAVEGUIDE CURRENT AND MODE EXCITATION

For either TM or TE modes, the surface current density K on the walls of the waveguide
may be found using

K = an X H (12.71)

where an is the unit outward normal to the wall and H is the field intensity evaluated on the
wall. The current flow on the guide walls for TE10 mode propagation can be found using
eq. (12.71) with eqs. (12.42) and (12.43). The result is sketched in Figure 12.11.

The surface charge density ps on the walls is given by

ps = an • D = an • eE

where E is the electric field intensity evaluated on the guide wall.

(12.72)

Figure 12.11 Surface current on guide
walls for TE10 mode.



570 Waveguides

?"\
J

(a) TE,n mode.

0 a 0

(b)TMM mode.

Figure 12.12 Excitation of modes in a rectangular waveguide.

A waveguide is usually fed or excited by a coaxial line or another waveguide. Most
often, a probe (central conductor of a coaxial line) is used to establish the field intensities
of the desired mode and achieve a maximum power transfer. The probe is located so as to
produce E and H fields that are roughly parallel to the lines of E and H fields of the desired
mode. To excite the TE10 mode, for example, we know from eq. (12.43a) that Ey has
maximum value at x = ail. Hence, the probe is located at x = a/2 to excite the TEIO mode
as shown in Figure 12.12(a), where the field lines are similar to those of Figure 12.8. Sim-
ilarly, the TMii mode is launched by placing the probe along the z-direction as in Figure

EXAMPLE 12.5
An air-filled rectangular waveguide of dimensions a = 4 cm, b = 2 cm transports energy
in the dominant mode at a rate of 2 mW. If the frequency of operation is 10 GHz, determine
the peak value of the electric field in the waveguide.

Solution:

The dominant mode for a > b is TE10 mode. The field expressions corresponding to this
mode (m = 1, n = 0) are in eq. (12.36) or (12.43), namely

Exs = 0, Eys = -jE0 sin ( — where £„ =
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Jc 2a 2(4 X 10~2)

V' 377

/ c

= 406.7

1 -
3.75

. / J V L io
From eq. (12.53), the average power transmitted is

P = r r \Mave L L 2^

Hence,

dy

4r,

2t, —
4(406.7) X 2 X 1Q"3

ab 8 X 10

En = 63.77 V/m

= 4067

PRACTICE EXERCISE 12.5

In Example 12.5, calculate the peak value Ho of the magnetic field in the guide if
a = 2 cm, b = 4 cm while other things remain the same.

Answer: 63.34 mA/m.

EXAMPLE 12.6
A copper-plated waveguide (ac = 5.8 X 107 S/m) operating at 4.8 GHz is supposed to
deliver a minimum power of 1.2 kW to an antenna. If the guide is filled with polystyrene
(a = 10"17 S/m, e = 2.55eo) and its dimensions are a = 4.2 cm, b = 2.6 cm, calculate
the power dissipated in a length 60 cm of the guide in the TE10 mode.

Solution:

Let

Pd = power loss or dissipated
Pa = power delivered to the antenna
Po = input power to the guide

so that P0 = Pd + Pa

Fromeq. (12.54),

D — D ,,~2<xz
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Hence,

Pa =
-2az

or

Now we need to determine a from

From eq. (12.61),

= Pa(e
laz - 1)

a = ad + ac

or,'

Since the loss tangent

10 -17

ue q 10~9

2x X 4.8 X 109 X X 2.5536TT

then

= 1.47 X 10"17 « : 1 (lossless dielectric medium)

= 236.1

= 1.879 X 108m/s
Br

2a 2 X 4.2 X 10'

10~17 X 236.1

2.234 GHz

/ _ [2.23412

L 4 .8 J
ad = 1.334 X 10~15Np/m

For the TE10 mode, eq. (12.68b) gives

ar =
V2

If

0.5 + - k
L/J
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where

Hence

/?. =
ac8

= 1.808 X 10~2Q

1 hrfiJ. hrX 4.8 X 109 X 4ir X 10- 7

5.8 X 107

2 X l i

a, =
2.6 X1O"2X 236

= 4.218 X 10"3Np/m

/
. 1 ^ 1 -

234

Note that ad <§C ac, showing that the loss due to the finite conductivity of the guide walls
is more important than the loss due to the dielectric medium. Thus

a = ad + ac = ac = 4.218 X 10"3 Np/m

and the power dissipated is

= 6.089 W
Pd = Pa{e^ _ i) = 1.2 x ioV x 4 - 2 1 8 x l o" x a 6 - 1)

PRACTICE EXERCISE 12.6

A brass waveguide (ac = 1.1 X 107 mhos/m) of dimensions a = 4.2 cm, b —
1.5 cm is filled with Teflon (er = 2.6, a = 10"15 mhos/m). The operating frequency
is 9 GHz. For the TE10 mode:

(a) Calculate <xd and ac.

(b) What is the loss in decibels in the guide if it is 40 cm long?

Answer: (a) 1.206 X 10~iJ Np/m, 1.744 X 10~zNp/m, (b) 0.0606 dB.

EXAMPLE 12.7
Sketch the field lines for the TMn mode. Derive the instantaneous expressions for the
surface current density of this mode.

Solution:

From Example 12.2, we obtain the fields forTMn mode (m = 1, n = 1) as

Ey = Ti i j;) Eo s i n ( ~ ) c o s ( y ) sin(cof - j3z)
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Ez = Eo sin I — I sin I — I cos(wr - /3z)x a J \ b J

we / TT \ I %x \ iry\
Hx = —-j I — £o sin I — I cos I —- sin(wf -

h \bj \a I \ b

we /vr\
y = ~tf \a) E°

(TXX

Va

//, = 0

For the electric field lines,

dy E., a firx\ (%y
— = - r = 7 tan — cot —
cfx £x b \a I \b

For the magnetic field lines,

dy Hy b /TTX\

dx Hx a \ a J
iry \

b J
Notice that (Ey/Ex)(Hy/Hx) = — 1, showing that electric and magnetic field lines are mutu-
ally orthogonal. This should also be observed in Figure 12.13 where the field lines are
sketched.

The surface current density on the walls of the waveguide is given by

K = an X H = a* X (Hx, Hy, 0)

At x = 0, an = ax, K = Hy(0, y, z, t) az, that is,

we fir

At x = a, an = -a x , K = -Hy(a, y, z, i) az

or

Tr we (ir

1? \a

Figure 12.13 Field lines for TMU mode; for
Example 12.7.

E field

H field
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At y = 0, an = ay, K = -Hx(x, 0, z, t) az

or

Aty = b,an = -ay, K = Hx(x, b, z, t) az

or

COS / 7T \ / TTX ,
K = — I — ) Eo sin — sm(atf - j3z) az

h \bj \ a

- I3z) az

PRACTICE EXERCISE 12.7

Sketch the field lines for the TE n mode.

Answer: See Figure 12.14. The strength of the field at any point is indicated by the
density of the lines; the field is strongest (or weakest) where the lines are
closest together (or farthest apart).

12.8 WAVEGUIDE RESONATORS

Resonators are primarily used for energy storage. At high frequencies (100 MHz and
above) the RLC circuit elements are inefficient when used as resonators because the di-
mensions of the circuits are comparable with the operating wavelength, and consequently,
unwanted radiation takes place. Therefore, at high frequencies the RLC resonant circuits

end view side view

U J
©i ©^

©| !©[

E field
//field

top view

Figure 12.14 For Practice Exercise 12.7; for TEn mode.
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are replaced by electromagnetic cavity resonators. Such resonator cavities are used in kly-
stron tubes, bandpass filters, and wave meters. The microwave oven essentially consists of
a power supply, a waveguide feed, and an oven cavity.

Consider the rectangular cavity (or closed conducting box) shown in Figure 12.15. We
notice that the cavity is simply a rectangular waveguide shorted at both ends. We therefore
expect to have standing wave and also TM and TE modes of wave propagation. Depending
on how the cavity is excited, the wave can propagate in the x-, y-, or z-direction. We will
choose the +z-direction as the "direction of wave propagation." In fact, there is no wave
propagation. Rather, there are standing waves. We recall from Section 10.8 that a standing
wave is a combination of two waves traveling in opposite directions.

A. TM Mode to z

For this case, Hz = 0 and we let

EJx, y, z) = X(x) Y(y) Z(z) (12.73)

be the production solution of eq. (12.1). We follow the same procedure taken in Section
12.2 and obtain

X(x) = C\ cos kjX + c2 sin kpc

Y(y) = c3 cos kyy + c4 sin kyy

Z(z) = c5 cos kzz + c6 sin kzz,

where

k2 = k2
x + k], + k] = u2ixe

The boundary conditions are:

£z = 0 at x = 0, a

Ez = 0 at >' = 0 ,6

Ey = 0,Ex = 0 at z = 0, c

(12.74a)

(12.74b)

(12.74c)

(12.75)

(12.76a)

(12.76b)

(12.76c)

Figure 12.15 Rectangular cavity.
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As shown in Section 12.3, the conditions in eqs. (12.7a, b) are satisfied when
cx = 0 = c3 and

nvK
a y b

(12.77)

where m = 1, 2, 3, . . ., n = 1, 2, 3, . . . .To invoke the conditions in eq. (12.76c), we
notice that eq. (12.14) (with Hzs = 0) yields

d2Exs d2Ezs

dz dz

Similarly, combining eqs. (12.13a) and (12.13d) (with Hzs = 0) results in

-ycoe ys -

From eqs. (12.78) and (12.79), it is evident that eq. (12.76c) is satisfied if

— - = 0 at z = 0, c
dz

This implies that c6 = 0 and sin kzc = 0 = sin pir. Hence,

(12.78)

(12.79)

(12.80)

(12.81)

where p = 0, 1, 2, 3 , . . . . Substituting eqs. (12.77) and (12.81) into eq. (12.74) yields

(12.82)

where Eo = c2c4c5. Other field components are obtained from eqs. (12.82) and (12.13).
The phase constant /3 is obtained from eqs. (12.75), (12.77), and (12.81) as

(12.83)

Since /32 = co2/i£, from eq. (12.83), we obtain the resonant frequency fr

2irfr = ur =
fie

or

u
fr ^

/r i/ w
[a\

2 r 12

" 1 I
r "

r (12.84)
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The corresponding resonant wavelength is

u'

" fr llm
VU rJ

2

In

L ^
f +1 UJ

9 (12.85)

From eq. (12.84), we notice that the lowest-order TM mode is TM110-

B. TE Mode to z

In this case, Ez = 0 and

Hzs = (bt cos sin 3 cos kyy + b4 sin kyy)
(^5 cos kzz + sin kzz)

The boundary conditions in eq. (12.76c) combined with eq. (12.13) yields

at z = 0, cHzs =

dx

dy

= 0 at x = 0, a

= 0 at = 0,b

(12.86)

(12.87a)

(12.87b)

(12.87c)

Imposing the conditions in eq. (12.87) on eq. (12.86) in the same manner as for TM mode
to z leads to

(12.88)

where m = 0, 1, 2, 3, . . ., n = 0, 1, 2, 3, . . ., and p = 1, 2, 3, . . . . Other field com-
ponents can be obtained from eqs. (12.13) and (12.88). The resonant frequency is the
same as that of eq. (12.84) except that m or n (but not both at the same time) can be
zero for TE modes. The reason why m and n cannot be zero at the same time is that the
field components will be zero if they are zero. The mode that has the lowest resonant
frequency for a given cavity size (a, b, c) is the dominant mode. If a > b < c, it implies
that I/a < \lb > lie and hence the dominant mode is TE101. Note that for a > b < c, the
resonant frequency of TMU0 mode is higher than that for TE101 mode; hence, TE101 is
dominant. When different modes have the same resonant frequency, we say that the
modes are degenerate; one mode will dominate others depending on how the cavity is
excited.

A practical resonant cavity has walls with finite conductivity ac and is, therefore,
capable of losing stored energy. The quality factor Q is a means of determining the loss.
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The qiialitx factor is also a measure of I he bandwidth ol' the cavity resonator.

It may be defined as

Time average energy stored
Energy loss per cycle of oscillation
W W

(12.89)

where T = 1// = the period of oscillation, PL is the time average power loss in the cavity,
and W is the total time average energy stored in electric and magnetic fields in the cavity.
Q is usually very high for a cavity resonator compared with that for an RLC resonant
circuit. By following a procedure similar to that used in deriving ac in Section 12.6, it can
be shown that the quality factor for the dominant TE]01 is given by3

GTE 1 0 1 =
5[2b(a3

(a2

+ c

+
3)

c2)abc

+ acia fc!)]
(12.90)

where 5 = is the skin depth of the cavity walls.

EXAMPLE 12.8
An air-filled resonant cavity with dimensions a = 5 cm, b = 4 cm, and c = 10 cm is
made of copper (oc = 5.8 X 107 mhos/m). Find

(a) The five lowest order modes

(b) The quality factor for TE1Oi mode

Solution:

(a) The resonant frequency is given by

m

where

u' = = c

3For the proof, see S. V. Marshall and G. G. Skitek, Electromagnetic Concepts and Applications, 3rd
ed. Englewood Cliffs, NJ: Prentice-Hall, 1990, pp. 440-442.
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Hence

3 X l(f m
5 X 10" 4 X 10- 2 10 X 10 - 2

= 15V0.04m2 + 0.0625«2 + 0.01/?2 GHz

Since c > a > b or 1/c < I/a < 1/&, the lowest order mode is TE101. Notice that
TMioi and TE1Oo do not exist because m = 1,2, 3, . . ., n = 1,2, 3, . . ., and
p = 0, 1, 2, 3, . . . for the TM modes, and m = 0, 1, 2, . . ., n = 0, 1, 2, . . ., and
p = 1,2,3,. . . for the TE modes. The resonant frequency for the TE1Oi mode is

frm = 15V0.04 + 0 + 0.01 = 3.335 GHz

The next higher mode is TE011 (TM011 does not exist), with

fron = 15V0 + 0.0625 + 0.01 = 4.04 GHz

The next mode is TE102 (TM!02 does not exist), with

frim = 15V0.04 + 0 + 0.04 = 4.243 GHz

The next mode is TM110 (TE110 does not exist), with

fruo = 15V0.04 + 0.0625 + 0 = 4.8 GHz

The next two modes are TE i n and TM n ] (degenerate modes), with

frni = 15V0.04 + 0.0625 + 0.01 = 5.031 GHz

The next mode is TM103 with

frm = 15V0.04 + 0 + 0.09 = 5.408 GHz

Thus the five lowest order modes in ascending order are

TE101 (3.35 GHz)

TEon (4.04 GHz)
TE102 (4.243 GHz)
TMU 0 (4.8 GHz)
T E i , , o r T M i n (5.031 GHz)

(b) The quality factor for TE]01 is given by

2TEI01 -
(a2 c2) abc

S[2b(a c3) ac(a2 c2)]

(25 + 100) 200 X 10~2

5[8(125 + 1000) + 50(25 + 100)]

616 61

VV(3.35 X 109) 4TT X 10"7 (5.8 X 107)

61
= 14,358
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PRACTICE EXERCISE 12.8

If the resonant cavity of Example 12.8 is filled with a lossless material (/xr = 1,
er - 3), find the resonant frequency fr and the quality factor for TE101 mode.

Answer: 1.936 GHz, 1.093 X 104

SUMMARY 1. Waveguides are structures used in guiding EM waves at high frequencies. Assuming a
lossless rectangular waveguide (ac — o°, a — 0), we apply Maxwell's equations in ana-
lyzing EM wave propagation through the guide. The resulting partial differential equa-
tion is solved using the method of separation of variables. On applying the boundary
conditions on the walls of the guide, the basic formulas for the guide are obtained for
different modes of operation.

2. Two modes of propagation (or field patterns) are the TMmn and TEmn where m and n are
positive integers. For TM modes, m = 1, 2, 3, . . ., and n = 1, 2, 3, . . . and for TE
modes, m = 0, 1, 2, . . ., and n = 0, 1, 2, . . .,n = m¥z0.

3. Each mode of propagation has associated propagation constant and cutoff frequency.
The propagation constant y = a + jfl does not only depend on the constitutive pa-
rameters (e, /x, a) of the medium as in the case of plane waves in an unbounded space,
it also depends on the cross-sectional dimensions (a, b) of the guide. The cutoff fre-
quency is the frequency at which y changes from being purely real (attenuation) to
purely imaginary (propagation). The dominant mode of operation is the lowest mode
possible. It is the mode with the lowest cutoff frequency. If a > b, the dominant mode
is TE10.

4. The basic equations for calculating the cutoff frequency fc, phase constant 13, and phase
velocity u are summarized in Table 12.1. Formulas for calculating the attenuation con-
stants due to lossy dielectric medium and imperfectly conducting walls are also pro-
vided.

5. The group velocity (or velocity of energy flow) ug is related to the phase velocity up of
the wave propagation by

upug = u'2

where u' = 1/v/xs is the medium velocity—i.e., the velocity of the wave in the di-
electric medium unbounded by the guide. Although up is greater than u', up does not
exceed u'.

6. The mode of operation for a given waveguide is dictated by the method of exci-
tation.

7. A waveguide resonant cavity is used for energy storage at high frequencies. It is nothing
but a waveguide shorted at both ends. Hence its analysis is similar to that of a wave-
guide. The resonant frequency for both the TE and TM modes to z is given by

m
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For TM modes, m = 1, 2, 3, . . ., n = 1, 2, 3, . . ., and p = 0, 1, 2, 3, . . ., and for
TE modes, m = 0,1,2,3,. . ., n = 0, 1, 2, 3 , . . ., and p = 1, 2, 3 , . . .,m = n ^ 0.
If a > b < c, the dominant mode (one with the lowest resonant frequency) is TE1Oi-

8. The quality factor, a measure of the energy loss in the cavity, is given by

2 = "-?

12.1 At microwave frequencies, we prefer waveguides to transmission lines for transporting
EM energy because of all the following except that

(a) Losses in transmission lines are prohibitively large.

(b) Waveguides have larger bandwidths and lower signal attenuation.

(c) Transmission lines are larger in size than waveguides.

(d) Transmission lines support only TEM mode.

12.2 An evanscent mode occurs when

(a) A wave is attenuated rather than propagated.

(b) The propagation constant is purely imaginary.

(c) m = 0 = n so that all field components vanish.

(d) The wave frequency is the same as the cutoff frequency.

12.3 The dominant mode for rectangular waveguides is

(a) TE,,

(b) TM n

(c) TE1Oi

(d) TE10

12.4 The TM10 mode can exist in a rectangular waveguide.

(a) True

(b) False

12.5 For TE30 mode, which of the following field components exist?

(a) Ex

(b) Ey

(c) Ez

(d) Hx

(e) Hv



PROBLEMS 583

12.6 If in a rectangular waveguide for which a = 2b, the cutoff frequency for TE02 mode is
12 GHz, the cutoff frequency for TMH mode is

(a) 3 GHz
(b) 3 \ /5GHz
(c) 12 GHz

(d) 6 \A GHz
(e) None of the above

12.7 If a tunnel is 4 by 7 m in cross section, a car in the tunnel will not receive an AM radio
signal (e.g.,/= 10 MHz).

(a) True

(b) False

12.8 When the electric field is at its maximum value, the magnetic energy of a cavity is

(a) At its maximum value
(b) At V 2 of its maximum value

(c) At —-p of its maximum value
V 2

(d) At 1/2 of its maximum value

(e) Zero

12.9 Which of these modes does not exist in a rectangular resonant cavity?

(a) TE110

(b) TEQH

(c) TM110

(d) TMm

12.10 How many degenerate dominant modes exist in a rectangular resonant cavity for which
a = b = c?

(a) 0
(b) 2

(c) 3

(d) 5
(e) oo

Answers: 12.1c, 12.2a, 12.3d, 12.4b, 12.5b,d, 12.6b, 12.7a, 12.8e, 12.9a, 12.10c.

PROBLEMS I ^** ^ ^ n o w m a t a rectangular waveguide does not support TM10 and TM01 modes.
(b) Explain the difference between TEmn and TMmn modes.
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12.2 A 2-cm by 3-cm waveguide is filled with a dielectric material with er = 4. If the wave-
guide operates at 20 GHz with TMU mode, find: (a) cutoff frequency, (b) the phase con-
stant, (c) the phase velocity.

12.3 A 1-cm X 2-cm waveguide is filled with deionized water with er = 81. If the operating
frequency is 4.5 GHz, determine: (a) all possible propagating modes and their cutoff fre-
quencies, (b) the intrinsic impedance of the highest mode, (c) the group velocity of the
lowest mode.

12.4 Design a rectangular waveguide with an aspect ratio of 3 to 1 for use in the k band
(18-26.5 GHz). Assume that the guide is air filled.

12.5 A tunnel is modeled as an air-filled metallic rectangular waveguide with dimensions
a = 8 m and b = 16 m. Determine whether the tunnel will pass: (a) a 1.5-MHz AM
broadcast signal, (b) a 120-MHz FM broadcast signal.

12.6 In an air-filled rectangular waveguide, the cutoff frequency of a TE10 mode is 5 GHz,
whereas that of TEOi mode is 12 GHz. Calculate

(a) The dimensions of the guide

(b) The cutoff frequencies of the next three higher TE modes

(c) The cutoff frequency for TEn mode if the guide is filled with a lossless material

having er = 2.25 and (ir=\.

12.7 An air-filled hollow rectangular waveguide is 150 m long and is capped at the end with
a metal plate. If a short pulse of frequency 7.2 GHz is introduced into the input end of the
guide, how long does it take the pulse to return to the input end? Assume that the cutoff
frequency of the guide is 6.5 GHz.

12.8 Calculate the dimensions of an air-filled rectangular waveguide for which the cutoff fre-
quencies for TM n and TE03 modes are both equal to 12 GHz. At 8 GHz, determine
whether the dominant mode will propagate or evanesce in the waveguide.

12.9 An air-filled rectangular waveguide has cross-sectional dimensions a = 6 cm and
b = 3 cm. Given that

E, = 5 sin (—) sin (-*A cos (1012f - 0z) V/m
V a ) V b )

calculate the intrinsic impedance of this mode and the average power flow in the
guide.

12.10 In an air-filled rectangular waveguide, a TE mode operating at 6 GHz has

Ey = 5 sm(2irx/a) cos(wy/b) sm(a>t — 12z) V/m

Determine: (a) the mode of operation, (b) the cutoff frequency, (c) the intrinsic imped-
ance, (d) Hx.
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12.11 In an air-filled rectangular waveguide with a = 2.286 cm and b = 1.016 cm, the
y-component of the TE mode is given by

Ey = sin(27rx/a) sin(107r X 1010r - j3z) V/m

find: (a) the operating mode, (b) the propagation constant 7, (c) the intrinsic impedance

V-

12.12 For the TM,, mode, derive a formula for the average power transmitted down the guide.

12.13 (a) Show that for a rectangular waveguide.

" ' x =
X'

1 -

(b) For an air-filled waveguide with a = 2b = 2.5 cm operating at 20 GHz, calculate
up and X for TE n and TE2i modes.

12.14 A 1-cm X 3-cm rectangular air-filled waveguide operates in the TE|2 mode at a fre-
quency that is 20% higher than the cutoff frequency. Determine: (a) the operating fre-
quency, (b) the phase and group velocities.

12.15 A microwave transmitter is connected by an air-filled waveguide of cross section
2.5 cm X 1 cm to an antenna. For transmission at 11 GHz, find the ratio of (a) the phase
velocity to the medium velocity, and (b) the group velocity to the medium velocity.

12.16 A rectangular waveguide is filled with polyethylene (s = 2.25eo) and operates at 24
GHz. If the cutoff frequency of a certain TE mode is 16 GHz, find the group velocity and
intrinsic impedance of the mode.

12.17 A rectangular waveguide with cross sections shown in Figure 12.16 has dielectric dis-
continuity. Calculate the standing wave ratio if the guide operates at 8 GHz in the domi-
nant mode.

*12.18 Analysis of circular waveguide requires solution of the scalar Helmholtz equation in
cylindrical coordinates, namely

V2EZS + k2Ezs = 0

2.5 cm

5 cm

Figure 12.16 For Problem 12.17.

fio, so fio, 2.25so
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or

1 d f dEzs\ 1 d2Ea d2Ezs 2

p dp V dp / p 30 3z

By assuming the product solution

Ezs(p, </>, z) = R(p) $(<t>) Z(z)

show that the separated equations are:

Z" - k\ Z = 0

$" + *i $ = o

where

" + pR' + (A:2 p2 - kl) R = 0

t2 = /t2 + *2

12.19 For TE01 mode,

£xs = Y Ho sin(iry/b)e 7 \ Eys =

Find and Pa

12.20 A 1-cm X 2-cm waveguide is made of copper (ac = 5.8 X 107 S/m) and filled with a
dielectric material for which e = 2.6eo, \i = po, ad = 1CT4 S/m. If the guide operates
at 9 GHz, evaluate ac and ad for (a) TE10, and (b) TMU.

12.21 A 4-cm-square waveguide is filled with a dielectric with complex permittivity ec =
16eo(l — 7IO"4) and is excited with the TM2i mode. If the waveguide operates at 10%
above the cutoff frequency, calculate attenuation ad. How far can the wave travel down
the guide before its magnitude is reduced by 20%?

12.22 If the walls of the square waveguide in the previous problem are made of brass (ac =
1.5 X 10 S/m), find ac and the distance over which the wave is attenuated by 30%.

12.23 A rectangular waveguide with a = 2b = 4.8 cm is filled with teflon with er = 2 . 1 1 and
loss tangent of 3 X 10~4. Assume that the walls of the waveguide are coated with gold
(<7C = 4.1 X 107 S/m) and that a TE10 wave at 4 GHz propagates down the waveguide,
find: (a) ad, (b) ctc.

*12.24 A rectangular brass (ac = 1.37 X 107 S/m) waveguide with dimensions a = 2.25 cm
and b = 1.5 cm operates in the dominant mode at frequency 5 GHz. If the waveguide is
filled with teflon (p,r = 1, er = 2.11, a — 0), determine: (a) the cutoff frequency for the
dominant mode, (b) the attenuation constant due to the loss in the guide walls.

*12.25 For a square waveguide, show that attenuation ac. is minimum for TE1() mode when
/ = 2 . 9 6 2 / c .
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12.26 The attenuation constant of a TM mode is given by

At what frequency will a be maximum?

*12.27 Show that for TE mode to z in a rectangular cavity,

jwix.(mir\ . fmirx\ Iniry\ . /pirz
Eys = — - A )HO sin cos —— sin

h• \ a J \ a ) \ b J \ c

Find Hxs.

* 12.28 For a rectangular cavity, show that

( pirz
c o s

for TM mode to z. Determine Eys.

12.29 In a rectangular resonant cavity, which mode is dominant when

(a) a < b < c

(b) a > b > c

(c) a = c> b

12.30 For an air-filled rectangular cavity with dimensions a = 3 cm, b = 2 cm, c = 4 cm,
determine the resonant frequencies for the following modes: TE o n , TE101, TMno, and
TM1U. List the resonant frequencies in ascending order.

12.31 A rectangular cavity resonator has dimensions a = 3 cm, b = 6 cm, and c = 9 cm. If it
is filled with polyethylene (e = 2.5e0), find the resonant frequencies of the first five
lowest-order modes.

12.32 An air-filled cubical cavity operates at a resonant frequency of 2 GHz when excited at
the TE1Oi mode. Determine the dimensions of the cavity.

12.33 An air-filled cubical cavity of size 3.2 cm is made of brass (<jc = 1.37 X 107 S/m). Cal-
culate: (a) the resonant frequency of the TE101 mode, (b) the quality factor at that mode.

12.34 Design an air-filled cubical cavity to have its dominant resonant frequency at 3 GHz.

12.35 An air-filled cubical cavity of size 10 cm has

E = 200 sin 30TTX sin 30iry cos 6 X l09r a, V/m

Find H.



Chapter 13

ANTENNAS

The Ten Commandments of Success
1. Hard Work: Hard work is the best investment a man can make.
2. Study Hard: Knowledge enables a man to work more intelligently and effec-

tively.
3. Have Initiative: Ruts often deepen into graves.
4. Love Your Work: Then you will find pleasure in mastering it.
5. Be Exact: Slipshod methods bring slipshod results.
6. Have the Spirit of Conquest: Thus you can successfully battle and overcome

difficulties.
7. Cultivate Personality: Personality is to a man what perfume is to the flower.
8. Help and Share with Others: The real test of business greatness lies in giving

opportunity to others.
9. Be Democratic: Unless you feel right toward your fellow men, you can never

be a successful leader of men.
10. In all Things Do Your Best: The man who has done his best has done every-

thing. The man who has done less than his best has done nothing.

—CHARLES M. SCHWAB

13.1 INTRODUCTION

Up until now, we have not asked ourselves how EM waves are produced. Recall that elec-
tric charges are the sources of EM fields. If the sources are time varying, EM waves prop-
agate away from the sources and radiation is said to have taken place. Radiation may be
thought of as the process of transmitting electric energy. The radiation or launching of the
waves into space is efficiently accomplished with the aid of conducting or dielectric struc-
tures called antennas. Theoretically, any structure can radiate EM waves but not all struc-
tures can serve as efficient radiation mechanisms.

An antenna may also be viewed as a transducer used in matching the transmission line
or waveguide (used in guiding the wave to be launched) to the surrounding medium or vice
versa. Figure 13.1 shows how an antenna is used to accomplish a match between the line
or guide and the medium. The antenna is needed for two main reasons: efficient radiation
and matching wave impedances in order to minimize reflection. The antenna uses voltage
and current from the transmission line (or the EM fields from the waveguide) to launch an
EM wave into the medium. An antenna may be used for either transmitting or receiving
EM energy.

588
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EM wave

Generator Transmission line

Antenna

Surrounding medium

Figure 13.1 Antenna as a matching device between the guiding struc-
ture and the surrounding medium.

Typical antennas are illustrated in Figure 13.2. The dipole antenna in Figure 13.2(a)
consists of two straight wires lying along the same axis. The loop antenna in Figure 13.2(b)
consists of one or more turns of wire. The helical antenna in Figure 13.2(c) consists of a
wire in the form of a helix backed by a ground plane. Antennas in Figure 13.2(a-c) are
called wire antennas; they are used in automobiles, buildings, aircraft, ships, and so on.
The horn antenna in Figure 13.2(d), an example of an aperture antenna, is a tapered
section of waveguide providing a transition between a waveguide and the surroundings.
Since it is conveniently flush mounted, it is useful in various applications such as aircraft.
The parabolic dish reflector in Figure 13.2(e) utilizes the fact that EM waves are reflected
by a conducting sheet. When used as a transmitting antenna, a feed antenna such as a
dipole or horn, is placed at the focal point. The radiation from the source is reflected by the
dish (acting like a mirror) and a parallel beam results. Parabolic dish antennas are used in
communications, radar, and astronomy.

The phenomenon of radiation is rather complicated, so we have intentionally delayed
its discussion until this chapter. We will not attempt a broad coverage of antenna theory;
our discussion will be limited to the basic types of antennas such as the Hertzian dipole, the
half-wave dipole, the quarter-wave monopole, and the small loop. For each of these types,
we will determine the radiation fields by taking the following steps:

1. Select an appropriate coordinate system and determine the magnetic vector poten-
tial A.

2. Find H from B = /tH = V X A.

3. Determine E from V X H = e or E = i;H X as assuming a lossless medium
dt

(a = 0).
4. Find the far field and determine the time-average power radiated using

dS, where ve = | Re (E, X H*)

Note that Pnd throughout this chapter is the same as Pme in eq. (10.70).
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(a) dipole (b) loop

(c) helix

(d) pyramidal horn

Radiating
dipole

Reflector

(e) parabolic dish reflector

Figure 13.2 Typical antennas.

13.2 HERTZIAN DIPOLE

By a Hertzian dipole, we mean an infinitesimal current element / dl. Although such a
current element does not exist in real life, it serves as a building block from which the field
of a practical antenna can be calculated by integration.

Consider the Hertzian dipole shown in Figure 13.3. We assume that it is located at the
origin of a coordinate system and that it carries a uniform current (constant throughout the
dipole), I = Io cos cot. From eq. (9.54), the retarded magnetic vector potential at the field
point P, due to the dipole, is given by

A =
A-wr

(13.1)
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Figure 13.3 A Hertzian dipole carrying
current I = Io cos cot.

where [/] is the retarded current given by

[/] = Io cos a) ( t ) = Io cos {bit - (3r)
u J

(13.2)
= Re [Ioe

j(M-M]

where (3 = to/w = 2TT/A, and u = 1/V/xe. The current is said to be retarded at point P
because there is a propagation time delay rlu or phase delay /3r from O to P. By substitut-
ing eq. (13.2) into eq. (13.1), we may write A in phasor form as

(13.3)Azs A
 e

Transforming this vector in Cartesian to spherical coordinates yields

A, = (Ars, A6s, A^)

where

A n . = A z s cos 8, Affs = —Azs sin 6,

But B, = ^H, = V X As; hence, we obtain the H field as

= 0

Iodl
H^ = —— sin 0 — + - r e

j!3

** 4x lr r-

Hrs = 0 = //Ss

We find the E field using V X H = e dWdt or V X Hs = jueEs,

_ : , - u — ^ ^ fl ! _ - j__ | ^ - 7 / 3 r

E^ = 0

r r

(13.4)

(13.5a)

(13.5b)

(13.6a)

(13.6b)

(13.6c)
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where

V =

A close observation of the field equations in eqs. (13.5) and (13.6) reveals that we
have terms varying as 1/r3, 1/r2, and 1/r. The 1/r3 term is called the electrostatic field since
it corresponds to the field of an electric dipole [see eq. (4.82)]. This term dominates over
other terms in a region very close to the Hertzian dipole. The 1/r term is called the induc-
tive field, and it is predictable from the Biot-Savart law [see eq. 7.3)]. The term is impor-
tant only at near field, that is, at distances close to the current element. The 1/r term is
called the far field or radiation field because it is the only term that remains at the far zone,
that is, at a point very far from the current element. Here, we are mainly concerned with the
far field or radiation zone (j3r ̂ 5> 1 or 2irr Ŝ> X), where the terms in 1/r3 and 1/r2 can be
neglected in favor of the 1/r term. Thus at far field,

4-irr
sin 6 e - V

- Ers - = 0

(I3.7a)

(I3.7b)

Note from eq. (13.7a) that the radiation terms of H$s and E9s are in time phase and orthog-
onal just as the fields of a uniform plane wave. Also note that near-zone and far-zone fields
are determined respectively to be the inequalities /3r <$C I and f3r ̂ > I. More specifically,
we define the boundary between the near and the far zones by the value of r given by

2d2

r = (13.8)

where d is the largest dimension of the antenna.
The time-average power density is obtained as

1
2Pave = ~ Re (Es X H*) = ^ Re (E6s H% ar)

(13.9)

Substituting eq. (13.7) into eq. (13.9) yields the time-average radiated power as

dS

<t>=o Je=o

3 2 T T 2

327r2r2
sin2 6 r2 sin 6 dd d<j> (13.10)

2TT sin* 6 dO
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But

sin' 6d6 = \ (1 - cosz 0) d(-cos 9)

cos30
— cos i

and 02 = 4TT2/X2. Hence eq. (13.10) becomes

^rad ~
dl

3 L X.

If free space is the medium of propagation, rj = 120TT and

(13.11a)

(13.11b)

This power is equivalent to the power dissipated in a fictitious resistance /?rad by current
I = Io cos cot that is

~rad * rms " rad

or

1
(13.12)

where /rms is the root-mean-square value of/. From eqs. (13.11) and (13.12), we obtain

OP
r» z ' * rad /1 o 11 \

r̂ad = -ZV (13.13a)

or

(13.13b)

The resistance Rmd is a characteristic property of the Hertzian dipole antenna and is called
its radiation resistance. From eqs. (13.12) and (13.13), we observe that it requires anten-
nas with large radiation resistances to deliver large amounts of power to space. For
example, if dl = X/20, Rrad = 2 U, which is small in that it can deliver relatively small
amounts of power. It should be noted that /?rad in eq. (13.13b) is for a Hertzian dipole in
free space. If the dipole is in a different, lossless medium, rj = V/x/e is substituted in
eq. (13.11a) and /?rad is determined using eq. (13.13a).

Note that the Hertzian dipole is assumed to be infinitesimally small (& dl <S^ 1 or
dl ^ X/10). Consequently, its radiation resistance is very small and it is in practice difficult
to match it with a real transmission line. We have also assumed that the dipole has a
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uniform current; this requires that the current be nonzero at the end points of the dipole.
This is practically impossible because the surrounding medium is not conducting.
However, our analysis will serve as a useful, valid approximation for an antenna with
dl s X/10. A more practical (and perhaps the most important) antenna is the half-wave
dipole considered in the next section.

13.3 HALF-WAVE DIPOLE ANTENNA

The half-wave dipole derives its name from the fact that its length is half a wavelength
(€ = A/2). As shown in Figure 13.4(a), it consists of a thin wire fed or excited at the mid-
point by a voltage source connected to the antenna via a transmission line (e.g., a two-wire
line). The field due to the dipole can be easily obtained if we consider it as consisting of a
chain of Hertzian dipoles. The magnetic vector potential at P due to a differential length
dl(= dz) of the dipole carrying a phasor current Is = Io cos fiz is

(13.14)

Transmission
line

Dipole
antenna

Current distribution Figure 13.4 A half-wave dipole.
/ = /„ cos /3z

t' \

(a)
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Notice that to obtain eq. (13.14), we have assumed a sinusoidal current distribution
because the current must vanish at the ends of the dipole; a triangular current distribution
is also possible (see Problem 13.4) but would give less accurate results. The actual current
distribution on the antenna is not precisely known. It is determined by solving Maxwell's
equations subject to the boundary conditions on the antenna, but the procedure is mathe-
matically complex. However, the sinusoidal current assumption approximates the distribu-
tion obtained by solving the boundary-value problem and is commonly used in antenna

theory.
If r S> €, as explained in Section 4.9 on electric dipoles (see Figure 4.21), then

r - r' = z cos i or

Thus we may substitute r' — r in the denominator of eq. (13.14) where the magnitude
of the distance is needed. For the phase term in the numerator of eq. (13.14), the dif-
ference between fir and ftr' is significant, so we replace r' by r — z cos 6 and not r. In
other words, we maintain the cosine term in the exponent while neglecting it in the de-
nominator because the exponent involves the phase constant while the denominator does
not. Thus,

-W4

4irr

A/4
(13.15)

j8z cos e cos fiz dz
- A / 4

From the integral tables of Appendix A.8,

eaz cos bz dz =
eaz {a cos bz + b sin bz)

Applying this to eq. (13.15) gives

Azs =

nloe~jl3rejl3zcose UP cos 0 cos (3z + ff sin ffz)
A/4

- A / 4

(13.16)

Since 0 = 2x/X or (3 X/4 = TT/2 and -cos2 0 + 1 = sin2 0, eq. (13.16) becomes

A,, = - ^ " f ' \ [e^n)™\0 + 13)- e -^«)«»» ( 0 _ ft] ( 1 3 - 1 7 )

A-wrfi sin 0

Using the identity eJX + e~;;c = 2 cos x, we obtain

\
- cos 6> )

(13.18)
txloe

 i&rcos I - c o s I

2Trrj3sin2 6
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We use eq. (13.4) in conjunction with the fact that B^ = /*HS = V X As and V X H , =
y'coeEs to obtain the magnetic and electric fields at far zone (discarding the 1/r3 and 1/r2

terms) as

(13.19)

Notice again that the radiation term of H^,s and E$s are in time phase and orthogonal.
Using eqs. (13.9) and (13.19), we obtain the time-average power density as

cos2 ( — cos 6 (13.20)

8TTV sin2 $

The time-average radiated power can be determined as

2 COS22-K fw I ? / 2 COS2 I ^ COS

= 0 8x2r2 sin2 $
r2 sin 0 d6 d<j>

2TT

(13.21)

sin i

J
rT COS I — COS I

^-s—~d e

o sm0

where t\ = 120TT has been substituted assuming free space as the medium of propagation.
Due to the nature of the integrand in eq. (13.21),

TT/2 COS - COS 6

sine

cos~l — cos I

de= I — — '-de
sin 0J0 "'" " Jitl2

This is easily illustrated by a rough sketch of the variation of the integrand with d. Hence

= 60/2

IT
- c o s i

sin I
(13.22)
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Changing variables, u = cos 6, and using partial fraction reduces eq. (13.22) to

C O S 2 - T T

\-u2 du

= 307'

2 1 2 1
COS —KU r , COS ~KU

2 2 j

du + \ — du1 + U 0
1 - u

(13.23)

Replacing 1 + u with v in the first integrand and 1 — u with v in the second results in

rad = 30/2,

= 30/2

, sin2—7TV

dv +
L'0

2 S in 2 -7TV

2 sin -TTV

dv

(13.24)

Changing variables, w = irv, yields

2TT sin — w
- dw

= 15/

= 15 / '

2 [ ^ (1 — COS

2! 4! 6! 8!

(13.25)

w2 w4 w6 w8

since cos w = l H 1 • •. Integrating eq. (13.25) term by term and
2! 4! 6! 8!

evaluating at the limit leads to

2 f (2TT)2 (2TT)4 (2?r)6 (2TT)8

~ 1 5 / ° L 2(2!) ~ 4(4!) + 6(6!) ~ 8(8!)

= 36.56 ll

+ (13.26)

The radiation resistance Rrad for the half-wave dipole antenna is readily obtained from
eqs. (13.12) and (13.26) as

(13.27)
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Note the significant increase in the radiation resistance of the half-wave dipole over that of
the Hertzian dipole. Thus the half-wave dipole is capable of delivering greater amounts of
power to space than the Hertzian dipole.

The total input impedance Zin of the antenna is the impedance seen at the terminals of
the antenna and is given by

~ "in (13.28)

where Rin = Rmd for lossless antenna. Deriving the value of the reactance Zin involves a
complicated procedure beyond the scope of this text. It is found that Xin = 42.5 0, so
Zin = 73 + y'42.5 0 for a dipole length £ = X/2. The inductive reactance drops rapidly to
zero as the length of the dipole is slightly reduced. For € = 0.485 X, the dipole is resonant,
with Xin = 0. Thus in practice, a X/2 dipole is designed such that Xin approaches zero and
Zin ~ 73 0. This value of the radiation resistance of the X/2 dipole antenna is the reason for
the standard 75-0 coaxial cable. Also, the value is easy to match to transmission lines.
These factors in addition to the resonance property are the reasons for the dipole antenna's
popularity and its extensive use.

13.4 QUARTER-WAVE MONOPOLE ANTENNA

Basically, the quarter-wave monopole antenna consists of one-half of a half-wave dipole
antenna located on a conducting ground plane as in Figure 13.5. The monopole antenna is
perpendicular to the plane, which is usually assumed to be infinite and perfectly conduct-
ing. It is fed by a coaxial cable connected to its base.

Using image theory of Section 6.6, we replace the infinite, perfectly conducting ground
plane with the image of the monopole. The field produced in the region above the ground
plane due to the X/4 monopole with its image is the same as the field due to a X/2 wave
dipole. Thus eq. (13.19) holds for the X/4 monopole. However, the integration in eq. (13.21)
is only over the hemispherical surface above the ground plane (i.e., 0 < d < TT/2) because
the monopole radiates only through that surface. Hence, the monopole radiates only half as
much power as the dipole with the same current. Thus for a X/4 monopole,

- 18.28/2 (13.29)

and

IP ad

Figure 13.5 The monopole antenna.

"Image

^ Infinite conducting
ground plane
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or

Rmd = 36.5 0 (13.30)

By the same token, the total input impedance for a A/4 monopole is Zin = 36.5 + _/21.25 12.

13.5 SMALL LOOP ANTENNA

The loop antenna is of practical importance. It is used as a directional finder (or search
loop) in radiation detection and as a TV antenna for ultrahigh frequencies. The term
"small" implies that the dimensions (such as po) of the loop are much smaller than X.

Consider a small filamentary circular loop of radius po carrying a uniform current,
Io cos co?, as in Figure 13.6. The loop may be regarded as an elemental magnetic dipole.
The magnetic vector potential at the field point P due to the loop is

A =
/*[/]</! (13.31)

where [7] = 7O cos (cor - /3r') = Re [loe
ji"' ISr)]. Substituting [7] into eq. (13.31), we

obtain A in phasor form as

e~jfir'e

Ait ]L r'
(13.32)

Evaluating this integral requires a lengthy procedure. It can be shown that for a small loop
(po <SC \ ) , r' can be replaced by r in the denominator of eq. (13.32) and As has only <f>-
component given by

^<*s
A-K?

(1 + j$r)e~i&r sin 6 (13.33)

Figure 13.6 The small loop antenna.

N Transmiss ion line
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where S = wpl = loop area. For a loop with N turns, S = Nirpl. Using the fact that
Bs = /xHs = VX A, and V X H S = ju>sEs, we obtain the electric and magnetic fields
from eq. (13.33) as

Ai:
sin I (13.34a)

2m,

4TTT/

/3r3

sin 0 J— + - r -2 )3rJ

ra - Eds - H<f>s - 0

(13.34b)

(13.34c)

(13.34d)

Comparing eqs. (13.5) and (13.6) with eq. (13.34), we observe the dual nature of the field
due to an electric dipole of Figure 13.3 and the magnetic dipole of Figure 13.6 (see Table
8.2 also). At far field, only the 1/r term (the radiation term) in eq. (13.34) remains. Thus at
far field,

4irr
18 sin 6 e

r\2 sin o e

or

(13.35a)

- Hrs - - 0 (13.35b)

where 77 = 120TT for free space has been assumed. Though the far field expressions in
eq. (13.35) are obtained for a small circular loop, they can be used for a small square loop
with one turn (S = a ) , with Af turns (S = Na2) or any small loop provided that the loop di-
mensions are small (d < A/10, where d is the largest dimension of the loop). It is left as an
exercise to show that using eqs. (13.13a) and (13.35) gives the radiation resistance of a
small loop antenna as

(13.36)
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EXAMPLE 13.1 A magnetic field strength of 5 ^A/m is required at a point on 6 = TT/2, 2 km from an
antenna in air. Neglecting ohmic loss, how much power must the antenna transmit if it is

(a) A Hertzian dipole of length X/25?

(b) A half-wave dipole?

(c) A quarter-wave monopole?

(d) A 10-turn loop antenna of radius po = X/20?

Solution:

(a) For a Hertzian dipole,

_ 7o/3 dl sin 6
051 A

4irr

where dl = X/25 or 0 dl = = —. Hence,

5 X 1(T6 =
4TT (2 X 103) 105

or

Io = 0.5 A

'™H = 40TT2 I ^
X

= 158 mW

40x2(0.5)2

(25)2

(b) For a X/2 dipole,

5 x

/o cos I — cos

2irr sin 6

/„ • 1
2TT(2 X

or

/„ = 207T mA

/^/? rad = 1/2(20TT)Z X 10~°(73)
= 144 mW
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(c) For a X/4 monopole,

as in part (b).

(d) For a loop antenna,

2

/ o = 20TT mA

= l/2I2
0Rmd = 1/2(20TT)2 X 10~6(36.56)

= 72 mW

*• /„ S .

r X2
sin 8

For a single turn, S = •Kpo. For ,/V-turn, S = N-wp0. Hence,

or

5 X io - 6 = ^ ^ - ^
2 X 103 L X

10

IOTT2 LPO

= 40.53 mA

— I X 10"3
 =

= 320 7T6 X 100 iol =192-3fi

Z'rad = ^/o^rad = ~ (40.53)2 X 10"6 (192.3)

= 158 mW

PRACTICE EXERCISE 13.1

A Hertzian dipole of length X/100 is located at the origin and fed with a current of
0.25 sin 108f A. Determine the magnetic field at

(a) r = X/5,0 = 30°

(b) r = 200X, 6 = 60°

Answer: (a) 0.2119 sin (10s? - 20.5°) a0 mA/m, (b) 0.2871 sin (l08t + 90°) a0
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EXAMPLE 13.2
An electric field strength of 10 /uV/m is to be measured at an observation point 6 = ir/2,
500 km from a half-wave (resonant) dipole antenna operating in air at 50 MHz.

(a) What is the length of the dipole?

(b) Calculate the current that must be fed to the antenna.

(c) Find the average power radiated by the antenna.

(d) If a transmission line with Zo = 75 0 is connected to the antenna, determine the stand-
ing wave ratio.

Solution:

c 3 X 108

(a) The wavelength X = - = r = 6 m.
/ 50 X 106

Hence, the length of the half-dipole is € = — = 3 m.

(b) From eq. (13.19),

r)Jo cos ( — cos 6

2-wr sin 6

or

2irr sin 9

r)o cos I — cos 6
\2 j

10 X 10" 6 2TT(500 X 103) • (1)

120ir(l)

(c)

= 83.33 mA

Rmd = 73 Q

= \ (83.33)2 X 10-6 X 73

(d)

= 253.5 mW

F = — - (ZL = Zin in this case)
z,£ + Zo

73 + y'42.5 - 75 _ - 2 + y'42.5
73 + y"42.5 + 75 ~
42.55/92.69°

153.98/16.02

148 + y'42.5

= 0.2763/76.67°

s =
1 + | r | 1 + 0.2763

- r 1 - 0.2763
= 1.763
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PRACTICE EXERCISE 13.2

Repeat Example 13.2 if the dipole antenna is replaced by a X/4 monopole.

Answer: (a) 1.5m, (b) 83.33 mA, (c) 126.8 mW, (d) 2.265.

13.6 ANTENNA CHARACTERISTICS

Having considered the basic elementary antenna types, we now discuss some important
characteristics of an antenna as a radiator of electromagnetic energy. These characteristics
include: (a) antenna pattern, (b) radiation intensity, (c) directive gain, (d) power gain.

A. Antenna Patterns

An antenna pattern (or radiation pattern) is a ihrce-climensional plot of iis radia-
tion ai fur field.

When the amplitude of a specified component of the E field is plotted, it is called the field
pattern or voltage pattern. When the square of the amplitude of E is plotted, it is called the
power pattern. A three-dimensional plot of an antenna pattern is avoided by plotting sepa-
rately the normalized \ES\ versus 0 for a constant 4> (this is called an E-plane pattern or ver-
tical pattern) and the normalized \ES\ versus <t> for 8 = TT/2 (called the H-planepattern or
horizontal pattern). The normalization of \ES\ is with respect to the maximum value of the

so that the maximum value of the normalized \ES\ is unity.
For the Hertzian dipole, for example, the normalized |iSj| is obtained from eq. (13.7) as

= |sin0| (13.37)

which is independent of <t>. From eq. (13.37), we obtain the £-plane pattern as the polar
plot of j{8) with 8 varying from 0° to 180°. The result is shown in Figure 13.7(a). Note that
the plot is symmetric about the z-axis (8 = 0). For the /f-plane pattern, we set 8 = TT/2 SO
that/(0) = 1, which is circle of radius 1 as shown in Figure 13.7(b). When the two plots of
Figures 13.7(a) and (b) are combined, we have a three-dimensional field pattern of Figure
13.7(c), which has the shape of a doughnut.

A plot of the time-average power, |2Pave| = 2Pave, for a fixed distance r is the power
pattern of the antenna. It is obtained by plotting separately 2Pave versus 8 for constant <j> and
Ŝ ave versus 4> for constant 8.

For the Hertzian dipole, the normalized power pattern is easily obtained from eqs.
(13.37) or (13.9) as

/2(0) = sin2 0 (13.38)

which is sketched in Figure 13.8. Notice that Figures 13.7(b) and 13.8(b) show circles
because fi8) is independent of <j> and that the value of OP in Figure 13.8(a) is the relative
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(a)

(c)

Figure 13.7 Field patterns of the Hertzian dipole: (a) normalized £-plane or
vertical pattern (4> = constant = 0), (b) normalized ff-plane or horizontal
pattern (6 = TT/2), (C) three-dimensional pattern.

Polar axis

(a) (b)

Figure 13.8 Power pattern of the Hertzian dipole: (a) 4> = constant = 0;
(b) 6 = constant = T/2.



606 Antennas

average power for that particular 6. Thus, at point Q (0 = 45°), the average power is one-
half the maximum average power (the maximum average power is at 6 = TT/2).

B. Radiation Intensity

The radiation intensity of an antenna is defined as

me, 0) = r2 g>a. (13.39)

From eq. (13.39), the total average power radiated can be expressed as

Sin 6 dd d$

= U{d,<j>) sin dd$d<t> (13.40)

2ir fir

U(6, </>) dU
•=o Je=o

where dQ = sin 9 dd d(f> is the differential solid angle in steradian (sr). Hence the radiation
intensity U(6, <f>) is measured in watts per steradian (W/sr). The average value of U(d, <j>) is
the total radiated power divided by 4TT sr; that is,

rrad

4?T
(13.41)

C. Directive Gain

Besides the antenna patterns described above, we are often interested in measurable quan-
tities such as gain and directivity to determine the radiation characteristics of an antenna.

The directive gain (i/0.6) of itn unlenna is a measure of the concentration of the ra-
diated power in a particular direction (e. <p).

It may be regarded as the ability of the antenna to direct radiated power in a given direc-
tion. It is usually obtained as the ratio of radiation intensity in a given direction (6, <f>) to the
average radiation intensity, that is

(13.42)
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By substituting eq. (13.39) into eq. (13.42), 0 ^ may be expressed in terms of directive
gain as

(13.43)=
ave . ?

Airr
The directive gain GJfi, <j>) depends on antenna pattern. For the Hertzian dipole (as well as
for A/2 dipole and X/4 monopole), we notice from Figure 13.8 that 2Pave is maximum at
6 = 7r/2 and minimum (zero) at 6 = 0 or TT. Thus the Hertzian dipole radiates power in a
direction broadside to its length. For an isotropic antenna (one that radiates equally in all
directions), Gd = 1. However, such an antenna is not a physicality but an ideality.

The directivity I) of an antenna is ihe ratio of the maximum radiation intensity to the
average radiaiion intensity.

Obviously, D is the maximum directive gain Gd, max. Thus

D = —— = Gd, max (13.44a)

or

D =
•Prad

(13.44b)

D = 1 for an isotropic antenna; this is the smallest value D can have. For the Hertzian
dipole,

G/6,<j)) = 1.5 sin2 0, D = 1.5.

For the A/2 dipole,

(13.45)

Gd(d, </>) =

where i\ = 120x, /?rad = 73 fi, and

), D=\M
rad

IT
COS | — COS I

sin0

(13.46)

(13.47)

D. Power Gain

Our definition of the directive gain in eq. (13.42) does not account for the ohmic power
loss P( of the antenna. Pt is due to the fact that the antenna is made of a conductor with
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finite conductivity. As illustrated in Figure 13.9, if Pin is the total input power to the
antenna,

Pin — +

+
(13.48)

where 7in is the current at the input terminals and R( is the loss or ohmic resistance of the
antenna. In other words, Pin is the power accepted by the antenna at its terminals during the
radiation process, and Prad is the power radiated by the antenna; the difference between the
two powers is P(, the power dissipated within the antenna.

We define the power gain Gp(6, <j>) of the antenna as

(13.49)

The ratio of the power gain in any specified direction to the directive gain in that direction
is referred to as the radiation efficiency v\r of the antennas, that is

GP
Vr =

Introducing eq. (13.48) leads to

Vr =
Pr,ad Vad

Rf
(13.50)

For many antennas, r\r is close to 100% so that GP — Gd. It is customary to express direc-
tivity and gain in decibels (dB). Thus

D(dB) = 101og,0£»

G (dB) = 10 log10 G

(13.51a)

(13.51b)

It should be mentioned at this point that the radiation patterns of an antenna are
usually measured in the far field region. The far field region of an antenna is commonly
taken to exist at distance r > rmin where

2dz

(13.52)

Figure 13.9 Relating P-m, P(, and Prad.

Prad
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and d is the largest dimension of the antenna. For example, d = I for the electric dipole
antenna and d = 2p0 for the small loop antenna.

EXAMPLE 13.3 Show that the directive gain of the Hertzian dipole is

Gd(0, <£) = 1.5 sin2 6

and that of the half-wave dipole is

cos ( — cos 6
Gd(9,<t>) = 1 - 6 4 —

sin (

Solution:

From eq. (13.42),

, <f>) =
4TT/2(0)

f (6) d

(a) For the Hertzian dipole,

4TT sin2 6

sin3 6 d6 d<j)

4TT sin2 6

2TT (4/3)

= 1.5 sin2 6

as required.

(b) For the half-wave dipole,

4TT COS — cos

sin2

2lr rir cos I — cos 6 I dO d(f>

G/.9, <t>) =

From eq. (13.26), the integral in the denominator gives 27r(1.2188). Hence,

G/.8, 0) =
4TT cos2! — cos 9

sin20 (1.2188)

= 1.64
cos I — cos I

sin20

as required.
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PRACTICE EXERCISE 13.3

Calculate the directivity of

(a) The Hertzian monopole

(b) The quarter-wave monopole

Answer: (a) 3, (b) 3.28.

EXAMPLE 13.4 Determine the electric field intensity at a distance of 10 km from an antenna having a di-
rective gain of 5 dB and radiating a total power of 20 kW.

Solution:

or

From eq. (13.43),

But

Hence,

5 = Gd(dB) = 101og10Grf

0.5 = log10 Gd -

GdPrad

= lO05 = 3.162

at, =
u ave

op =
° ave

4-irr

\E,
2V

1207T(3.162)(20 X 103)
E = =

2irr2 2TT[10 X 103]2

Es\ = 0.1948 V/m

PRACTICE EXERCISE 13.4

A certain antenna with an efficiency of 95% has maximum radiation intensity of
0.5 W/sr. Calculate its directivity when

(a) The input power is 0.4 W

(b) The radiated power is 0.3 W

Answer: (a) 16.53, (b) 20.94.
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The radiation intensity of a certain antenna is

2 sin d sin3 0, 0 < 0 < TT, 0 < 0 < TT

611

U(8, 0) =
0, elsewhere

Determine the directivity of the antenna.

Solution:

The directivity is defined as

D =
ua.

From the given U,

= 2

_ _1_

1

~ 4TT

_ J_
~ 2TT

9 «i
=o •/e=o

s in 0 s in <j> s in 0 ̂  d<j>

s i n ' <j>d<t>
o

= ^ - - (1 - cos 20) d0 (1 - cosz 0) rf(-cos (A)27r 4 2 4
sin

2TT2

27r\2j\3j 3

/ COS (f)
I cos io l 3

Hence

Z) =
(1/3)

— 6

PRACTICE EXERCISE 13.5

Evaluate the directivity of an antenna with normalized radiation intensity

fsin 0, 0 < 0 < TT/2, 0 < 0 < 2TT
[0, otherwise

Answer: 2.546.
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13.7 ANTENNA ARRAYS

In many practical applications (e.g., in an AM broadcast station), it is necessary to design
antennas with more energy radiated in some particular directions and less in other direc-
tions. This is tantamount to requiring that the radiation pattern be concentrated in the di-
rection of interest. This is hardly achievable with a single antenna element. An antenna
array is used to obtain greater directivity than can be obtained with a single antenna
element.

An antenna array is a group of radiating elements arranged so us to produce some
particular radiation characteristics.

It is practical and convenient that the array consists of identical elements but this is
not fundamentally required. We shall consider the simplest case of a two-element
array and extend our results to the more complicated, general case of an N-element
array.

Consider an antenna consisting of two Hertzian dipoles placed in free space along the
z-axis but oriented parallel to the ;t-axis as depicted in Figure 13.10. We assume that the
dipole at (0, 0, d/2) carries current Ils = I0/cx and the one at (0, 0, -d/2) carries current
hs = 4 / 0 . where a is the phase difference between the two currents. By varying the
spacing d and phase difference a, the fields from the array can be made to interfere con-
structively (add) in certain directions of interest and interfere destructively (cancel) in
other directions. The total electric field at point P is the vector sum of the fields due to the
individual elements. If P is in the far field zone, we obtain the total electric field at P from
eq. (13.7a) as

-'Is

COS0-,
(13.53)

Note that sin 6 in eq. (13.7a) has been replaced by cos 6 since the element of Figure 13.3 is
z-directed whereas those in Figure 13.10 are x-directed. Since P is far from the array,

Figure 13.10 A two-element array.
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we use
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i. In the amplitude, we can set rx — r = r2 but in the phase,

d
rx — r cos I

r2 — r + r cos i

(13.54a)

(13.54b)

Thus eq. (13.53) becomes

4x r
->a/2j

4?r r cos cos \-
L2

cos

(13.55)

Comparing this with eq. (13.7a) shows that the total field of an array is equal to the field of
single element located at the origin multiplied by an array factor given by

AF = 2 cos | - (/tacos 8 + u)\ eja/2 (13.56)

Thus, in general, the far field due to a two-element array is given by

E (total) = (E due to single element at origin) X (array factor) (13.57)

Also, from eq. (13.55), note that |cos d\ is the radiation pattern due to a single element
whereas the normalized array factor, |cos[l/2(|8Jcos 6 + a)]\, is the radiation pattern of
the array if the elements were isotropic. These may be regarded as "unit pattern" and
"group pattern," respectively. Thus the "resultant pattern" is the product of the unit pattern
and the group pattern, that is,

Resultant pattern = Unit pattern X Group pattern (13.58)

This is known as pattern multiplication. It is possible to sketch, almost by inspection, the
pattern of an array by pattern multiplication. It is, therefore, a useful tool in the design of
an array. We should note that while the unit pattern depends on the type of elements the
array is comprised of, the group pattern is independent of the element type so long as the
spacing d and phase difference a, and the orientation of the elements remain the same.

Let us now extend the results on the two-element array to the general case of an N-
element array shown in Figure 13.11. We assume that the array is linear in that the ele-
ments are spaced equally along a straight line and lie along the z-axis. Also, we assume that
the array is uniform so that each element is fed with current of the same magnitude but of
progressive phase shift a, that is, Ils = /O//0,12s = Io/u, I3s = 7o/2q, and so on. We are
mainly interested in finding the array factor; the far field can easily be found from eq.
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Figure 13.11 An iV-element uniform linear array.

- d cos 6

(13.57) once the array factor is known. For the uniform linear array, the array factor is the
sum of the contributions by all the elements. Thus,

AF = 1 + eJ4r + ej2>p + + eAN-1)4,

where

= (3d cos 6 + a

(13.59)

(13.60)

In eq. (13.60), fi = 2x/X, d and a are, respectively, the spacing and interelement phase
shift. Notice that the right-hand side of eq. (13.59) is a geometric series of the form

1 + x + x2 + x3

Hence eq. (13.59) becomes

1 - x

AF =
1 -

(13.61)

(13.62)

which can be written as

AF =
_ e-jN4,/2

sin (Aty/2)

sin (\l//2)

(13.63)

The phase factor eJ(N l)*n would not be present if the array were centered about the origin.
Neglecting this unimportant term,

(13.64)AF = \b = fid cos 6 + a
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Note that this equation reduces to eq. (13.56) when N = las, expected. Also, note the fol-
lowing:

1. AF has the maximum value of TV; thus the normalized AF is obtained by dividing
AF by N. The principal maximum occurs when \J/ = 0, that is

0 = fid cos 6 + a or

2. AF has nulls (or zeros) when AF = 0, that is

Nip

cos 0 = — a

Yd

—- = ±/br, k= 1,2, 3 , . . .

(13.65)

(13.66)

where k is not a multiple of N.
3. A broadside array has its maximum radiation directed normal to the axis of the

array, that is, \p = 0, $ = 90° so that a = 0.
4. An end-fire array has its maximum radiation directed along the axis of the array,

that is, \p = 0, B = so that a =

These points are helpful in plotting AF. For N=2,3, and 4, the plots of AF are
sketched in Figure 13.12.

EXAMPLE 13.6 For the two-element antenna array of Figure 13.10, sketch the normalized field pattern
when the currents are:

(a) Fed in phase (a = 0), d = A/2

(b) Fed 90° out of phase (a = TT/2), d = A/4

Solution:

The normalized field of the array is obtained from eqs. (13.55) to (13.57) as

cos 6 cos - (0d cos 8 + a)

(a) If a = 0, d = A/2,13d = - ^ - = TT. Hence,
A 2

1
resultant
pattern

= |cos0|

1
= unit X

pattern

cos — (cos 6)

1
group
pattern

The sketch of the unit pattern is straightforward. It is merely a rotated version of that
in Figure 13.7(a) for the Hertzian dipole and is shown in Figure 13.13(a). To sketch a
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0 TT/2 IT 3TT/2 2TT

Figure 13.12 Array factor for uniform linear array.

1.08 T-V^S.—

group pattern requires that we first determine its nulls and maxima. For the nulls (or
zeros),

(-K \ i „ IT 3f
cos — cos 0 = 0 -»— cos 0 = ± —, ± — , . . .

\2 ) 2 2 2

or

For the maxima,

or

0 = 0°, 180°

cos ( — cos 0 ) = 1 —» cos 0 = 0

0 = 90°



unit pattern
(a)

x X
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group pattern
(b)

resultant pattern
(c)

Figure 13.13 For Example 13.6(a); field patterns in the plane containing the
axes of the elements.

The group pattern is as shown in Figure 13.12(b). It is the polar plot obtained by sketching

for0 = 0°, 5°, 10°, 15°,. . . . , 360° and incorporating the nulls andcos ( — cos 0

maxima at 0 = 0°, 180° and 0 = 90°, respectively. Multiplying Figure 13.13(a) with
Figure 13.13(b) gives the resultant pattern in Figure 13.13(c). It should be observed that
the field patterns in Figure 13.13 are in the plane containing the axes of the elements. Note
that: (1) In the yz-plane, which is normal to the axes of the elements, the unit pattern (= 1)
is a circle [see Figure 13.7(b)] while the group pattern remains as in Figure 13.13(b); there-
fore, the resultant pattern is the same as the group pattern in this case. (2) In the xy-plane,
0 = 7r/2, SO the unit pattern vanishes while the group pattern (= 1) is a circle.

(b) If a = TT/2, d = A/4, and fid = — - = -
A 4 2

c o s — ( c o s 0 + 1 )

I
group
pattern

I i
resultant = unit X
pattern pattern

The unit pattern remains as in Figure 13.13(a). For the group pattern, the null occurs when

COS j (1 + COS 6>) = 0 -> - (1 + COS 0) = ± y , ±-y, . . .

or

cos 8 = 1 -» 0 = 0

The maxima and minima occur when

— cos - (1 + cos 0) = 0 -» sin 0 sin - (1 + cos 0) = 0
dd I 4 J 4

sin0 = O->0 = 0°, 180°
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x X

unit pattern
(a)

group pattern
(b)

resultant pattern
(c)

Figure 13.14 For Example 13.6(b); field patterns in the plane containing the axes of
the elements.

and

sin — (1 + cos 6) = 0 —> cos I= - 1 or 6 = 180°

Each field pattern is obtained by varying 0 = 0°, 5°, 10°, 15°,. . ., 180°. Note that
8 = 180° corresponds to the maximum value of AF, whereas d = 0° corresponds to the
null. Thus the unit, group, and resultant patterns in the plane containing the axes of the el-
ements are shown in Figure 13.14. Observe from the group patterns that the broadside
array (a = 0) in Figure 13.13 is bidirectional while the end-fire array (a = (3d) in Figure
13.14 is unidirectional.

PRACTICE EXERCISE 13.6

Repeat Example 13.6 for cases when:

(a) a = IT, d = A/2, (b) a = -TT/2, d = A/4.

Answer: See Figure 13.15.

EXAMPLE 13.7 Consider a three-element array that has current ratios 1:2:1 as in Figure 13.16(a). Sketch
the group pattern in the plane containing the axes of the elements.

Solution:

For the purpose of analysis, we split the middle element in Figure 13.16(a) carrying current
27/0° into two elements each carrying current 1/0^. This results in four elements instead
of three as shown in Figure 13.16(b). If we consider elements 1 and 2 as a group and ele-
ments 3 and 4 as another group, we have a two-element array of Figure 13.16(c). Each
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x X

x X

(a)

(b)

Figure 13.15 For Practice Exercise 13.6.

//0 2IlQ_ //O Figure 13.16 For Example 13.7: (a) a three-element array
• ,_ * ^ ; i J with current ratios 1:2:1; (b) and (c) equivalent two-element

-X/2- • X / 2 -

(a)
arrays.

3 *

2»

(b)

4

1,2 3 , 4
* *

(c)
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group is a two-element array with d — X/2, a = 0, that the group pattern of the two-
element array (or the unit pattern for the three-element array) is as shown in Figure
13.13(b). The two groups form a two-element array similar to Example 13.6(a) with
d = X/2, a = 0, so the group pattern is the same as that in Figure 13.13(b). Thus, in this
case, both the unit and group patterns are the same pattern in Figure 13.13(b). The resultant
group pattern is obtained in Figure 13.17(c). We should note that the pattern in Figure
13.17(c) is not the resultant pattern but the group pattern of the three-element array. The re-
sultant group pattern of the array is Figure 13.17(c) multiplied by the field pattern of the
element type.

An alternative method of obtaining the resultant group pattern of the three-element
array of Figure 13.16 is following similar steps taken to obtain eq. (13.59). We obtain the
normalized array factor (or the group pattern) as

(AF)n = -

_\_
~ 4
_ J_
~ 2

2el*

e'1*

c o s -

where yj/ = fid cos d + a if the elements are placed along the z-axis but oriented parallel to
2TT X

the x-axis. Since a = 0, d = X/2, fid = — • — = x,
X 2

(AF)n

{AF)n

I
resultant

group pattern

cos ( — cos 6

cos | — cos i

4
unit

pattern
X

cos ( — cos 0

4
group
pattern

The sketch of these patterns is exactly what is in Figure 13.17.
If two three-element arrays in Figure 13.16(a) are displaced by X/2, we obtain a four-

element array with current ratios 1:3:3:1 as in Figure 13.18. Two of such four-element

Figure 13.17 For Example 13.7; obtain-
ing the resultant group pattern of the
three-element array of Figure 13.16(a).

unit pattern

(a)

roup pattern

(b)

resultant group
pattern

(0
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3//0_

-X/2-

/ [0_ Figure 13.18 A four-element
array with current ratios 1:3:3:1;
for Practice Exercise 13.7.

arrays, displaced by X/2, give a five-element array with current ratios 1:4:6:4:1. Contin-
uing this process results in an /^-element array, spaced X/2 and (N - l)X/2 long, whose
current ratios are the binomial coefficients. Such an array is called a linear binomial army.

PRACTICE EXERCISE 13.7

(a) Sketch the resultant group pattern for the four-element array with current ratios
1:3:3:1 shown in Figure 13.18.

(b) Derive an expression for the group pattern of a linear binomial array of N ele-
ments. Assume that the elements are placed along the z-axis, oriented parallel to the
;t-axis with spacing d and interelement phase shift a.

Answer: (a) See Figure 13.19, (b) c o s - , where if/ — fid cos d + a.

Figure 13.19 For Practice Exercise 13.7(a).

'13.8 EFFECTIVE AREA AND THE FRIIS EQUATION

In a situation where the incoming EM wave is normal to the entire surface of a receiving
antenna, the power received is

Pr = (13.67)

But in most cases, the incoming EM wave is not normal to the entire surface of the
antenna. This necessitates the idea of the effective area of a receiving antenna.

The concept of effective area or effective aperture (receiving cross section of an
antenna) is usually employed in the analysis of receiving antennas.

The effective area A, of u receiving antenna is the ratio of the time-average power
received Pr (or delivered to (he load, to be strict) to the time-average power density
;?„,, of the incident wave at the antenna.
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That is

Pr
Ob
•J avp

(13.68)

From eq. (13.68), we notice that the effective area is a measure of the ability of the antenna
to extract energy from a passing EM wave.

Let us derive the formula for calculating the effective area of the Hertzian dipole
acting as a receiving antenna. The Thevenin equivalent circuit for the receiving antenna is
shown in Figure 13.20, where Voc is the open-circuit voltage induced on the antenna termi-
nals, Zin = 7?rad + jXin is the antenna impedance, and ZL = RL + jXL is the external load
impedance, which might be the input impedance to the transmission line feeding the
antenna. For maximum power transfer, ZL = Z*n and XL = —Xin. The time-average power
delivered to the matched load is therefore

'rad

|v«
(13.69)

8 D
"ra .

For the Hertzian dipole, Rmd = S0ir2(dl/X)2 and yoc = Edl where E is the effective field
strength parallel to the dipole axis. Hence, eq. (13.69) becomes

Pr =
E\2

640TT2

The time-average power at the antenna is

_
ave "

2TJ0 240TT

Inserting eqs. (13.70) and (13.71) in eq. (13.68) gives

3X2 X2

A L 5

(13.70)

(13.71)

or

(13.72)

Figure 13.20 Thevenin equivalent of a receiving
antenna.
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where D = 1.5 is the directivity of the Hertzian dipole. Although eq. (13.72) was derived
for the Hertzian dipole, it holds for any antenna if D is replaced by GJfi, (j>). Thus, in
general

(13.73)

Now suppose we have two antennas separated by distance r in free space as shown in
Figure 13.21. The transmitting antenna has effective area Aet and directive gain Gdt, and
transmits a total power P, (= Prli<i). The receiving antenna has effective area of Aer and di-
rective gain Gdn and receives a total power of Pr. At the transmitter,

4rU

P

or

op =
ave

p
(13.74)

By applying eqs. (13.68) and (13.73), we obtain the time-average power received as

P = Op A = ^— C,,
r r ^ ave ^er * ^dr

Substituting eq. (13.74) into eq. (13.75) results in

(13.75)

(13.76)

This is referred to as the Friis transmission formula. It relates the power received by one
antenna to the power transmitted by the other, provided that the two antennas are separated
by r > 2d2l\, where d is the largest dimension of either antenna [see eq. 13.52)]. There-
fore, in order to apply the Friis equation, we must make sure that the two antennas are in
the far field of each other.

Transmitter Receiver

H r-

Figure 13.21 Transmitting and receiving antennas in free space.
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EXAMPLE 13.8
Find the maximum effective area of a A/2 wire dipole operating at 30 MHz. How much
power is received with an incident plane wave of strength 2 mV/m.

Solution:

c 3 X 108

A = - = T = 10m
/ 30 X 106

Gd(6, 0)raax = 1.64

102

(1.64)= 13.05 m2

p = Op A - — A

_ V

( 2 X 1 0 )

= 1.64/(0)

240TT
13.05 = 71.62 nW

PRACTICE EXERCISE 13.8

Determine the maximum effective area of a Hertzian dipole of length 10 cm operat-
ing at 10 MHz. If the antenna receives 3 [iW of power, what is the power density of
the incident wave?

Answer: 1.074 m2, 2.793 MW/m2

EXAMPLE 13.9
The transmitting and receiving antennas are separated by a distance of 200 A and have di-
rective gains of 25 and 18 dB, respectively. If 5 mW of power is to be received, calculate
the minimum transmitted power.

Solution:

Given that Gdt (dB) = 25 dB = 10 log10 Gdt,

Gdt = 1025 = 316.23

Similarly,

Gdr (dB) = 18 db or Gdr = 1 0 ° = 63.1
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Using the Friis equation, we have

or

P = P

Pr ~ GdrGdt [ — J P,

47rr12

= 5 x 10~3

= 1.583 W

J GdrG
dt4TT X 200 X

X

1
(63.1X316.23)

PRACTICE EXERCISE 13.9

An antenna in air radiates a total power of 100 kW so that a maximum radiated elec-
tric field strength of 12 mV/m is measured 20 km from the antenna. Find: (a) its di-
rectivity in dB, (b) its maximum power gain if r]r =

Answer: (a) 3.34 dB, (b) 2.117.

13.9 THE RADAR EQUATION

Radars are electromagnetic devices used for detection and location of objects. The term
radar is derived from the phrase radio detection and ranging. In a typical radar system
shown in Figure 13.22(a), pulses of EM energy are transmitted to a distant object. The
same antenna is used for transmitting and receiving, so the time interval between the trans-
mitted and reflected pulses is used to determine the distance of the target. If r is the dis-

k Target a

Figure 13.22 (a) Typical radar system,
(b) simplification of the system in
(a) for calculating the target cross
section a.

(b)
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tance between the radar and target and c is the speed of light, the elapsed time between the
transmitted and received pulse is 2r/c. By measuring the elapsed time, r is determined.

The ability of the target to scatter (or reflect) energy is characterized by the scattering
cross section a (also called the radar cross section) of the target. The scattering cross
section has the units of area and can be measured experimentally.

The scattering cross section is the equivalent area intercepting that amount ol
power that, when scattering isotropicall). produces at the radar a power density,
which is equal to thai scattered (or reflected) by the actual target.

That is,

= lim
4-irr2

or

<3/>
a = lim 4xr2 —-

9>
(13.77)

where SP, is the incident power density at the target T while 3 \ is the scattered power
density at the transreceiver O as in Figure 13.22(b).

From eq. (13.43), the incident power density 2P, at the target Tis

op = op = d p J
^ i "^ ave , 9 * rad

4TIT

The power received at transreceiver O is

(13.78)

or

—
Aer

(13.79)

Note that 2P, and 9 \ are the time-average power densities in watts/m2 and Prad and Pr are
the total time-average powers in watts. Since Gdr = Gdt — Gd and Aer = Aet = Ae, substi-
tuting eqs. (13.78) and (13.79) into eq. (13.77) gives

a = (4irr2)2 1
Gd

or

AeaGdPmd

(4irr2)2

(13.80a)

(13.80b)
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TABLE 13.1 Designations
of Radar Frequencies

Designation

UHF

L

S

C

X

Ku

K

Millimeter

Frequency

300-1000 MHz

1000-2000 MHz

2000^000 MHz

4000-8000 MHz

8000-12,500 MHz

12.5-18 GHz

18-26.5 GHz
>35 GHz

From eq. (13.73), Ae = \2GJAi;. Hence,

(13.81)

This is the radar transmission equation for free space. It is the basis for measurement of
scattering cross section of a target. Solving for r in eq. (13.81) results in

(13.82)

Equation (13.82) is called the radar range equation. Given the minimum detectable power
of the receiver, the equation determines the maximum range for a radar. It is also useful for
obtaining engineering information concerning the effects of the various parameters on the
performance of a radar system.

The radar considered so far is the monostatic type because of the predominance of this
type of radar in practical applications. A bistatic radar is one in which the transmitter and
receiver are separated. If the transmitting and receiving antennas are at distances rx and r2

from the target and Gdr ¥= Gdt, eq. (13.81) for bistatic radar becomes

GdtGdr

4TT
rad (13.83)

Radar transmission frequencies range from 25 to 70,000 MHz. Table 13.1 shows radar
frequencies and their designations as commonly used by radar engineers.

EXAMPLE 13.10
An S-band radar transmitting at 3 GHz radiates 200 kW. Determine the signal power
density at ranges 100 and 400 nautical miles if the effective area of the radar antenna is
9 m2. With a 20-m2 target at 300 nautical miles, calculate the power of the reflected signal
at the radar.
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Solution:

The nautical mile is a common unit in radar communications.

1 nautical mile (nm) = 1852 m

c 3 X 108

/ 3 X 10-

r -
X2 et (0.1):

= 0.1m

9 = 3600?r

For r = 100 nm = 1.852 X 105
m

ad 3600TT X 200 X 103

4TIT2 4TT(1 .852) 2 X 1010

= 5.248 mW/m2

For r = 400 nm = 4 (1.852 X 105) m

5.248

(4)2 = 0.328 mW/m2

Aea Gd P r a d

Using eq. (13.80b)

where r = 300 nm = 5.556 X 105 m

_ 9 X 20 X 36007T X 200 X 103

[4TT X 5.5562]2 X 1020

The same result can be obtained using eq. (13.81).

= 2.706 X 10"14W

PRACTICE EXERCISE 13.10

A C-band radar with an antenna 1.8 m in radius transmits 60 kW at a frequency of
6000 MHz. If the minimum detectable power is 0.26 mW, for a target cross section
of 5 m2, calculate the maximum range in nautical miles and the signal power density
at half this range. Assume unity efficiency and that the effective area of the antenna
is 70% of the actual area.

Answer: 0.6309 nm, 500.90 W/m2.
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SUMMARY 1. We have discussed the fundamental ideas and definitions in antenna theory. The basic
types of antenna considered include the Hertzian (or differential length) dipole, the
half-wave dipole, the quarter-wave monopole, and the small loop.

2. Theoretically, if we know the current distribution on an antenna, we can find the re-
tarded magnetic vector potential A, and from it we can find the retarded electromag-
netic fields H and E using

H = V X — , E = T, H X a*

The far-zone fields are obtained by retaining only \lr terms.
3. The analysis of the Hertzian dipole serves as a stepping stone for other antennas. The

radiation resistance of the dipole is very small. This limits the practical usefulness of
the Hertzian dipole.

4. The half-wave dipole has a length equal to X/2. It is more popular and of more practi-
cal use than the Hertzian dipole. Its input impedance is 73 + J42.5 fi.

5. The quarter-wave monopole is essentially half a half-wave dipole placed on a con-
ducting plane.

6. The radiation patterns commonly used are the field intensity, power intensity, and ra-
diation intensity patterns. The field pattern is usually a plot of \ES\ or its normalized
form flft). The power pattern is the plot of 2Pave or its normalized form/2(0).

7. The directive gain is the ratio of U(9, <f>) to its average value. The directivity is the
maximum value of the directive gain.

8. An antenna array is a group of radiating elements arranged so as to produce some
particular radiation characteristics. Its radiation pattern is obtained by multiply-
ing the unit pattern (due to a single element in the group) with the group pattern,
which is the plot of the normalized array factor. For an TV-element linear uniform
array,

AF =

where \j/ = 13d cos 9 + a, 0 = 2%/X, d = spacing between the elements, and a = in-
terelement phase shift.

9. The Friis transmission formula characterizes the coupling between two antennas in
terms of their directive gains, separation distance, and frequency of operation.

10. For a bistatic radar (one in which the transmitting and receiving antennas are sepa-
rated), the power received is given by

4TT
r
J

aPn•ad

For a monostatic radar, r, = r2 = r and Gdt = Gdr.
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13.1 An antenna located in a city is a source of radio waves. How much time does it take the
wave to reach a town 12,000 km away from the city?

(a) 36 s

(b) 20 us

(c) 20 ms

(d) 40 ms

(e) None of the above

13.2 In eq. (13.34), which term is the radiation term?

(a) 1/rterm

(b) l/r2term

(c) IIr" term

(d) All of the above

13.3 A very small thin wire of length X/100 has a radiation resistance of

(a) = 0 G

(b) 0.08 G

(c) 7.9 G

(d) 790 0

13.4 A quarter-wave monopole antenna operating in air at frequency 1 MHz must have an
overall length of

(a) € » X

(b) 300 m

(c) 150 m

(d) 75 m

(e) ( <sC X

13.5 If a small single-turn loop antenna has a radiation resistance of 0.04 G, how many turns
are needed to produce a radiation resistance of 1 G?

(a) 150

(b) 125

(c) 50

(d) 25

(e) 5
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13.6 At a distance of 8 km from a differential antenna, the field strength is 12 /iV/m. The field
strength at a location 20 km from the antenna is

(a) 75/xV/m

(b) 30,xV/m

(c) 4.8/xV/m

(d) 1.92/zV/m

13.7 An antenna has f/max = 10 W/sr, l/ave = 4.5 W/sr, and i\r = 95%. The input power to
the antenna is

(a) 2.222 W

(b) 12.11 W

(c) 55.55 W

(d) 59.52 W

13.8 A receiving antenna in an airport has a maximum dimension of 3 m and operates at 100
MHz. An aircraft approaching the airport is 1/2 km from the antenna. The aircraft is in
the far field region of the antenna.

(a) True

(b) False

13.9 A receiving antenna is located 100 m away from the transmitting antenna. If the effective
area of the receiving antenna is 500 cm2 and the power density at the receiving location
is 2 mW/m2, the total power received is:

(a) lOnW

(b) 100 nW

(c) 1/xW

(d) 10 ^W

(e) 100 ^W

13.10 Let R be the maximum range of a monostatic radar. If a target with radar cross section of
5 m2 exists at R/2, what should be the target cross section at 3R/2 to result in an equal
signal strength at the radar?

(a) 0.0617 m2

(b) 0.555 m2

(c) 15 m2

(d) 45 m2

(e) 405 m2

Answers: 13.Id, 13.2a, 13.3b, 13.4d, 13.5e, 13.6c, 13.7d, 13.8a, 13.9e, 13.10e.
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PROBLEMS I
13.1 The magnetic vector potential at point P(r, 8, <j>) due to a small antenna located at the

origin is given by

50 e->Br

A

where r2 = x2 + y2 + z2• Find E(r, 6, <j>, t) and H(r, d, <j>, i) at the far field.

13.2 A Hertzian dipole at the origin in free space has di = 20 c m and 7 = 1 0 cos 2irl07t A ,
find \E6s\ at the distant point (100 , 0, 0 ) .

13.3 A 2-A source operating at 300 MHz feeds a Hertzian dipole of length 5 mm situated at
the origin. Find Es and H,. at (10, 30°, 90°).

13.4 (a) Instead of a constant current distribution assumed for the short dipole of Section

13.2, assume a triangular current distribution 7, = 7O I 1 — j shown in Figure

13.23. Show that

?rad = 2 0 7TZ I -

which is one-fourth of that in eq. (13.13). Thus Rmd depends on the current distribu-
tion.

(b) Calculate the length of the dipole that will result in a radiation resistance of 0.5 0.

13.5 An antenna can be modeled as an electric dipole of length 5 m at 3 MHz. Find the radia-
tion resistance of the antenna assuming a uniform current over its length.

13.6 A half-wave dipole fed by a 50-0 transmission line, calculate the reflection coefficient
and the standing wave ratio.

13.7 A 1-m-long car radio antenna operates in the AM frequency of 1.5 MHz. How much
current is required to transmit 4 W of power?

Figure 13.23 Short dipole antenna with triangular current distri-
bution; for Problem 13.4.



PROBLEMS • 633

*13.8 (a) Show that the generated far field expressions for a thin dipole of length € carrying si-
nusoidal current Io cos @z are

,-/3rCos^ Yc0St)J ~ c o s y
2-wr sin 8

[Hint: Use Figure 13.4 and start with eq. (13.14).]

(b) On a polar coordinate sheet, plot fifi) in part (a) for € = X, 3X/2 and 2X.

*13.9 For Problem 13.4.

(a) Determine E, and H s at the far field

(b) Calculate the directivity of the dipole

*13.10 An antenna located on the surface of a flat earth transmits an average power of 200 kW.
Assuming that all the power is radiated uniformly over the surface of a hemisphere with
the antenna at the center, calculate (a) the time-average Poynting vector at 50 km, and
(b) the maximum electric field at that location.

13.11 A 100-turn loop antenna of radius 20 cm operating at 10 MHz in air is to give a 50 mV/m
field strength at a distance 3 m from the loop. Determine

(a) The current that must be fed to the antenna

(b) The average power radiated by the antenna

13.12 Sketch the normalized E-field and //-field patterns for

(a) A half-wave dipole

(b) A quarter-wave monopole

13.13 Based on the result of Problem 13.8, plot the vertical field patterns of monopole antennas
of lengths € = 3X/2, X, 5X/8. Note that a 5X/8 monopole is often used in practice.

13.14 In free space, an antenna has a far-zone field given by

where /3 = wV/xoeo. Determine the radiated power.

13.15 At the far field, the electric field produced by an antenna is

E s = — e~j/3r cos 6 cos <j> az

Sketch the vertical pattern of the antenna. Your plot should include as many points as
possible.
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13.16 For an Hertzian dipole, show that the time-average power density is related to the radia-
tion power according to

1.5 sin20 _

4irr

13.17 At the far field, an antenna produces

2 sin 6 cos 4>
ave a r W/m2, 0 < 6 < x, 0 < </> < x/2

Calculate the directive gain and the directivity of the antenna.

13.18 From Problem 13.8, show that the normalized field pattern of a full-wave (€ = X)
antenna is given by

cos(x cos 6) + 1
sin0

Sketch the field pattern.

13.19 For a thin dipole A/16 long, find: (a) the directive gain, (b) the directivity, (c) the effec-
tive area, (d) the radiation resistance.

13.20 Repeat Problem 13.19 for a circular thin loop antenna A/12 in diameter.

13.21 A half-wave dipole is made of copper and is of diameter 2.6 mm. Determine the effi-
ciency of the dipole if it operates at 15 MHz.
Hint: Obtain R( from R(/Rdc = a/28; see Section 10.6.

13.22 Find C/ave, t/max, and D if:

(a) Uifi, 4>) = sin2 20, 0 < 0 < x, 0 < 0 < 2TT

(b) Uifi, <t>) = 4 esc2 20, TT/3 < 0 < x/2, 0 < <j> < x

(c) U(6, 4>) = 2 sin2 0 sin2 <j>, 0 < d < x, 0 < <t> < x

13.23 For the following radiation intensities, find the directive gain and directivity:

(a) U(6, 4>) = s in 2 0, 0 < 0 < x, 0 < <j> < 2x

(b) U(6, <t>) = 4 sin2 0 c o s 2 0 , O < 0 < T T , 0 < 0 < TT

(c) Uifi, <t>) = 10 cos2 0 sin2 4>/2, 0 < 0 < x, 0 < <f> < x/2

13.24 In free space, an antenna radiates a field

4TIT

at far field. Determine: (a) the total radiated power, (b) the directive gain at 0 = 60°.

13.25 Derive Es at far field due to the two-element array shown in Figure 13.24. Assume that
the Hertzian dipole elements are fed in phase with uniform current /o cos cot.
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Figure 13.24 Two-element array of Problem
13.25.

-*-y

13.26 An array comprises two dipoles that are separated by one wavelength. If the dipoles are
fed by currents of the same magnitude and phase,

(a) Find the array factor.

(b) Calculate the angles where the nulls of the pattern occur.

(c) Determine the angles where the maxima of the pattern occur.

(d) Sketch the group pattern in the plane containing the elements.

13.27 An array of two elements that are fed by currents that are 180° out of phase with each
other. Plot the group pattern if the elements are separated by: (a) d = A/4, (b) d = X/2

13.28 Sketch the group pattern in the xz-plane of the two-element array of Figure 13.10 with

(a) d = A, a = -all

(b) d = A/4, a = 3TT/4

(c) d = 3A/4, a = 0

13.29 An antenna array consists of N identical Hertzian dipoles uniformly located along the z-
axis and polarized in the ^-direction. If the spacing between the dipole is A/4, sketch the
group pattern when: (a) N = 2, (b) N = 4.

13.30 Sketch the resultant group patterns for the four-element arrays shown in Figure 13.25.

- X / 2 - -X/2-

(a)

'12. l[0_ Figure 13.25 For Problem 13.30.

x/2-

'12.
•X/4-

I jit 12

-X/4-

(b)

//3ir/2

-X/4-
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13.31 For a 10-turn loop antenna of radius 15 cm operating at 100 MHz, calculate the effective
area at $ = 30°, <j> = 90°.

13.32 An antenna receives a power of 2 /xW from a radio station. Calculate its effective area if
the antenna is located in the far zone of the station where E = 50 mV/m.

13.33 (a) Show that the Friis transmission equation can be written as

"r _ AerAet

(b) Two half-wave dipole antennas are operated at 100 MHz and separated by 1 km. If
80 W is transmitted by one, how much power is received by the other?

13.34 The electric field strength impressed on a half-wave dipole is 3 mV/m at 60 MHz. Cal-
culate the maximum power received by the antenna. Take the directivity of the half-wave
dipole as 1.64.

13.35 The power transmitted by a synchronous orbit satellite antenna is 320 W. If the antenna
has a gain of 40 dB at 15 GHz, calculate the power received by another antenna with a
gain of 32 dB at the range of 24,567 km.

13.36 The directive gain of an antenna is 34 dB. If the antenna radiates 7.5 kW at a distance of
40 km, find the time-average power density at that distance.

13.37 Two identical antennas in an anechoic chamber are separated by 12 m and are oriented
for maximum directive gain. At a frequency of 5 GHz, the power received by one is 30
dB down from that transmitted by the other. Calculate the gain of the antennas in dB.

13.38 What is the maximum power that can be received over a distance of 1.5 km in free space
with a 1.5-GHz circuit consisting of a transmitting antenna with a gain of 25 dB and a re-
ceiving antenna with a gain of 30 dB? The transmitted power is 200 W.

13.39 An L-band pulse radar with a common transmitting and receiving antenna having a di-
rective gain of 3500 operates at 1500 MHz and transmits 200 kW. If the object is 120 km
from the radar and its scattering cross section is 8 m2, find

(a) The magnitude of the incident electric field intensity of the object

(b) The magnitude of the scattered electric field intensity at the radar

(c) The amount of power captured by the object

(d) The power absorbed by the antenna from the scattered wave

13.40 A transmitting antenna with a 600 MHz carrier frequency produces 80 W of power. Find
the power received by another antenna at a free space distance of 1 km. Assume both an-
tennas has unity power gain.

13.41 A monostable radar operating at 6 GHz tracks a 0.8 m2 target at a range of 250 m. If the
gain is 40 dB, calculate the minimum transmitted power that will give a return power of
2/tW.
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13.42 In the bistatic radar system of Figure 13.26, the ground-based antennas are separated by
4 km and the 2.4 m2 target is at a height of 3 km. The system operates at 5 GHz. For Gdt

of 36 dB and Gdr of 20 dB, determine the minimum necessary radiated power to obtain a
return power of 8 X 10~12W.

Scattered
wave

Receiving
antenna

Target a Figure 13.26 For Problem 13.42.

3 km

Transmitting
antenna



Chapter 14

MODERN TOPICS

The future has several names. For the weak, it is the impossible. For the faith-
hearted, it is the unknown. For the thoughtful and valiant, it is ideal.

—VICTOR HUGO

14.1 INTRODUCTION

Besides wave propagation, transmission lines, waveguides, and antennas, there are several
other areas of applications of EM. These include microwaves, electromagnetic interfer-
ence and compatibility, fiber optics, satellite communication, bioelectromagnetics, electric
machines, radar meteorology, and remote sensing. Due to space limitation, we shall cover
the first three areas in this chapter: microwaves, electromagnetic interference and compat-
ibility, and fiber optics. Since these topics are advanced, only an introductory treatment of
each topic will be provided. Our discussion will involve applying the circuit concepts
learned in earlier courses and the EM concepts learned in earlier chapters.

14.2 MICROWAVES

At the moment, there are three means for carrying thousands of channels over long dis-
tances: (a) microwave links, (b) coaxial cables, and (c) fiber optic, a relatively new tech-
nology, to be covered later.

Microwaves arc I:M wines whose IrequiMicies rnngo from approximately .MX) M H /
to I (KM) Gi l / .

For comparison, the signal from an AM radio station is about 1 MHz, while that from an
FM station is about 100 MHz. The higher frequency edge of microwaves borders on the
optical spectrum. This accounts for why microwaves behave more like rays of light than
ordinary radio waves. You may be familiar with microwave appliances such as the mi-
crowave oven, which operates at 2.4 GHz, the satellite television, which operates at about
4 GHz, and the police radar, which works at about 22 GHz.

Features that make microwaves attractive for communications include wide available
bandwidths (capacities to carry information) and directive properties of short wavelengths.
Since the amount of information that can be transmitted is limited by the available band-

638
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width, the microwave spectrum provides more communication channels than the radio and
TV bands. With the ever increasing demand for channel allocation, microwave communi-
cations has become more common.

A microwave system1 normally consists of a transmitter (including a microwave os-
cillator, waveguides, and a transmitting antenna) and a receiver subsystem (including a re-
ceiving antenna, transmission line or waveguide, microwave amplifiers, and a receiver). A
microwave network is usually an interconnection of various microwave components and
devices. There are several microwave components and variations of these components.
Common microwave components include:

• Coaxial cables, which are transmission lines for interconnecting microwave compo-
nents

• Resonantors, which are usually cavities in which EM waves are stored

• Waveguide sections, which may be straight, curved or twisted

• Antennas, which transmit or receive EM waves efficiently

• Terminators, which are designed to absorb the input power and therefore act as one-
ports

• Attenuators, which are designed to absorb some of the EM power passing through it
and thereby decrease the power level of the microwave signal

• Directional couplers, which consist of two waveguides and a mechanism for cou-
pling signals between them

• Isolators, which allow energy flow only in one direction

• Circulators, which are designed to establish various entry/exit points where power
can either be fed or extracted

• Filters, which suppress unwanted signals and/or separate signals of different fre-
quencies.

The use of microwaves has greatly expanded. Examples include telecommunications,
radio astronomy, land surveying, radar, meteorology, UHF television, terrestrial mi-
crowave links, solid-state devices, heating, medicine, and identification systems. We will
consider only four of these.

1. Telecommunications: (the transmission of analog or digital information from one
point to another) is the largest application of microwave frequencies. Microwaves propa-
gate along a straight line like a light ray and are not bent by the ionosphere as are lower fre-
quency signals. This makes communication satellites possible. In essence, a communica-
tion satellite is a microwave relay station that is used to link two or more ground-based
transmitters and receivers. The satellite receives signals at one frequency, repeats or am-
plifies it, and transmits it at another frequency. Two common modes of operation for satel-
lite communication are portrayed in Figure 14.1. The satellite provides a point-to-point

'For a comprehensive treatment of microwaves, see D. M. Pozar, Microwave Engineering, New
York, John Wiley, 2nd., 1998.
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Satellite

(a) Point-to-point link via satellite microwave

: : : , Satellite

Multiple receivers Multiple receivers

(b) Broadcast link via satellite microwave

Figure 14.1 Satellite communications configurations. Source: W. Stallings,
Data and Computer Communications, 5th ed. Upper Saddle River, NJ: Pren-
tice Hall, 1977, p. 90.
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link in Figure 14.1 (a), while it is being used to provide multiple links between one ground-
based transmitter and several ground-based receivers in Figure 14.1(b).

2. Radar Systems: Radar systems provided the major incentive for the development
of microwave technology because one obtains better resolution for radar instruments at
higher frequencies. Only the microwave region of the spectrum could provide the required
resolution with antennas of reasonable size. The ability to focus a radiated wave sharply is
what makes microwaves so useful in radar applications. Radar is used to detect aircraft,
guide supersonic missiles, observe and track weather patterns, and control flight traffic at
airports. It is also used in burglar alarms, garage-door openers, and police speed detectors.

3. Heating: Microwave energy is more easily directed, controlled, and concentrated
than low-frequency EM waves. Also, various atomic and molecular resonances occur at
microwave frequencies, creating diverse application areas in basic science, remote
sensing, and heating methods. The heating properties of microwave power are useful in a
wide variety of commercial and industrial applications. The microwave oven, shown in
Figure 14.2, is a typical example. When the magnetron oscillates, microwave energy is ex-
tracted from the resonant cavities. The reflections from the stationary walls and the motion
of the stirring fan cause the microwave energy to be well distributed. Thus the microwave
enables the cooking process to be fast and even. Besides cooking, microwave heating
properties are used in physical diathermy and in drying potato chips, paper, cloth, etc.

A microwave circuit consists of microwave components such as sources, transmission
lines, waveguides, attenuators, resonators, circulators, and filters. One way of analyzing
such as a circuit is to relate the input and output variables of each component. Several
sets of parameters can be used for relating input and output variables but at high frequen-
cies such as microwave frequencies where voltage and current are not well defined,
S-parameters are often used to analyze microwave circuits. The scattering or ^-parameters
are defined in terms of wave variables which are more easily measured at microwave fre-
quencies than voltage and current.

Stirrer fan Waveguide

Metal
cavity

Magnetron
tube

Power supply

Figure 14.2 Microwave oven. Source: N. Schlager (ed.), How Products are Made. Detroit, MI: Gale
Research Inc., 1994, p. 289.
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Consider the two-port network shown in Figure 14.3. The traveling waves are related
to the scattering parameters according to

b1 = Sua1 + Sna2

or in matrix form

_ \SU

\S2\

5,2
S22

(14.1)

(14.2)

where ax and a2 represent the incident waves at ports 1 and 2 respectively; while b\ and b2

represent the reflected waves, as shown in Figure 14.3. For the S matrix, the off-diagonal
terms represent voltage wave transmission coefficients, while the diagonal terms represent
reflection coefficients. If the network is reciprocal, it will have the same transmission char-
acteristics in either direction, i.e.,"

If the network is symmetrical, then

= S22

For a matched two-port, the reflection coefficients are zero and

Sn =S22 = 0

(14.3)

(14.4)

(14.5)

The input reflection coefficient can be expressed in terms of the S-parameters and the
load ZL as

where

_ b\ _ c ,
a - S22i- L

(14.6)

(14.7)

-O-

- O

- O

b2
o-

Figure 14.3 A two-port network.
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Similarly, the output reflection coefficient (with Vg = 0) can be expressed in terms of the
generator impedance Zg and the S-parameters as

r = a2

(14.8)
vg=o

where

_zg-zo
8 " zK + z o

(14.9)

EXAMPLE 14.1 The following S-parameters are obtained for a microwave transistor operating at 2.5 GHz:
Su = 0.85/-300 , 512 = 0.07/56^, 521 = 1.68/120°, 5 U = O.85/-4O0. Determine the
input reflection coefficient when ZL = Zo - 75 0.

Solution:

From Eq. (14.7),

Hence, using Eq. (14.6) leads to

T, = Sn = 0.857-30°

PRACTICE EXERCISE 14.1

For an hybrid coupler, the VSWRs for the input and output ports are respectively
given as

1+

\S

- \S

Calculate s, and so for the following scattering matrix:

0.4 J0.6
[j0.6 0.2

Answer: 2.333, 1.5
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14.3 ELECTROMAGNETIC INTERFERENCE
AND COMPATIBILITY

Every electronic device is a source of radiated electromagnetic fields called radiated emis-
sions. These are often an accidental by-product of the design.

Electromagnetic interference (KMI) is the degradation in the performance of a
device clue to the fields making up the electromagnetic environment.

The electromagnetic environment consists of various apparatuses such as radio and TV
broadcast stations, radar, and navigational aids that radiate EM energy as they operate.
Every electronic device is susceptible to EMI. Its influence can be seen all around us. The
results include "ghosts" in TV picture reception, taxicab radio interference with police
radio systems, power line transient interference with personal computers, and self-oscilla-
tion of a radio receiver or transmitter circuit.

Electromagnetic compatibility (liMCj is achieved when a device functions satis-
factorily without introducing intolerable disturbances to the electromagnetic envi-
ronment or to other devices in its neighborhood.

EMC2 is achieved when electronic devices coexist in harmony, such that each device func-
tions according to its intended purpose in the presence of, and in spite of, the others. EMI
is the problem that occurs when unwanted voltages or currents are present to influence the
performance of a device, while EMC is the solution to the problem. The goal of EMC is to
ensure system or subsystem compatibility and this is achieved by applying proven design
techniques, the use of which ensures a system relatively free of EMI problems.

EMC is a growing field because of the ever-increasing density of electronic circuits in
modern systems for computation, communication, control, etc. It is not only a concern to
electrical and computer engineers, but to automotive engineers as well. The increasing ap-
plication of automotive electronic systems to improve fuel economy, reduce exhaust emis-
sions, ensure vehicle safety, and provide assistance to the driver has resulted in a growing
need to ensure compatibility during normal operation. We will consider the sources and
characteristics of EMI. Later, we will examine EMI control techniques.

A. Source and Characteristics of EMI
First, let us classify EMI in terms of its causes and sources. The classification will facilitate
recognition of sources and assist in determining means of control. As mentioned earlier,
any electronic device may be the source of EMI, although this is not the intention of the de-
signer. The cause of the EMI problem may be either within the system, in which case it is
termed an intrasystem problem, or from the outside, in which case it is called an intersys-

2 For an in-depth treatment of EMC, see C. R. Paul, Introduction to Electromagnetic Compatibility,
New York: John Wiley, 1992.
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Aircraft

Ship

— E = Emitters of Interference
S = Susceptible Equipment

Figure 14.4 Typical examples of intersystem EMI problems. Source: J.I.N. Violette et al, Electro-
magnetic Compatibility Handbook. New York: Van Nostrand Reinhold, 1987, p. 4.

tern problem. Figure 14.4 shows intersystem EMI problems. The term "emitter" is com-
monly used to denote the source of EMI, while the term "susceptor" is used to designate a
victim device. Tables 14.1 and 14.2 present typical causes of both intrasystem and inter-
system problems. Both intrasystem and intersystem EMI generally can be controlled by
the system design engineer by following some design guidelines and techniques. For in-

TABLE14.1 Intrasystem EMI Causes

Emitters Susceptors

Power supplies

Radar transmitters

Mobile radio transmitters

Fluorescent lights

Car ignition systems

Relays

Radar receivers

Mobile radio receivers

Ordnance

Car radio receivers
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TABLE 14.2 Intersystem EMI Causes

Emitters Susceptors

Lightning strokes
Computers
Power Lines
Radar transmitters
Police radio transmitters
Fluorescent lights
Aircraft transmitters

Radio receivers
TV sets
Heart pacers

Aircraft navigation systems

Taxicab radio receivers

Industrial controls
Ship receivers

trasystem EMI problems, for example, the design engineer may apply proper grounding
and wiring arrangements, shielding of circuits and devices, and filtering.

The sources of EMI can be classified as natural or artificial (man-made). The origins
of EMI are basically undesired conducted emissions (voltages and/or currents) or radiated
emissions (electric and/or magnetic fields). Conducted emissions are those currents that
are carried by metallic paths (the unit's power cord) and placed on the common power
network where they may cause interference with other devices that are connected to this
network. Radiated emissions concern the electric fields radiated by the device that may be
received by other electronic devices causing interference in those devices. Figure 14.5 il-
lustrates the conceptual difference between conducted and radiated paths.

No single operating agency has jurisdiction over all systems to dictate actions neces-
sary to achieve EMC. Thus, EMC is usually achieved by industrial association, voluntary
regulation, government-enforced regulation, and negotiated agreements between the af-
fected parties. Frequency plays a significant role in EMC. Frequency allocations and as-
signments are made according to the constraints established by international treaties. The
Radio Regulations resulting from such international treaties are published by the Interna-

Conducted
interference

Power cables

Figure 14.5 Differences between
conducted and radiated emissions.
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tional Telecommunication Union (ITU). The Federal Communications Commission (FCC)
has the authority over radio and wire communications in the United States. The FCC has
set limits on the radiated and conducted emissions of electronic devices including elec-
tronic typewriters, calculators, televisions, printers, modems, and personal computers. It is
illegal to market an electronic device in the United States unless its radiated and conducted
emissions have been measured and do not exceed the limits of FCC regulations. Therefore,
any electronic device designed today that is designed without incorporating EMC design
principles will probably fail to comply with the FCC limits.

B. EMI Control Techniques

To control or suppress EMI, the three common means employed in the design process are
grounding, shielding, and filtering. Although each technique has a distinct role in system
design, proper grounding may sometimes minimize the need for shielding and filtering;
also proper shielding may minimize the need for filtering. Therefore, we discuss the three
techniques, grounding, shielding, and filtering in that order.

Grounding:

Grounding is the establishment of an electrically conductive path between two points to
connect electrical and electronic elements of a system to one another or to some reference
point, which may be designated the ground. An ideal ground plane is a zero-potential,
zero-impedance body that can be used as a reference for all signals in associated circuitry,
and to which any undesired current can be transferred for the elimination of its effects.

The purpose of the floating ground is to isolate circuits or equipment electrically from
a common ground plane. This type of grounding technique may cause a hazard. The
single-point grounding is used to minimize the effects of facility ground currents. The
multiple-point grounding minimizes ground lead lengths. The ground plane might be a
ground wire that is carried throughout the system or a large conductive body.

Bonding is the establishment of a low-impedance path between two metal surfaces.
Grounding is a circuit concept, while bonding denotes the physical implementation of that
concept. The purpose of a bond is to make a structure homogeneous with respect to the
flow of electrical currents, thus avoiding the development of potentials between the metal-
lic parts, since such potentials may result in EMI. Bonds provide protection from electrical
shock, power circuit current return paths, and antenna ground plane connections, and also
minimize the potential difference between the devices. They have the ability to carry large
fault current.

There are two types of bond: direct and indirect bonds. The direct bond is a metal-to-
metal contact between the elements connected, while the indirect bond is a contact through
the use of conductive jumpers.

The dc resistance Rdc of a bond is often used as an indication of bond quality. It is
given by

aS
(14.10)
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where € is the length of the bond, a is its conductivity, and S is its cross-sectional area. As
frequency increases, the bond resistance increases due to skin effect. Thus the ac resistance
Rac is given as

adw
(14.11)

where w is the width of the bond and 5 is the skin depth.
Bonding effectiveness can be expressed as the difference (in dB) between the induced

voltages on an equipment case with and without the bond trap.

Shielding:

The purpose of shielding is to confine radiated energy to a specific region or to prevent ra-
diated energy from entering a specific region. Shields may be in the form of partitions and
boxes as well as in the form of cable and connector shields.

Shield types include solid, nonsolid (e.g., screen), and braid, as is used on cables. In
all cases, a shield can be characterized by its shielding effectiveness. The shielding effec-
tiveness (SE) is defined as

SE=.101og 10
incident power density

transmitted power density
(14.12)

where the incident power density is the power density at a measuring point before a shield
is installed and the transmitted power is the power density at the same point after the shield
is in place. In terms of the field strengths, the shielding effectiveness may also be defined
as the ratio of the field Et transmitted through to the inside to the incident field Et. Thus, SE
is given by

SE= 20 lo g l 0§ (14.13)

For magnetic fields,

SE = 20 log10
Ht

(14.14)

For example, aluminum has a = 3.5 X 107 S/m, e = eo, jt = /xo, an aluminum sheet at
100 MHz has an SE of 100 dB at a thickness of 0.01 mm. Since an-aluminum sheet for a
computer cabinet is much thicker than this, an aluminum case is considered a highly effec-
tive shield. A cabinet that effectively shields the circuits inside from external fields is also
highly effective in preventing radiation from those circuits to the external world. Because
of the effective shield, radiated emission from the computer system is caused by openings
in the cabinet such as cracks, holes from disc drives, etc. and from wires that penetrate the
cabinet such as power cord and cables to external devices.
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Filtering:

An electrical filter is a network of lumped or distributed constant resistors, inductors, and
capacitors that offers comparatively little opposition to certain frequencies, while blocking
the passage of other frequencies. Filter provides the means whereby levels of conducted
interference are substantially reduced.

The most significant characteristic of a filter is the insertion loss it provides as a func-
tion of frequency. Insertion loss (IL) is defined as

/L = 201og 1 0 ^ (14.15)

where V1 is the output voltage of a signal source with the filter in the circuit, and V2 is the
output voltage of the signal source without the use of the filter. Low-pass filters are com-
monly used in EMC work. The insertion loss for the low-pass filters is given by

IL = 10 log10 (1 + F2) dB (14.16)

_ \irfRC, for capacitive filter
\

where

k irfL/R, for inductive filter

and/is the frequency.

14.4 OPTICAL FIBER

In the mid 1970s, it was recognized that the existing copper technology would be unsuit-
able for future communication networks. In view of this, the telecommunication industry
invested heavily in research into optical fibers. Optical fiber provides an attractive alterna-
tive to wire transmission lines such are twisted pair and coaxial cable (or coax). Optical
fiber3 has the following advantages over copper:

• Bandwidth: It provides a very high capacity for carrying information. It has suffi-
cient bandwidth that bit-serial transmission can be used, thereby considerably re-
ducing the size, cost, and complexity of the hardware.

• Attenuation: It provides low attenuation and is therefore capable of transmitting
over a long distance without the need of repeaters.

• Noise susceptibility: It neither radiates nor is affected by electromagnetic interfer-
ence. The immunity from EMI is due to the fact that there are no metal parts so that
there can be no conduction currents.

3 There are several excellent books that can provide further exposition on optical fiber. See, for
example, S. L. W. Meardon, The Elements of Fiber Optics, Englewood Cliffs, NJ: Regents/Prentice
Hall, 1993.
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• Security: It is more secure from malicious interception because it is not easy to tap
a fiber-optic cable without interrupting communication.

• Cost: The cost of optical fibers has fallen considerably over the past few years and
will continue to fall. So is the cost of related components such as optical transmit-
ters and receivers.

These impressive advantages of fiber optics over electrical media have made it a popular
transmission medium in recent times. Although optical fiber is more expensive and is used
mainly for point-to-point links, there has been a rapid changeover from coax and twisted
pair to optical fibers for telecommunication systems, instrumentation, cable TV networks,
industrial automation, and data transmission systems.

An optical fiber is a dielectric waveguide operating at optical frequency.

Optical frequencies are on the order of 100 THz. As shown in Figure 14.6, an optical fiber
consists of three concentric cylindrical sections: the core, the cladding, and the jacket. The
core consists of one or more thin strands made of glass or plastic. The cladding is the glass
or plastic coating surrounding the core, which may be step-index or graded-index. In the
step-index core, the refractive index is uniform but undergoes an abrupt change at the
core-cladding interface, while the graded-index core has a refractive index that varies with
the radial distance from the center of the fiber. The jacket surrounds one or a bundle of
cladded fibers. The jacket is made of plastic or other materials to protect against moisture,
crushing, etc.

A ray of light entering the core will be internally reflected when incident in the denser
medium and the angle of incidence is greater than a critical value. Thus a light ray is re-
flected back into the original medium and the process is repeated as light passes down the
core. This form of propagation is multimode, referring to the variety of angles that will
reflect, as shown in Figure 14.7. It causes the signal to spread out in time and limits the rate

Core
N

Jacket

4- - Cladding

Light at less than
critical angle is
absorbed in jacket

Angle of
incidence

Angle of
reflection

Figure 14.6 Optical fiber.
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a. Multimode Absorptive jacket

Cladding

b. Multimode graded index

c. Single mode

Figure 14.7 Optical fiber transmission modes. Source: W. Stallings, Local and
Metropolitan Area Networks, 4th ed. New York: Macmillan, 1993, p. 85.
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at which data can be accurately received. By reducing the radius of the core, a single-mode
propagation occurs. This eliminates distortion.

A fiber-optic system is similar to a conventional transmission system. As shown in
Figure 14.8, a fiber-optic system consists of a transmitter, a transmission medium, and a re-
ceiver. The transmitter accepts and converts input electrical signals in analog or digital
form to optical signals. The transmitter sends the optical signal by modulating the output of
a light source (usually an LED or a laser) by varying its intensity. The optical signal is
transmitted over the optical fiber to a receiver. At the receiver, the optical signal is con-
verted back into an electrical signal by a photodiode.

The performance of a fiber-optic link depends on the numerical aperture (NA), atten-
uation, and dispersion characteristics of the fiber. As signals propagate through the fiber,
they become distorted due to attenuation and dispersion.

Numerical Aperture:

This is the most important parameter of an optical fiber. The value of NA is dictated by the
refractive indices of the core and cladding. By definition, the refractive index n of a
medium is defined as

speed of light in a vacuum

speed of light in the medium
1

c
um

(14.18)

Since fim = /x0 in most practical cases,

n = (14.19)

indicating that the refractive index is essentially the square root of the dielectric constant.
Keep in mind that er can be complex as discussed in Chapter 10. For common materials,
n = 1 for air, n = 1.33 for water, and n = 1.5 for glass.

As a light ray propagates from medium 1 to medium 2, Snell's law must be satisfied.

= n2 sin (14.20)

Electrical data
input

Electrical to
optical
converter

Optical fiber cable

Transmission
medium

Light source

Figure 14.8 A typical fiber-optic system.

Optical to
electrical
converter

Light detector

Electrical data
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where d\ is the incident angle in medium 1 and 92 is the transmission angle in medium 2.
The total reflection occurs when 82 = 90°, resulting in

= 6C = sin"1 ^ (14.21)

where 9C is the critical angle for total internal reflection. Note that eq. (14.21) is valid only
if n! > n2 since the value of sin 9C must be less than or equal to 1.

Another way of looking at the light-guiding capability of a fiber is to measure the ac-
ceptance angle da, which is the maximum angle over which light rays entering the fiber
will be trapped in its core. We know that the maximum angle occurs when 6C is the critical
angle thereby satisfying the condition for total internal reflection. Thus, for a step-index
fiber,

NA = sin 6a = n, sin 6C = (14.22)

where «, is the refractive index of the core and n2 is the refractive index of the cladding, as
shown in Figure 14.9. Since most fiber cores are made of silica, ny = 1.48. Typical values
of NA range between 0.19 and 0.25. The larger the value of NA, the more optical power
the fiber can capture from a source.

Due to the numerous modes a fiber may support, it is called a multimode step-index
fiber. The mode volume V is given by

V = (14.23)

where d is the fiber core diameter and A is the wavelength of the optical source. From
eq. (14.23), the number N of modes propagating in a step-index fiber can be estimated as

N = (14.24)

• Cladding

X N « O ~ 1
\ /

, ^^U Core ^""""\

Figure 14.9 Numerical aperture and acceptance angle.

L
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Attenuation:

As discussed in Chapter 10, attentuation is the reduction in the power of the optical signal.
Power attenuation (or fiber loss) in an optical fiber is governed by

dz
= -ccP (14.25)

where a is the attenuation and P is the optical power. In eq. (14.25), it is assumed that a
wave propagates along z. By solving eq. (14.25), the power P(0) at the input of the fiber
and the power P(() of the light after £ are related as

P(£) = P(0)e~ (14.26)

It is customary to express attenuation a in dB/km and length I of the fiber in km. In this
case, eq. (14.26) becomes

at = 101og10
P(0)
P(€)

(14.27)

Thus, the power of the light reduces by a decibels per kilometer as it propagates through
the fiber. Equation (14.27) may be written as

P(<3>) = P(0) = 10-crf/10

For I = 100 km,

P(0) _ f 10~100 for coaxial cable
/>(€) \ lO~ 2 for fiber

indicating that much more power is lost in the coaxial cable than in fiber.

(14.28)

(14.29)

Dispersion:
m

This is the spreading of pulses of light as they propagate down a fiber. As the pulses repre-
senting 0s spread, they overlap epochs that represent Is. If dispersion is beyond a certain
limit, it may confuse the receiver. The dispersive effects in single-mode fibers are much
smaller than in multimode fibers.

EXAMPLE 14.2
A step-index fiber has a core diameter of 80 (im, a core refractive index of 1.62, and a nu-
merical aperture of 0.21. Calculate: (a) the acceptance angle, (b) the refractive index that
the fiber can propagate at a wavelength of 0.8 fim, (c) the number of modes that the fiber
can propagate at a wavelength of 0.8 /xm.
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Solution:

(a) Since sin da = NA = 0.21, then

= sin"1 0.21 = 12.12°

(b) From NA = vn\ - n\, we obtain

(c)

Hence

n2 = Vn? - NA2 = Vl .62 2 - 0.212 = 1.606

irdNA
X " " ' "A X

TT(80 X 10~6) X 0.21

0.8 X 10 - 6 = 65.973

V1

N = — = 2176 modes

PRACTICE EXERCISE 14.2

A silica fiber has a refractive index of 1.48. It is surrounded by a cladding material
with a refractive index of 1.465. Find: (a) the critical angle above which total inter-
nal reflection occurs, (b) the numerical aperture of the fiber.

Answer: (a) 81.83°, (b) 0.21.

EXAMPLE 14.3 Light pulses propagate through a fiber cable with an attenuation of 0.25 dB/km. Determine
the distance through which the power of pulses is reduced by 40%.

Solution:

If the power is reduced by 40%, it means that

P(€)
P(0)

Hence

= 1 - 0.4 = 0.6

1 0

10 , _L
" 0.25 l 0 g l ° 0.6
= 8.874 km

I
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PRACTICE EXERCISE 14.3

A 10-km fiber with an attenuation of 0.2 dB/km serves as an optical link between
two cities. How much of input power is received?

Answer: 63.1%.

SUMMARY 1. Microwaves are EM waves of very short wavelengths. They propagate along a straight
line like light rays and can therefore be focused easily in one direction by antennas.
They are used in radar, guidance, navigation, and heating.

2. Electromagnetic compatibility (EMC) is the capability of electrical and electronic
devices to operate in their intended electromagnetic environment without suffering or
causing unacceptable degradation as a result of EMI.

3. Electromagnetic interference (EMI) is the lack of EMC. It can be suppressed by
grounding, shielding, and filtering.

4. An optical fiber is a dielectric waveguiding structure operating at optical frequencies
and it consists of a core region and a cladding region.

5. Advantages of optical fiber over copper wire include: (1) large bandwidth, (2) low at-
tenuation, (3) immunity to EMI, and (4) low cost.

REVIEW QUESTIONS

14.1 Microwaves have long wavelengths.

(a) True

(b) False

14.2 The wavelength in free space of a microwave signal whose frequency is 3 GHz is:

(a) 1 mm

(b) 10 mm

(c) 10 cm

(d) l m

14.3 Which of the following is not a source of EMI?

(a) Optical fiber

(b) Personal computer

(c) Police radar

(d) Aircraft

(e) Fluorescent lamp
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14.4 Optical fiber is:

(a) A transmission line

(b) A waveguide

(c) Both

14.5 Unlike coax and twisted pair, optical fibers are immune to:

(a) High-frequency transmission

(b) Signal attenuation

(c) Power loss

(d) Electromagnetic interference

14.6 As a consultant, you have been asked to design a network for an auditorium. Speed and
cost are no issues. However, interference with a nearby radio station is of concern.
Which of the following media could be appropriate to implement the network?

(a) Microwave

(b) Coaxial cable

(c) Fiber optic

(d) Radio

14.7 Applications of optical fiber include:

(a) Undersea cable

(b) Long-distance telecommunication

(c) High-speed data transmission

(d) Medical instrumentation

(e) All of the above

14.8 Light rays are confined within a simple optical fiber by means of:

(a) Total internal reflection at the outer edge of the cladding

(b) Total internal reflection at the core-cladding interface

(c) Reflection at the fiber's jacket

(d) Refraction

(e) Defraction

14.9 An optical fiber has a core with a refractive index of 1.45 and a cladding with a refrac-
tive index of 1.42. The numerical aperture of the fiber is:

(a) 0.12

(b) 0.18

(c) 0.29

(d) 0.38
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PROBLEMS

14.10 A 20-km long fiber-optic cable has an output power of 0.02 mW. If the fiber loss is 0.48
dB/km, what is the input power to the fiber?

(a) 52piW

(b) 19/xW
(c) 7/xW
(d) 2ftW

Answers: 14.1b, 14.2c, 14.3a, 14.4b, 14.5d, 14.6c, 14.7e, 14.8b, 14.9c, 14.10a.

14.1 Discuss briefly some applications of microwaves other than those discussed in the text.

14.2 A useful set of parameters, known as the scattering transfer parameters, is related to the
incident and reflected waves as

l fr,, Ti2] \b2
T2I T22\[a2

(a) Express the T-parameters in terms of the S-parameters.
(b) Find T when

' 0.2 0.4
S =

0.4 0.2

14.3 The S-parameters of a two-port network are:

Sn = 0.33 - jO.16, Sl2 = S21 = 0.56, S22 = 0.44 - jO.62

Find the input and output reflection coefficients when ZL = Zo = 50 Q and Zg = 2ZO.

14.4 Why can't regular lumped circuit components such as resistors, inductors, and capaci-
tors be used at microwave frequencies?

14.5 In free space, a microwave signal has a frequency of 8.4 GHz. Calculate the wavelength
of the signal.

14.6 An electrostatic discharge (ESD) can be modeled as a capacitance of 125 pF charged to
1500 V and discharging through a 2-km resistor. Obtain the current waveform.

*14.7 The insertion loss of a filter circuit can be calculated in terms of its A, B, C and D pa-
rameters when terminated by Zg and ZL as shown in Figure 14.10. Show that

AZL + B + CZgZL + DZgIL = 20 log!

14.8 A silver rod has rectangular cross section with height 0.8 cm and width 1.2 cm. Find:

(a) The dc resistance per 1 km of the conductor

(b) The ac resistance per 1 km of the conductor at 6 MHz

14.9 The speed of light in a given medium is measured as 2.1 X 108 m/s. Find its refractive
index.



PROBLEMS 659

Figure 14.10 For Problem 14.5.

14.10 How will optical fiber be useful in EMI isolation?

14.11 A glass fiber has a core diameter of 50 ju.m, a core refractive index of 1.62, and a cladding
with a refractive index of 1.604. If light having a wavelength of 1300 nm is used, find:

(a) The numerical aperture

(b) The acceptance angle

(c) the number of transmission modes

14.12 An optical fiber with a radius of 2.5 fjm and a refractive index of 1.45 is surrounded by
an air cladding. If the fiber is illuminated by a ray of 1.3 /xm light, determine:

(a) V

(b) NA

(c) An estimate of how many modes can propagate.

14.13 An optical fiber with an attenuation of 0.4 dB/km is 5 km long. The fiber has »! = 1.53,
n2 = 1.45, and a diameter of 50 pm. Find:

(a) The maximum angle at which rays will enter the fiber and be trapped

(b) The percentage of input power received

14.14 A laser diode is capable of coupling 10 mW into a fiber with attenuation of 0.5 dB/km. If
the fiber is 850 m long, calculate the power received at the end of the fiber.

14.15 Attenuation a10 in Chapter 10 is in Np/m, whereas attenuation al4 in this chapter is in
dB/km. What is the relationship between the two?

14.16 A lightwave system uses a 30-km fiber link with a loss of 0.4 dB/km. If the system re-
quires at least 0.2 mW at the receiver, calculate the minimum power that must be
launched into the fiber.

14.17 (a) Discuss the advantages derived from using a fiber optic cable,

(b) What is pulse dispersion?



Chapter 15

NUMERICAL METHODS

The recipe for ignorance is: be satisfied with your opinions and content with your
knowledge.

—ELBERT HUBBARD

15.1 INTRODUCTION

In the preceding chapters we considered various analytic techniques for solving EM prob-
lems and obtaining solutions in closed form. A closed form solution is one in the form of an
explicit, algebraic equation in which values of the problem parameters can be substituted.
Some of these analytic solutions were obtained assuming certain situations, thereby
making the solutions applicable to those idealized situations. For example, in deriving the
formula for calculating the capacitance of a parallel-plate capacitor, we assumed that the
fringing effect was negligible and that the separation distance was very small compared
with the width and length of the plates. Also, our application of Laplace's equation in
Chapter 6 was restricted to problems with boundaries coinciding with coordinate surfaces.
Analytic solutions have an inherent advantage of being exact. They also make it easy to
observe the behavior of the solution for variation in the problem parameters. However, an-
alytic solutions are available only for problems with simple configurations.

When the complexities of theoretical formulas make analytic solution intractable, we
resort to nonanalytic methods, which include (1) graphical methods, (2) experimental
methods, (3) analog methods, and (4) numerical methods. Graphical, experimental, and
analog methods are applicable to solving relatively few problems. Numerical methods
have come into prominence and become more attractive with the advent of fast digital
computers. The three most commonly used simple numerical techniques in EM are
(1) moment method, (2) finite difference method, and (3) finite element method. Most EM
problems involve either partial differential equations or integral equations. Partial differ-
ential equations are usually solved using the finite difference method or the finite element
method; integral equations are solved conveniently using the moment method. Although
numerical methods give approximate solutions, the solutions are sufficiently accurate for
engineering purposes. We should not get the impression that analytic techniques are out-
dated because of numerical methods; rather they are complementary. As will be observed
later, every numerical method involves an analytic simplification to the point where it is
easy to apply the method.

The Matlab codes developed for computer implementation of the concepts developed
in this chapter are simplified and self-explanatory for instructional purposes. The notations

660
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used in the programs are as close as possible to those used in the main text; some are
defined wherever necessary. These programs are by no means unique; there are several
ways of writing a computer program. Therefore, users may decide to modify the programs
to suit their objectives.

15.2 FIELD PLOTTING

In Section 4.9, we used field lines and equipotential surfaces for visualizing an electrosta-
tic field. However, the graphical representations in Figure 4.21 for electrostatic fields and
in Figures 7.8(b) and 7.16 for magnetostatic fields are very simple, trivial, and qualitative.
Accurate pictures of more complicated charge distributions would be more helpful. In this
section, a numerical technique that may be developed into an interactive computer
program is presented. It generates data points for electric field lines and equipotential lines
for arbitrary configuration of point sources.

Electric field lines and equipotential lines can be plotted for coplanar point sources
with simple programs. Suppose we have N point charges located at position vectors r t,
r2 , . . . , rN, the electric field intensity E and potential V at position vector r are given, re-
spectively, by

y Qk(r-rk)
t=i Airs \r - rk\

3
(15.1)

and

ift\ 4ire |r - rk\

If the charges are on the same plane (z = constant), eqs. (15.1) and (15.2) become

N

E= 2
N

k=\

- xkf + (y - ykff
2

Qk

- xkf
To plot the electric field lines, follow these steps:

- ykf}}
m

(15.2)

(15.3)

(15.4)

1. Choose a starting point on the field line.
2. Calculate Ex and Ey at that point using eq. (15.3).
3. Take a small step along the field line to a new point in the plane. As shown in

Figure 15.1, a movement A€ along the field line corresponds to movements AJC and
Ay along x- and y-directions, respectively. From the figure, it is evident that

Ax Ex

E [E2
X

2]U2
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field line

new point

point

Figure 15.1 A small displacement on a field line.

or

Ax = (15.5)

Similarly,

y

• Ey
(15.6)

Move along the field line from the old point (x, y) to a new point x' = x + Ax,
y' =y + Ay.

4. Go back to steps 2 and 3 and repeat the calculations. Continue to generate new points
until a line is completed within a given range of coordinates. On completing the line,
go back to step 1 and choose another starting point. Note that since there are an infi-
nite number of field lines, any starting point is likely to be on a field line. The points
generated can be plotted by hand or by a plotter as illustrated in Figure 15.2.

To plot the equipotential lines, follow these steps:

1. Choose a starting point.
2. Calculate the electric field (Ex, Ey) at that point using eq. (15.3).

Figure 15.2 Generated points on £-field lines
(shown thick) and equipotential lines (shown dotted).
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3. Move a small step along the line perpendicular to £-field line at that point. Utilize
the fact that if a line has slope m, a perpendicular line must have slope — Mm. Since
an fi-field line and an equipotential line meeting at a given point are mutually or-
thogonal there,

Ax = (15.7)

Ay =
+

(15.8)

Move along the equipotential line from the old point (x, y) to a new point
(x + Ax, y + Ay). As a way of checking the new point, calculate the potential at
the new and old points using eq. (15.4); they must be equal because the points are
on the same equipotential line.

4. Go back to steps 2 and 3 and repeat the calculations. Continue to generate new
points until a line is completed within the given range of x and >>. After completing
the line, go back to step 1 and choose another starting point. Join the points gener-
ated by hand or by a plotter as illustrated in Figure 15.2.

By following the same reasoning, the magnetic field line due to various current distri-
butions can be plotted using Biot-Savart law. Programs for determining the magnetic field
line due to line current, a current loop, a Helmholtz pair, and a solenoid can be developed.
Programs for drawing the electric and magnetic field lines inside a rectangular waveguide
or the power radiation pattern produced by a linear array of vertical half-wave electric
dipole antennas can also be written.

EXAMPLE 15.1
Write a program to plot the electric field and equipotential lines due to:

(a) Two point charges Q and —4Q located at (x, y) = ( - 1 , 0) and (1,0), respectively.

(b) Four point charges Q, -Q,Q, and - Q located at (x,y) = ( - 1 , -1 ) , (1 , -1 ) , (1, 1), and
(—1, 1), respectively. Take QIAire = landA€ = 0.1. Consider the range — 5 < x , y < 5.

Solution:

Based on the steps given in Section 15.2, the program in Figure 15.3 was developed.
Enough comments are inserted to make the program as self-explanatory as possible. For
example, to use the program to generate the plot in Figure 15.4(a), load program plotit in
your Matlab directory. At the command prompt in Matlab, type

plotit ([1 - 4 ] , [-1 0; 1 0], 1, 1, 0.1, 0.01, 8, 2, 5)

where the numbers have meanings provided in the program. Further explanation of the
program is provided in the following paragraphs.

Since the £"-field lines emanate from positive charges and terminate on negative
charges, it seems reasonable to generate starting points (xs, ys) for the £-field lines on small
circles centered at charge locations (xQ, yQ); that is,

xs = xQ + r cos 0

y, = Vn + rsind

(15.1.1a)

(15.1.1b)
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function plotit(charges,location,ckEField,ckEq,DLE,DLV,NLE,NLV,PTS)
figure;
hold on;
% Program for plotting the electric field lines
% and equipotential lines due to coplanar point charges
% the plot is to be within the range -5<x,y<5
%
% This is the correct usage:
% function plotit(charges, location,ckEField,ckEq,DLE,DLV,NLE,NLV,PTS)
%
% where,
% charges = a vector containing the charges
% location = a matrix where each row is a charge location
% ckEField = Flag set to 1 plots the Efield lines
% ckEq = Flag set to 1 plots the Equipotential lines
% DLE or DLV = the increment along E & V lines
% NLE = No. of E-Field lines per charge
% NLV = No. of Equipotential lines per charge
% PTS => Plots every PTS point (i.e. if PTS = 5 then plot
every 5th point)
% note that constant Q/4*Pie*ErR is set equal to 1.0

% Determine the E-Field Lines
% For convenience, the starting points
distributed about charge locations
Q=charges;
XQ = location(:,1);
YQ = location):,2);
JJ=1;
NQ = length(charges);
if (ckEField)
for K=1:NQ

for I =1:NLE
THETA = 2*pi*(1-1)/(NLE);

(XS,YS) are radially

XS=XQ(K) +
YS=YQ(K) +
XE=XS;
YE=YS;
JJ=JJ+1;
if (~mod(JJ

plot (XE
end
while(1)

0.1*cos
0.1*sin

,PTS))
, YE) ;

% Find i ncrement
EX=0;
EY=0;

(THETA);
(THETA);

and new point (X,Y)

Figure 15.3 Computer program for Example 15.1.
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for J=1:NQ
R =sqrt((XE-XQ(J))~2 + (YE - YQ(J)) A 2 ) ;
EX = EX +Q(J)*(XE-XQ(J) ) / (FT3) ;
EY = EY +Q(J)*(YE-YQ(J))/(RA3);

end
E = sqrt(EX^2 + EYA2);

% CHECK FOR A SINGULAR POINT
if (E <=.00005)

break;
end
DX = DLE*EX/E;
DY = DLE*EY/E;
% FOR NEGATIVE CHARGE, NEGATE DX & DY SO THAT INCREMENT
% IS AWAY FROM THE CHARGE
if (Q(K) < 0)

DX = -DX;
DY = -DY;

end
XE = XE + DX;
YE = YE + DY;
% CHECK WHETHER NEW POINT IS WITHIN THE GIVEN RANGE OR
TOO
% CLOSE TO ANY OF THE POINT CHARGES - TO AVOID SINGULAR
POINT
if ((abs(XE) >= 5) | (abs(YE) >= 5))

break;
end

if (sum(abs(XE-XQ) < .05 & abs(YE-YQ) < .05) >0)
break;

end
JJ=JJ+1;
if (~mod(JJ,PTS))

plot (XE,YE);
end

end % while loop
end % I =1:NLE

end % K = 1:NQ
end % if
% NEXT, DETERMINE THE EQUIPOTENTIAL LINES
% FOR CONVENIENCE, THE STARTING POINTS (XS,YS) ARE
% CHOSEN LIKE THOSE FOR THE E-FIELD LINES
if (ckEq)
JJ=1;
DELTA = .2;
ANGLE = 45*pi/180;

Figure 15.3 (Continued)
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for K =1:NQ
FACTOR = .5;
for KK = 1:NLV
XS = XQ(K) + FACTOR*cos(ANGLE);
YS = YQ(K) + FACTOR*sin(ANGLE);
if ( abs(XS) >= 5 | abs(YS) >=5)

break;
end
DIR = 1;
XV = XS;
YV = YS;
JJ=JJ+1;
if (~mod(JJ,PTS))

plot(XV,YV);
end

% FIND INCREMENT AND NEW POINT (XV,YV)
N=l;
while (1)

EX = 0;
EY = 0;
for J = 1:NQ

R = sqrt((XV-XQ(J))"2 + (YV-YQ(J))^2);
EX = EX + Q(J)*(XV-XQ(J))/(RA3);
EY = EY + Q(J)*(YV-YQ(J))/(R"3);

end
E=sqrt(EXA2 + EY~2);
if (E <= .00005)

FACTOR = 2 *FACTOR;
break;

end
DX = -DLV*EY/E;
DY = DLV*EV/E;
XV = XV + DIR*DX;
YV = YV + DIR*DY;
% CHECK IF THE EQUIPOTENTIAL LINE LOOPS BACK TO (X,YS)
R0 = sqrt((XV - XS)"2 + (YV - YS)^2);
if (R0 < DELTA & N < 50)

FACTOR = 2 *FACTOR;
break;

end
% CHECK WHETHER NEW POINT IS WITHIN THE GIVEN RANGE
% IF FOUND OUT OF RANGE, GO BACK TO THE STARTING POINT
% (S,YS)BUT INCREMENT IN THE OPPOSITE DIRECTION
if (abs(XV) > 5 | abs(YV) > 5)

DIR = DIR -2;
XV = XS;
YV = YS;

Figure 15.3 (Continued)
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i f (abs(DlR) > 1)
FACTOR = 2 *FACTOR;
break;

end
else

if (sumfabs(XV-XQ) < .005 & abs(YV-YQ) < .005) >0)
break;

end
end
JJ=JJ+1;
if (~mod(JJ,PTS))

N=N+1;
plot(XV,YV);

end
end % WHILE loop

end % KK
end % K

end % if

Figure 15.3 (Continued)

where r is the radius of the small circle (e.g., r = 0.1 or 0.05), and 6 is a prescribed angle
chosen for each £-field line. The starting points for the equipotential lines can be generated
in different ways: along the x- and y-axes, along line y = x, and so on. However, to make
the program as general as possible, the starting points should depend on the charge loca-
tions like those for the £-field lines. They could be chosen using eq. (15.1.1) but with fixed
0(e.g., 45°) and variable r (e.g., 0.5, 1.0, 2.0,. . .).

The value of incremental length A€ is crucial for accurate plots. Although the smaller
the value of A€, the more accurate the plots, we must keep in mind that the smaller the
value of A€, the more points we generate and memory storage may be a problem. For
example, a line may consist of more than 1000 generated points. In view of the large
number of points to be plotted, the points are usually stored in a data file and a graphics
routine is used to plot the data.

For both the .E-field and equipotential lines, different checks are inserted in the
program in Figure 15.3:

(a) Check for singular point (E = 0?)

(b) Check whether the point generated is too close to a charge location.

(c) Check whether the point is within the given range of —5 < x,y < 5.

(d) Check whether the (equipotential) line loops back to the starting point.

The plot of the points generated for the cases of two point charges and four point
charges are shown in Figure 15.4(a) and (b), respectively.
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Figure 15.4 For Example 15.1; plots of £-field lines and equipoten-
tial lines due to (a) two point charges, and (b) four point charges
(a two-dimensional quadrupole).

PRACTICE EXERCISE 15.1

Write a complete program for plotting the electric field lines and equipotential lines
due to coplanar point charges. Run the program for iV = 3; that is, there are three
point charges -Q, +Q, and -Q located at (x,y) = ( -1 ,0) , (0, 1), and (1,0) re-
spectively. Take Q/4irs = 1, A€ = 0.1 or 0.01 for greater accuracy and limit your
plot to - 5 S j t , y < 5.

Answer: See Figure 15.5.
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Figure 15.5 For Practice Exercise 15.1.

15.3 THE FINITE DIFFERENCE METHOD

The finite difference method1 (FDM) is a simple numerical technique used in solving prob-
lems like those solved analytically in Chapter 6. A problem is uniquely defined by three
things:

1. A partial differential equation such as Laplace's or Poisson's equations
2. A solution region
3. Boundary and/or initial conditions

A finite difference solution to Poisson's or Laplace's equation, for example, proceeds in
three steps: (1) dividing the solution region into a grid of nodes, (2) approximating the dif-
ferential equation and boundary conditions by a set of linear algebraic equations (called
difference equations) on grid points within the solution region, and (3) solving this set of
algebraic equations.

'For an extensive treatment of the finite difference method, see G. D. Smith, Numerical Solution of
Partial Differential Equations: Finite Difference Methods, 2nd edition. Oxford: Clarendon, 1978.

L
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Step 1: Suppose we intend to apply the finite difference method to determine the elec-
tric potential in a region shown in Figure 15.6(a). The solution region is divided into rec-
tangular meshes with grid points or nodes as in Figure 15.6(a). A node on the boundary
of the region where the potential is specified is called a fixed node (fixed by the problem)
and interior points in the region are called free points (free in that the potential is
unknown).

Step 2: Our objective is to obtain the finite difference approximation to Poisson's
equation and use this to determine the potentials at all the free points. We recall that
Poisson's equation is given by

(15.9a)

For two-dimensional solution region such as in Figure 15.6(a), pv is replaced by ps,

T = 0, so
d2V

dz

d2v d2v
dx2 dy2

From the definition of the derivative of V(x, y) at point (x0, yo),

V =
dV
dx

V(xo + Ax, yo) - V(xo - Ax, yo)
2Ax

2 Ax

(15.9b)

(15.10)

yo + A v

/ 1

h K,

(b)

Figure 15.6 Finite difference solution pattern: (a) division of the solution
into grid points, (b) finite difference five-node molecule.
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where Ax is a sufficiently small increment along x. For the second derivative, which is the
derivative of the first derivative V,

V" =
dx2

dV ^ V'(xo + Ax/2,vo) - V'(xo - Ax/2,yo)

dx Ax
V(xo + Ax,y0) - 2V(xo,yo) + V(x0 - Ax,y0)

Vi+lJ - 2VU

(Ax)1

7

i-U

(Ax)2
(15.11)

Equations (15.10) and (15.11) are the finite difference approximations for the first and
second partial derivatives of V with respect to x, evaluated at x = xo. The approximation in
eq. (15.10) is associated with an error of the order of the Ax while that of eq. (15.11) has an
associated error on the order of (Ax)2. Similarly,

V(xo,yo + Ay) - 2V(xo, yo) + V(xo,yo - Ay)d2V

dyz (Ayf
ViJ+l -

(Ay)2
(15.12)

Substituting eqs. (15.11) and (15.12) into eq. (15.9b) and letting Ax = Ay = h gives

Vi
lJ

V,_w + ViJ+l

or

(15.13)

where h is called the mesh size. Equation (15.13) is the finite difference approximation to
Poisson's equation. If the solution region is charge-free (ps = 0), eq. (15.9) becomes
Laplace's equation:

dx2 dy2
(15.14)

The finite difference approximation to this equation is obtained from eq. (15.13) by setting
ps = 0; that is

1

4
ViJ+l + Vu-i) (15.15)

This equation is essentially a five-node finite difference approximation for the potential at
the central point of a square mesh. Figure 15.6(b) illustrates what is called the finite differ-
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ence five-node molecule. The molecule in Figure 15.6(b) is taken out of Figure 15.6(a).
Thus eq. (15.15) applied to the molecule becomes

V4) (15.16)

This equation clearly shows the average-value property of Laplace's equation. In other
words, Laplace's equation can be interpreted as a differential means of stating the fact that
the potential at a specific point is the average of the potentials at the neighboring points.

Step 3: To apply eq. (15.16) [or eq. (15.13)] to a given problem, one of the following
two methods is commonly used:

A. Iteration Method

We start by setting initial values of the potentials at the free nodes equal to zero or to any
reasonable guessed value. Keeping the potentials at the fixed nodes unchanged at all times,
we apply eq. (15.16) to every free node in turn until the potentials at all free nodes are cal-
culated. The potentials obtained at the end of this first iteration are not accurate but just ap-
proximate. To increase the accuracy of the potentials, we repeat the calculation at every
free node using old values to determine new ones. The iterative or repeated modification of
the potential at each free node is continued until a prescribed degree of accuracy is
achieved or until the old and the new values at each node are satisfactorily close.

B. Band Matrix Method

Equation (15.16) applied to all free nodes results in a set of simultaneous equations of the
form

[A] [V] = [B] (15.17)

where [A] is a sparse matrix (i.e., one having many zero terms), [V] consists of the
unknown potentials at the free nodes, and [B] is another column matrix formed by the
known potentials at the fixed nodes. Matrix [A] is also banded in that its nonzero terms
appear clustered near the main diagonal because only nearest neighboring nodes affect the
potential at each node. The sparse, band matrix is easily inverted to determine [V\. Thus we
obtain the potentials at the free nodes from matrix [V\ as

[V] = [B] (15.18)

The finite difference method can be applied to solve time-varying problems. For
example, consider the one-dimensional wave equation of eq. (10.1), namely

d2<p

dt2 (15.19)
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where u is the wave velocity and <P is the E- or //-field component of the EM wave. The
difference approximations of the derivatives at (xo, to) or O',y')th node shown in Figure 15.7

are

dx'

dt2

(Ax)2

<*v. -
(At)2

Inserting eqs. (15.20) and (15.21) in eq. (15.20) and solving for 4>iJ+i gives

2(1 - a) <PtJ - * w _ !

where

a =
u At

Ax

(15.20)

(15.21)

(15.22)

(15.23)

It can be shown that for the solution in eq. (15.22) to be stable, a £ 1. To start the finite
difference algorithm in eq. (15.22), we use the initial conditions. We assume that at t = 0,
d<t>ifi/dt = 0 and use (central) difference approximation (see Review Question 15.2) to
get

i JL -X. JL

ili = 0
dt 2At

or

(15.24)

Substituting eq. (15.24) into eq. (15.22) and taking j = 0 (t = 0), we obtain

,,o + *,-+i.o) + 2(1 - a)*,-i0 - <PiA

r,, + At. /+ 1

?„ - A i. i - 1

/„ 2A/ . / - 2 _

Figure 15.7 Finite difference solution pattern
for wave equation.

/ • 2 / - I / / + 1 / + 2

A-,, - 2A.v vu - A.v xo x,, + A x x,, + 2A.v
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or

*;,i ~ ^ [«(^;-i,o + *i+i,o) + 2(1 - a)$,-j0] (15.25)

With eq. (15.25) as the "starting" formula, the value of 4> at any point on the grid can be
obtained directly from eq. (15.22). Note that the three methods discussed for solving
eq. (15.16) do not apply to eq. (15.22) because eq. (15.22) can be used directly with
eq. (15.25) as the starting formula. In other words, we do not have a set of simultaneous
equations; eq. (15.22) is an explicit formula.

The concept of FDM can be extended to Poisson's, Laplace's, or wave equations in
other coordinate systems. The accuracy of the method depends on the fineness of the grid
and the amount of time spent in refining the potentials. We can reduce computer time and
increase the accuracy and convergence rate by the method of successive overrelaxation, by
making reasonable guesses at initial values, by taking advantage of symmetry if possible,
by making the mesh size as small as possible, and by using more complex finite difference
molecules (see Figure 15.41). One limitation of the finite difference method is that inter-
polation of some kind must be used to determine solutions at points not on the grid. One
obvious way to overcome this is to use a finer grid, but this would require a greater number
of computations and a larger amount of computer storage.

EXAMPLE 15.2 Solve the one-dimensional boundary-value problem —<P" = x2, 0 < x ^ 1 subject to
<P(0) = 0 = <P(l). Use the finite difference method.

Solution:

First, we obtain the finite difference approximation to the differential equation <P" = —x2,
which is Poisson's equation in one dimension. Next, we divide the entire domain
0 < x < 1 into N equal segments each of length h (= I/A/) as in Figure 15.8(a) so that
there are (N + 1) nodes.

d2<i>

dx2

<P(xo ~ 2<P(xo) + <P(xo - h)

h

Figure 15.8 For Example 15.2.

x= 1

(a)

l * /

(b)
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or

Thus

or

- r 2 =
A ;

- 2<Pj

h

~2<P = -x2h2 -

_ l 2 2

2

Using this finite difference scheme, we obtain an approximate solution for various values
of N. The Matlab code is shown in Figure 15.9. The number of iterations NI depends on the
degree of accuracy desired. For a one-dimensional problem such as this, NI = 50 may
suffice. For two- or three-dimensional problems, larger values of NI would be required (see
Table 15.1). It should be noted that the values of <P at end points (fixed nodes) are held
fixed. The solutions for N = 4 and 10 are shown in Figure 15.10.

We may compare this with the exact solution obtained as follows. Given that
d2(P/dx2 = ~x2, integrating twice gives

<P = + Ax + B
12

% ONE-DIMENSIONAL PROBLEM OF EXAMPLE 15.2
% SOLVED USING FINITE DIFFERENCE METHOD
%
% h = MESH SIZE
% ni = NO. OF ITERATIONS DESIRED

P = [ ] ;
n=2 0;
ni=1000;
1=1.0;
h = 1/n;
phi=zeros(n+1,1);
x=h*[0:n]';
xl=x(2:n);
for k=l:ni

phi ( [2 :n] ) = [phi (3 :n+l) +phi (l:n-l) +xl.'N2*h"2] /2;
end
% CALCULATE THE EXACT VALUE ALSO
phiex=x.*(1.0-x.A3)/12.0;
diary a:test.out
[[l:n+l]' phi phiex]
diary off

Figure 15.9 Computer program for Example 15.2.

L
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Figure 15.10 For Example 15.2: plot of <P(x). Continuous curve is for
iV = 10; dashed curve is for N = 4.

where A and B are integration constants. From the boundary conditions,

= 0 - > 5 = 0

1 1
or A = —0(1) = 0 - > 0 = + A

Hence, the exact solution is <P = x(l — x3)/12, which is calculated in Figure 15.9 and
found to be very close to case N = 10.

PRACTICE EXERCISE 15.2

Solve the differential equation d2yldx2 + y = 0 with the boundary conditions
y(0) = 0, y(l) = 1 using the finite difference method. Take Ax = 1/4.

Answer: Compare your result with the exact solution y(x) = —
sin(;c)

sin(l)

EXAMPLE 15.3
Determine the potential at the free nodes in the potential system of Figure 15.11 using the
finite difference method.

Solution:

This problem will be solved using the iteration method and band matrix method.
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Figurel5.il For Example 15.3.
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, 3 0 V

Method 1 (Iteration Method): We first set the initial values of the potential at the free
nodes equal to zero. We apply eq. (15.16) to each free node using the newest surrounding
potentials each time the potential at that node is calculated. For the first iteration:

Vl = 1/4(0 + 20 + 0 + 0) = 5

V2 = 1/4(5 + 0 + 0 + 0) = 1.25

V3 = 1/4(5 + 20 + 0 + 0) = 6.25

V4 = 1/4(1.25 + 6.25 + 0 + 0) = 1.875

and so on. To avoid confusion, each time a new value at a free node is calculated, we cross
out the old value as shown in Figure 15.12. After V8 is calculated, we start the second iter-
ation at node 1:

Vx = 1/4(0 + 20 + 1.25 + 6.25) = 6.875

V2 = 1/4(6.875 + 0 + 0 + 1.875) = 2.187

and so on. If this process is continued, we obtain the uncrossed values shown in Figure
15.12 after five iterations. After 10 iterations (not shown in Figure 15.12), we obtain

V{ = 10.04, V2 = 4.956, V3 = 15.22, V4 = 9.786

V5 = 21.05, V6 = 18.97, V7 = 15.06, V8 = 11.26

Method 2 (Band Matrix Method): This method reveals the sparse structure of the
problem. We apply eq. (15.16) to each free node and keep the known terms (prescribed po-
tentials at the fixed nodes) on the right side while the unknown terms (potentials at free
nodes) are on the left side of the resulting system of simultaneous equations, which will be
expressed in matrix form as [A] [V] = [B].
For node 1,

-4V, + V2 + V3 = - 2 0 - 0
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15.02

~T4. OO
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20

-30

-30
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Figure 15.12 For Example 15.3; the values not crossed out are the solutions
after five iterations.

For node 2,

For node 3,

For node 4,

For node 5,

V, + 4V, + V4 = - 0 - 0

j - 4V3 + V4 + V5 = - 2 0

v3 - 4V4 + y6 = - o

V3 - 4V5 + Vb = - 2 0 - 30
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For node 6,

For node 7,

For node 8,

V4 + V5 - 4V6 + V7 = - 3 0

V6 - 4V7 + Vs = - 3 0 - 0

V7 - 4V8 = - 0 - 0 - 30

Note that we have five terms at each node since we are using a five-node molecule. The
eight equations obtained are put in matrix form as:

•-4
• 1
' . 1

6'
0
0
0
0

I
- 4

0
• .1

0
0
0
0

1
0

- 4
1

• . 1

<y
0
0

0
i'
I
4
0
1

6'
0

0
' • 0

r0
- 4

i

• o
0"

0
0

• . 0

1 •

1
- 4

1
• 0

0
0
0

• P
o' •
1

- 4
1

0
0
0
0

.0

6:
r

- 4 -

v2
v3
v4
v5
V6

v7
vs

- 2 0
0

- 2 0
0

- 5 0
- 3 0
- 3 0
- 3 0

or

[A] [V] = [B]

where [A] is the band, sparse matrix, [V] is the column matrix consisting of the unknown
potentials at the free nodes, and [6] is the column matrix formed by the potential at the
fixed nodes. The "band" nature of [A] is shown by the dotted loop.

Notice that matrix [A] could have been obtained directly from Figure 15.11 without
writing down eq. (15.16) at each free node. To do this, we simply set the diagonal (or self)
terms A,, = —4 and set Atj = lifi and 7 nodes are connected or Atj = 0 if i andj nodes are
not directly connected. For example, A23 = A32 = 0 because nodes 2 and 3 are not con-
nected whereas A46 = A64 = 1 because nodes 4 and 6 are connected. Similarly, matrix [B]
is obtained directly from Figure 15.11 by setting Bt equal to minus the sum of the potentials
at fixed nodes connected to node i. For example, B5 = —(20 + 30) because node 5 is con-
nected to two fixed nodes with potentials 20 V and 30 V. If node i is not connected to any
fixed node, B, = 0.

By inverting matrix [A] using Matlab, we obtain

M = [AV1 [B]

or

V, = 10.04, V2 = 4.958, V3 = 15.22, V4 = 9.788

V5 = 21.05, V6 = 18.97, V7 = 15.06, V8 = 11.26

which compares well with the result obtained using the iteration method.



680 I I Numerical Methods

Figure 15.13 For Practice Exercise 15.3.

50 V

PRACTICE EXERCISE 15.3

Use the iteration method to find the finite difference approximation to the potentials
at points a and b of the system in Figure 15.13.

Answer: Va = 10.01 V, Vb = 28.3 V.

EXAMPLE 15.4 Obtain the solution of Laplace's equation for an infinitely long trough whose rectangular
cross section is shown in Figure 15.14. Let V) = 10 V, V2 = 100 V, V3 = 40 V, and
V4 = 0 V.

Solution:

We shall solve this problem using the iteration method. In this case, the solution region has
a regular boundary. We can easily write a program to determine the potentials at the grid
points within the trough. We divide the region into square meshes. If we decide to use a
15 X 10 grid, the number of grid points along x is 15 + 1 = 16 and the number of grid
points along y is 10 + 1 = 11. The mesh size h = 1.5/15 = 0.1 m.The 15 X 10 grid is il-

Figure 15.14 For Example 15.4.

1.0m

V, = 0 V K, = 100 V

Vl = 10 V
1.5 m
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Figure 15.15 For Example 15.4; a 15 X 10
t(»5, 10) grid.

(8,0)
•(15,0)

lustrated in Figure 15.15. The grid points are numbered (/,/) starting from the lower left-
hand corner of the trough. Applying eq. (15.15) and using the iteration method, the com-
puter program in Figure 15.16 was developed to determine the potential at the free
nodes. At points (x,y) = (0.5, 0.5), (0.8, 0.8), (1.0, 0.5), and (0.8, 0.2) corresponding to
(ij) = (5, 5), (8, 8), (10, 5), and (8, 2), respectively, the potentials after 50, 100, and 200
iterations are shown in Table 15.1. The exact values (see Problem 6.18(c)), obtained using
the method of separation of variables and a program similar to that of Figure 6.11, are also
shown. It should be noted that the degree of accuracy depends on the mesh size h. It is
always desirable to make h as small as possible. Also note that the potentials at the fixed
nodes are held constant throughout the calculations.

% USING FINITE DIFFERENCE (ITERATION) METHOD
% THIS PROGRAM SOLVES THE TWO-DIMENSIONAL BOUNDARY-VALUE
% PROBLEM (LAPLACE'S EQUATION) SHOWN IN FIG. 15.14.
% ni = NO. OF ITERATIONS
% nx = NO. OF X GRID POINTS
% ny = NO. OF Y GRID POINTS
% v(i,j) = POTENTIAL AT GRID POINT (i,j) OR (x,y) WITH
% NODE NUMBERING STARTING FROM THE LOWER LEFT-HAND
% CORNER OF THE TROUGH

vl = 10.0;
v2 = 100.0;
v3 = 40.0;
v4 = 0.0;
ni = 2 00;
nx = 16;
ny = 11;
% SET INITIAL VALUES EQUAL TO ZEROES
v = zeros(nx,ny);
% FIX POTENTIALS ARE FIXED NODES

Figure 15.16 Computer Program for Example 15.4.
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for i=2:nx-l

v ( i,1) = vl;

v ( i , ny) = v3 ;

end

for j=2:ny-l

v(1,j) = v4;

v(nx,j) = v2;

end

v(l,1) = 0.5*(vl + v4);

v(nx,1) = 0.5*(vl + v2);

v(l,ny) = 0.5*(v3 + v 4 ) ;

v(nx,ny) = 0.5*(v2 + v3);

% NOW FIND v(i,j) USING EQ. (15.15) AFTER ni ITERATIONS

for k=l:ni

for i = 2:nx-l

for j=2:ny-l

v(i,j) = 0.25*( v(i+l,j)

end

end

end

diary a:testl.out

[v(6,6), v(9,9), v(ll,6), v(9,3)]

[ [l:nx, l:ny] v(i,j) ]

diary off

Figure 15.16 (Continued)

TABLE 15.1 Solution of Example 15.4 (Iteration

Method) at Selected Points

Coordinates
(*,y)

(0.5, 0.5)
(0.8, 0.8)
(1.0,0.5)
(0.8, 0.2)

Number of Iterations

50

20.91
37.7
41.83
19.87

100

22.44
38.56
43.18
20.94

200

22.49
38.59
43.2
20.97

Exact Value

22.44
38.55
43.22
20.89

PRACTICE EXERCISE 15.4

Consider the trough of Figure 15.17. Use a five-node finite difference scheme to find

the potential at the center of the trough using (a) a 4 X 8 grid, and (b) a 12 X 24

grid.

Answer: (a) 23.8 V, (b) 23.89 V.
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Figure 15.17 For Practice Exercise 15.4.
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15.4 THE MOMENT METHOD

Like the finite difference method, the moment method2 or the method of moments (MOM)
has the advantage of being conceptually simple. While the finite difference method is used
in solving differential equations, the moment method is commonly used in solving integral
equations.

For example, suppose we want to apply the moment method to solve Poisson's equa-
tion in eq. (15.9a). It can be shown that an integral solution to Poisson's equation is

V =
Alter

(15.26)

We recall from Chapter 4 that eq. (15.26) can be derived from Coulomb's law. We also
recall that given the charge distribution pv(x, y, z), we can always find the potential
V(x, y, z), the electric field E(x, y, z), and the total charge Q. If, on the other hand, the po-
tential V is known and the charge distribution is unknown, how do we determine pv from
eq. (15.26)? In that situation, eq. (15.26) becomes what is called an integral equation.

An integral equation is one involving ihc unknown function under the inloiiral sign.

It has the general form of

V(x) = K(x, t) p{t) dt (15.27)

where the functions K(x, i) and V(t) and the limits a and b are known. The unknown func-
tion p(t) is to be determined; the function K(x, t) is called the kernel of the equation. The

2The term "moment method" was first used in Western literature by Harrington. For further exposi-
tion on the method, see R. F. Harrington, Field Computation by Moment Methods. Malabar, FL:
Krieger, 1968.
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moment method is a common numerical technique used in solving integral equations such
as in eq. (15.27). The method is probably best explained with an example.

Consider a thin conducting wire of radius a, length L(L Ŝ> a) located in free space as
shown in Figure 15.18. Let the wire be maintained at a potential of Vo. Our goal is to de-
termine the charge density pL along the wire using the moment method. Once we deter-
mine pL, related field quantities can be found. At any point on the wire, eq. (15.26) reduces
to an integral equation of the form

Vn =
L PLdl

, 4?reor
(15.28)

Since eq. (15.28) applies for observation points everywhere on the wire, at a fixed point yk

known as the match point.

L PLJy) dy

*J0 \yk-y\
(15.29)

We recall from calculus that integration is essentially finding the area under a curve. If Ay
is small, the integration of fly) over 0 < y < L is given by

fly) dy^flyl)Ay+ f(y2) Ay + • • • + f(yN) Ay
(15.30)

fly 0
k=l

where the interval L has been divided into N units of each length Ay. With the wire divided
into N segments of equal length A as shown in Figure 15.19, eq. (15.29) becomes

A 1/ Pi A

4irsoVo =
\yk-yu

(15.31)

where A = LIN — Ay. The assumption in eq. (15.31) is that the unknown charge density
pk on the kth segment is constant. Thus in eq. (15.31), we have unknown constants pu

la

Figure 15.18 Thin conducting wire held at a
constant potential.
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pN Figure 15.19 Division of the wire into N segments.

Pi

Pk

p2, . . ., pN. Since eq. (15.31) must hold at all points on the wire, we obtain N similar

equations by choosing N match points at yu y2, • • ., y*, • • • ys o n t n e w i r e - Thus we

obtain

. . . P\ A
4TT£OVO = +

4ireoVo =

+ ;
-yi\ \y\ -

Pi
7

+

P2A
+ -, 7 +

(15.32a)

(15.32b)

4TTSOVO =
Pi A Pi A

\yN-y\\
• +

\yN -
(15.32c)

The idea of matching the left-hand side of eq. (15.29) with the right-hand side of the equa-
tion at the match points is similar to the concept of taking moments in mechanics. Here lies
the reason this technique is called moment method. Notice from Figure 15.19 that the
match points yu y2,. . .,yN are placed at the center of each segment. Equation (15.32) can
be put in matrix form as

[B] = [A] [p] (15.33)

where

[B] = 4TTSOVO
(15.34)
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[A] =

An A12
A2 1 A 2 2

"IN

A-2N

(15.35a)

ym - y,

Pi

PN

m + n (15.35b)

(15.36)

In eq. (15.33), [p] is the matrix whose elements are unknown. We can determine [p] from
eq. (15.33) using Cramer's rule, matrix inversion, or Gaussian elimination technique.
Using matrix inversion,

[p] = [A]"1 [B] (15.37)

where [A] is the inverse of matrix [A]. In evaluating the diagonal elements (or self terms)
of matrix [A] in eq. (15.32) or (15.35), caution must be exercised. Since the wire is con-
ducting, a surface charge density ps is expected over the wire surface. Hence at the center
of each segment,

V (center) =
2x /-A/2

psa d<p ay

2-iraps

4TTSO

In
A/2 + [(A/2)2 + a2]m

-A/2 + [(A/2)2 + a2]"2

Assuming A ^> a,

4Treo

(15.38)

where pL = 2TT aps. Thus, the self terms (m = n) are

= 21n |A
a

(15.39)
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Equation (15.33) now becomes

2 In ( -

\yi ~y\\
2 l n ( —

Pi

P2

P/V

= 4ITP V

1
1

1

(15.40)

Using eq. (15.37) with eq. (15.40) and letting Vo = 1 V, L = 1 m, a = 1 mm, and
N = 10 (A = LIN), a Matlab code such as in Figure 15.20 can be developed. The program
in Figure 15.20 is self-explanatory. It inverts matrix [A] and plots pL against y. The plot is
shown in Figure 15.21. The program also determines the total charge on the wire using

Q =

which can be written in discrete form as

(15.41)

(15.42)
k=\

With the chosen parameters, the value of the total charge was found to be Q = 8.536 pC.
If desired, the electric field at any point can be calculated using

E =

which can be written as

(15.43)

(15.44)

where /? = |R| and

R = r - rk = (x - xk)ax + (y - + (z - zk)az

r = (x, y, z) is the position vector of the observation point, and rk = (xk, yk, zk) is that of
the source point.

Notice that to obtain the charge distribution in Figure 15.21, we have taken N = 10. It
should be expected that a smaller value of N would give a less accurate result and a larger
value of N would yield a more accurate result. However, if A7 is too large, we may have the
computation problem of inverting the square matrix [A]. The capacity of the computing fa-
cilities at our disposal can limit the accuracy of the numerical experiment.

L
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% THIS PROGRAM DETERMINES THE CHARGE'DISTRIBUTION
% ON A CONDUCTING THIN WIRE, OF RADIUS AA AND
% LENGTH L, MAINTAINED AT VO VOLT
% THE WIRE IS LOCATED AT 0 < Y < L
% ALL DIMENSIONS ARE IN S.I. UNITS

% MOMENT METHOD IS USED
% N IS THE NO. OF SEGMENTS INTO WHICH THE WIRE IS DIVIDED
% RHO IS THE LINE CHARGE DENSITY, RHO = INV(A)*B

% FIRST, SPECIFY PROBLEM PARAMETERS
ER = 1.0;
EO = 8.8541e-12;
VO = 1.0;
AA = 0.001;
L = 1.0;
N = 20;
DELTA = L/N;
% SECOND, CALCULATE THE ELEMENTS OF THE COEFFICIENT
% MATRIX A

Y=DELTA*(I-O.5);
for i=l:N

for j=l:N

if(i ~=j)
A(i, j)=DELTA/abs(Y(i)-Y(j) ) ;

else
A(i,j)=2.0*log(DELTA/AA);

end
end

end
% NOW DETERMINE THE MATRIX OF CONSTANT VECTOR B
% AND FIND Q
B = 4.0*pi*EO*ER*VO*ones(N,1);
C = inv(A);
RHO = C*B;
SUM = 0.0;
for I=1:N

SUM = SUM + RHO(I);
end
Q=SUM*DELTA;
diary a:examl45a.out
[EO,Q]
[ [1:N]' Y' RHO ]
diary off
% FINALLY PLOT RHO AGAINST Y
plot(Y,RHO)
xlabel{'y (cm)'), ylabel("rho_L (pC/m)')

Figure 15.20 Matlab code for calculating the charge distribution on the wire in Figure 15.18.
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10.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y(cm)

Figure 15.21 Plot of pL against y.

EXAMPLE 15.5
Use the moment method to find the capacitance of the parallel-plane capacitor of
Figure 15.22. Take a = 1 m, b = 1 m, d = 1 m, and sr = 1.0.

Solution:

Let the potential difference between the plates be Vo = 2 V so that the top plate Px is main-
tained at +1 V while the bottom plate P2 is at — 1 V. We would like to determine the
surface charge density ps on the plates so that the total charge on each plate can be found
as

Q= PsdS

Figure 15.22 Parallel-plate ca-
pacitor; for Example 15.5.

I



690 U Numerical Methods

Once Q is known, we can calculate the capacitance as

C = Q = Q
V 2

To determine ps using the moment method, we divide P{ into n subsections: AS],
AS2,. . ., ASn and P2 into n subsections: A5n+1, ASn+2,. • ., AS2n- The potential V,- at the
center of a typical subsection AS, is

1
y
pi 47T£O

PjdS

2n
ASt

It has been assumed that there is uniform charge distribution on each subsection. The last
equation can be written as

where

Thus

./=!

dS

In

1L
7=1

Vn =

In

7=1

In

7 = 1
PjAn+\,j = ~
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yielding a set of In simultaneous equations with 2n unknown charge densities pj. In matrix
form,

An

A21

A12

A22

P\
Pi

Pin

1
1

- 1
- 1

or

[A] [p] = [B]

Hence,

[p] [B]

where [B] is the column matrix defining the potentials and [A] is a square matrix contain-
ing elements A,-,-. To determine A,-,-, consider the two subsections i and j shown in
Figure 15.23 where the subsections could be on different plates or on the same plate.

1 dxdy

where

Ru = [(xj - Xi)
2 + (yj- yd2 + (zj

\2-il/2

For the sake of convenience, if we assume that the subsections are squares,

x2 - x\ = A€ = y2 - y\

it can be shown that

AS, (A€)2

Figure 15.23 Subsections i and j ; for
Example 15.5.
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and

An = ln(l + V2) = —(0.8814)
7TSO 7TEO

With these formulas, the Matlab code in Figure 15.24 was developed. With n = 9,
C = 26.51 pF, with n = 16, C = 27.27 pF, and with n = 25, C = 27.74 pF.

% USING THE METHOD OF MOMENT,
% THIS PROGRAM DETERMINES THE CAPACITANCE OF A
% PARALLEL-PLATE CAPACITOR CONSISTING OF TWO CONDUCTING
% PLATES, EACH OF DIMENSION AA x BB, SEPARATED BY A
% DISTANCE D, AND MAINTAINED AT 1 VOLT AND -1 VOLT

% ONE PLATE IS LOCATED ON THE Z = 0 PLANE WHILE THE OTHER
% IS LOCATED ON THE Z=D PLANE

% ALL DIMENSIONS ARE IN S.I. UNITS
% N IS THE NUMBER IS SUBSECTIONS INTO WHICH EACH PLATE IS
DIVIDED

% FIRST, SPECIFY THE PARAMETERS

ER = 1.0;
EO = 8.8541e-12;
AA = 1.0;
BB = 1.0;
D = 1.0;
N = 9;
NT = 2*N;
M = sqrt(N);
DX = AA/M;
DY = BB/M;
DL = DX;
% SECOND, CALCULATE THE ELEMENTS OF THE COEFFICIENT
% MATRIX A
K = 0;
for Kl=l:2

for K2=1:M
for K3=1:M

K = K + 1;
X(K) = DX*(K2 - 0.5);
Y(K) = DY*(K3 - 0.5);

end
end

end

Figure 15.24 Matlab program for Example 15.5.
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for Kl=l:N
Z(K1) = 0.0;
Z(K1+N) = D;

end
for 1=1:NT

for J=1:NT
if(I==J)

A(I,J) = DL*0.8814/(pi*EO);
else
R = sqrt( (X(I)-X(J))A2 = (Y(I)-Y(J) )A2 + ( Z (I)-Z (J) ) A2 ) ;

A(I,J) = DLA2/(4.*pi*EO*R);
end

end
end
% NOW DETERMINE THE MATRIX OF CONSTANT VECTOR B
for K=1:N

B(K) = 1.0;
B(K+N) = -1.0;

end
% INVERT A AND CALCULATE RHO CONSISTING
% THE UNKNOWN ELEMENTS
% ALSO CALCULATE THE TOTAL CHARGE Q AND CAPACITANCE C
F = inv(A);
RHO = F*B';
SUM = 0.0;
for I=1:N

SUM = SUM + RHO(I);
end
Q = SUM*(DLA2) ;
VO = 2.0;
C = abs(Q)/VO;
diary a:examl45b.out
[C]
[ [1:NT]' X Y' Z' RHO ]
diary off

Figure 15.24 (Continued)

PRACTICE EXERCISE 15.5

Using the moment method, write a program to determine the capacitance of two iden-
tical parallel conducting wires separated at a distance _yo and displaced by xo as shown
in Figure 15.25. If each wire is of length L and radius a, find the capacitance tor cases
xo = 0,0.2,0.4,. . ., 1.0m.Take;yo = 0.5 m,L = 1 m,a = 1 mm,er = 1.

Answer: For N = 10 = number of segments per wire, see Table 15.2.

L
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Figure 15.25 Parallel conducting wires of Practice Ex-
ercise 15.5.

x = L

TABLE 15.2
for Practice

x0 (m)

0.0
0.2
0.4
0.6
0.8
1.0

Capacitance
Exercise 15.5

C(pF)

4.91
4.891
4.853
4.789
4.71
4.643

15.5 THE FINITE ELEMENT METHOD

The finite element method (FEM) has its origin in the field of structural analysis. The
method was not applied to EM problems until 1968.3 Like the finite difference method, the
finite element method is useful in solving differential equations. As noticed in Section
15.3, the finite difference method represents the solution region by an array of grid points;
its application becomes difficult with problems having irregularly shaped boundaries. Such
problems can be handled more easily using the finite element method.

The finite element analysis of any problem involves basically four steps: (a) discretiz-
ing the solution region into a finite number of subregions or elements, (b) deriving govern-
ing equations for a typical element, (c) assembling of all elements in the solution region,
and (d) solving the system of equations obtained.

A. Finite Element Discretization

We divide the solution region into a number of finite elements as illustrated in Figure 15.26
where the region is subdivided into four nonoverlapping elements (two triangular and two
quadrilateral) and seven nodes. We seek an approximation for the potential Ve within an

3See P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers. Cambridge, England:
Cambridge Univ. Press, 1983.
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Figure 15.26 A typical finite element subdi-
vision of an irregular domain.

/ node no.

/ ') element no.

7

Actual boundary

Approximate boundary

element e and then interrelate the potential distributions in various elements such that the
potential is continuous across interelement boundaries. The approximate solution for the
whole region is

V(x, y) = X ve(x, y) (15.45)

where N is the number of triangular elements into which the solution region is divided.
The most common form of approximation for Ve within an element is polynomial ap-

proximation, namely

for a triangular element and

Ve(x, y) = a + bx + cy

Ve(
x> y) = a + bx + cy + dxy

(15.46)

(15.47)

for a quadrilateral element. The potential Ve in general is nonzero within element e but zero
outside e. It is difficult to approximate the boundary of the solution region with quadrilat-
eral elements; such elements are useful for problems whose boundaries are sufficiently
regular. In view of this, we prefer to use triangular elements throughout our analysis in this
section. Notice that our assumption of linear variation of potential within the triangular
element as in eq. (15.46) is the same as assuming that the electric field is uniform within
the element; that is,

Ee = ~VVe = -{bax + cay) (15.48)

B. Element Governing Equations

Consider a typical triangular element shown in Figure 15.27. The potential VeU Ve2, and
Ve3 at nodes 1, 2, and 3, respectively, are obtained using eq. (15.46); that is,

1 xx yx

1 x 2 y 2

1 X% VQ

(15.49)
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The coefficients a, b, and c are determined from eq. (14.49) as

1
1
1

Xl

x2

x3

yi~

y2

yi

~vei~

ve2
_ve3_

(15.50)

Substituting this into eq. (15.46) gives

Ve = [1 x v]
2A

(x2y3

(y2

(x3

~ x3y2)

-y3)
- x 2 )

(X3J, - Xxy3)

(y3 - y\)
(Xi — X3)

W 2 — Xj>

-y2)
- Xi)

or

(15.51)

where

1

1
012 ~U

1
a 3 " 2 A

and A is the area of the element e\ that is,

(y2 - (15.52a)

(15.52b)

(15.52c)

2A =
1 x3

= (x\y2 - - xxy3) - x3y2)

or

A = 1/2 [x2 - xY)(y3 - yi) - (x3 - X])(y2 - (15.53)

The value of A is positive if the nodes are numbered counterclockwise (starting from any
node) as shown by the arrow in Figure 15.27. Note that eq. (15.51) gives the potential at
any point (x, y) within the element provided that the potentials at the vertices are known.
This is unlike the situation in finite difference analysis where the potential is known at the
grid points only. Also note that a, are linear interpolation functions. They are called the
element shape functions and they have the following properties:

(15.54a)
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Figure 15.27 Typical triangular element; the local
node numbering 1-2-3 must be counterclockwise as
indicated by the arrow.

2>.<*.)0 = i (15-54b)

The shape functions a^ and a-i, for example, are illustrated in Figure 15.28.
The energy per unit length associated with the element e is given by eq. (4.96); that is

(15.55)= ! | e\VVe\
2dS

where a two-dimensional solution region free of charge (ps = 0) is assumed. But from
eq. (15.51),

(15.56)

Substituting eq. (15.56) into eq. (15.55) gives

1 i=i j=\

If we define the term in brackets as

f =

Vej

Cf = I Va,- • Vaj dS

(15.57)

(15.58)

3 Figure 15.28 Shape functions a, and
a2 for a triangular element.
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we may write eq. (15.57) in matrix form as

We — — e [Ve]
T [C ( e )] [Ve]

where the superscript T denotes the transpose of the matrix,

Ve2

ve3

(15.59)

(15.60a)

and

'(eh _[Ce>] =

Me)e)

C 2

C )
33

(15.60b)

The matrix [C(e) is usually called the element coefficient matrix. The matrix element C(f of
the coefficient matrix may be regarded as the coupling between nodes / andy; its value is
obtained from eqs. (15.52) and (15.58). For example,

n = Va? dS

Similarly:

Also

= 77i Kyi - y
AA

= — [(y2 ~

el = 7^ Ky2 - yx

i

44

44

1

1 ~ L

+ (x3 - ^2)(x, - x3)] I dS (15.61a)

-x3)]

(15.61b)

(15.61c)

(15.61d)

(15.61e)

(15.61f)

C 3
Me) _ Wei
L32 — L23 (15.61g)
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However, our calculations will be easier if we define

Pi = (yi- y3), Pi = (y3 ~ ?i). ^ = Cv. - yd

Qi = (x3 - x2), Q2 = (xi ~ x3), Q3 = (x2 - xi)

(15.62a)

With Pt and Qt (i = 1, 2, 3 are the local node numbers), each term in the element coeffi-
cient matrix is found as

(15.62b)

where

A = -(P2Q3 ~ P3Q2) (15.62c)

Note that Px + P2 + /^ = 0 = Ql + Q2 + Q3 and hence

may be used in checking our calculations.

= 0 = 2 ct• This

7 = 1

C. Assembling of All Elements

Having considered a typical element, the next step is to assemble all such elements in the
solution region. The energy associated with the assemblage of all elements in the mesh is

e = l
= -s[V]T[C][V] (15.63)

where

[VI =

v,
v2

(15.64)

n is the number of nodes, N is the number of elements, and [C\ is called the overall or
global coefficient matrix, which is the assemblage of individual element coefficient matri-
ces. The major problem now is obtaining [C] from [Cw].

The process by which individual element coefficient matrices are assembled to obtain
the global coefficient matrix is best illustrated with an example. Consider the finite element
mesh consisting of three finite elements as shown in Figure 15.29. Observe the numberings
of the nodes. The numbering of nodes as 1, 2, 3, 4, and 5 is called global numbering. The
numbering i-j-k is called local numbering and it corresponds with 1 -2-3 of the element in

L
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Figure 15.29 Assembly of three elements: i-j-k cor-
responds to local numbering 1 -2-3 of the element in
Figure 15.27.

Figure 15.27. For example, for element 3 in Figure 15.29, the global numbering 3-5-4 cor-
responds with local numbering 1-2-3 of the element in Figure 15.27. Note that the local
numbering must be in counterclockwise sequence starting from any node of the element.
For element 3, for example, we could choose 4-3-5 or 5-4-3 instead of 3-5-4 to correspond
with 1-2-3 of the element in Figure 15.27. Thus the numbering in Figure 15.29 is not
unique. However, we obtain the same [C] whichever numbering is used. Assuming the par-
ticular numbering in Figure 15.29, the global coefficient matrix is expected to have the
form

C\\

c2l
c3i
c4i

c5.

C]2

C22

C32

C42

c52

C,3

C23

C33

c43
c53

C34 C-34

C44 C<

' 25

35

45

55

(15.65)

which is a 5 X 5 matrix since five nodes (n = 5) are involved. Again, Cy is the coupling
between nodes / and j . We obtain Cy by utilizing the fact that the potential distribution must
be continuous across interelement boundaries. The contribution to the i,j position in [C]
comes from all elements containing nodes ;' a n d / To find C u , for example, we observe
from Figure 15.29 that global node 1 belongs to elements 1 and 2 and it is local node 1 in
both; hence,

Cn = Cft + Cft (15.66a)

For C22, global node 2 belongs to element 1 only and is the same as local node 3; hence,

C22 = C ^ (15.66b)

For C44, global node 4 is the same as local nodes 2, 3, and 3 in elements 1, 2, and 3, re-
spectively; hence,

_ /-•a)C44 = C m
- 3 3

(15.66c)

For C14, global link 14 is the same as the local links 12 and 13 in elements 1 and 2, respec-
tively; hence,

4.
T

<2)

Since there is no coupling (or direct link) between nodes 2 and 3,

c2 3 = c3 2 = 0

(15.66d)

(15.66e)
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Continuing in this manner, we obtain all the terms in the global coefficient matrix by in-
spection of Figure 15.29 as

(2)
31

0

0 C22 -r L-n

0

CXi + C

£(2) +~C(3)

r-0)

0
0

(15.67)

Note that element coefficient matrices overlap at nodes shared by elements and that there
are 27 terms (nine for each of the three elements) in the global coefficient matrix [C]. Also
note the following properties of the matrix [C]:

1. It is symmetric (Cy = C,,) just as the element coefficient matrix.
2. Since Cy = 0 if no coupling exists between nodes ;' and j , it is evident that for a

large number of elements [C] becomes sparse and banded.
3. It is singular. Although this is not so obvious, it can be shown using the element co-

efficient matrix of eq. (15.60b).

D. Solving the Resulting Equations
From variational calculus, it is known that Laplace's (or Poisson's) equation is satisfied
when the total energy in the solution region is minimum. Thus we require that the partial
derivatives of W with respect to each nodal value of the potential be zero; that is,

dW dW dW

dV2
= 0

or

dW
= 0, k = 1,2,. . .,n (15.68)

For example, to get d Wd V! = 0 for the finite element mesh of Figure 15.29, we substitute
eq. (15.65) into eq. (15.63) and take the partial derivative of W with respect to V\. We
obtain

dW
0 = — = 2VlCu + V2CU + V3Cl3 + V4Cl4 + V5Cl5

+ v2c2l + v3c31 + v4c4l + v5c51

or

0 = ViCn + V2C
l2 v4ci4 + v5c,5 (15.69)

L
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In general, 3W/dVk = 0 leads to

0 = V, Cik (15.70)

where n is the number of nodes in the mesh. By writing eq. (15.70) for all nodes
k = 1,2,. . ., n, we obtain a set of simultaneous equations from which the solution of
[V\T = [Vu V2, • . ., Vn] can be found. This can be done in two ways similar to those used
in solving finite difference equations obtained from Laplace's (or Poisson's) equation.

Iteration Method:

This approach is similar to that used in finite difference method. Let us assume that node 1
in Figure 15.29, for example, is a free node. The potential at node 1 can be obtained from
eq. (15.69) as

v = -— y vc
L-ll i=2

In general, the potential at a free node k is obtained from eq. (15.70) as

(15.71)

(15.72)

This is applied iteratively to all the free nodes in the mesh with n nodes. Since Cki = 0 if
node k is not directly connected to node /, only nodes that are directly linked to node k con-
tribute to Vk in eq. (15.72).

Thus if the potentials at nodes connected to node k are known, we can determine Vk

using eq. (15.72). The iteration process begins by setting the potentials at the free nodes
equal to zero or to the average potential.

Vave = 1/2 (Vn- x ) (15.73)

where Vmin and Vmax are the minimum and maximum values of the prescribed potentials at
the fixed nodes. With those initial values, the potentials at the free nodes are calculated
using eq. (15.72). At the end of the first iteration, when the new values have been calcu-
lated for all the free nodes, the values become the old values for the second iteration. The
procedure is repeated until the change between subsequent iterations becomes negligible.

Band Matrix Method:

If all free nodes are numbered first and the fixed nodes last, eq. (15.63) can be written
such that

W= -e\Vf VI Cff Cfpfp\ \Vf (15.74)
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where subscripts/and p, respectively, refer to nodes with free and fixed (or prescribed) po-
tentials. Since Vp is constant (it consists of known, fixed values), we only differentiate with
respect to V̂ -so that applying eq. (15.68) to eq. (15.74) yields

cf = o

or

This equation can be written as

[Cff] [VA = -[Cfc] [Vp]

[A] [V] = [B]

(15.75)

(15.76a)

or

[V] = ~][B] (15.76b)

where [V] = [Vf], [A] = [Cff], and [B] = - [ C y [Vp]. Since [A] is, in general, non-
singular, the potential at the free nodes can be found using eq. (15.75). We can solve
for [V\ in eq. (15.76a) using Gaussian elimination technique. We can also solve for [V]
in eq. (15.76b) using matrix inversion if the size of the matrix to be inverted is not
large.

Notice that as from eq. (15.55) onward, our solution has been restricted to a two-
dimensional problem involving Laplace's equation, V2V = 0. The basic concepts devel-
oped in this section can be extended to finite element analysis of problems involving
Poisson's equation (V2V = —pv/e, V2A = -fij) or wave equation (V2<£ - y2<j> = 0). A
major problem associated with finite element analysis is the relatively large amount of
computer memory required in storing the matrix elements and the associated computa-
tional time. However, several algorithms have been developed to alleviate the problem to
some degree.

The finite element method (FEM) has a number of advantages over the finite differ-
ence method (FDM) and the method of moments (MOM). First, the FEM can easily handle
complex solution region. Second, the generality of FEM makes it possible to construct a
general-purpose program for solving a wide range of problems. A single program can be
used to solve different problems (described by the same partial differential equations) with
different solution regions and different boundary conditions; only the input data to the
problem need be changed. However, FEM has its own drawbacks. It is harder to under-
stand and program than FDM and MOM. It also requires preparing input data, a process
that could be tedious.

EXAMPLE 15.6 Consider the two-element mesh shown in Figure 15.30(a). Using the finite element
method, determine the potentials within the mesh.
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Node:
1

2

\ 3
V=\0 4

(x,y)
(0.8, 1.8)
(1.4, 1.4)
(2.1,2.1)
(1.2, 2.7)

Figure 15.30 For Example 15.6: (a) two-element
mesh, (b) local and global numbering of the ele-
ments.

- K=0

(a)

(b)

Solution:

The element coefficient matrices can be calculated using eq. (15.62). For element 1,
consisting of nodes 1-2-4 corresponding to the local numbering 1-2-3 as in Figure
15.30(b),

P, = -1 .3 , P2 = 0.9, P3 = 0.4

Q, = -0.2, Q2 = -0.4, Q3 = 0.6

A = 1/2(0.54 + 0.16) = 0.35

Substituting all these into eq. (15.62b) gives

1.236 -0.7786 -0.4571
-0.7786 0.6929 0.0857
-0.4571 0.0857 0.3714

(15.6.1)

Similarly, for element 2 consisting of nodes 2-3-4 corresponding to local numbering 1 -2-3
as in Figure 15.30(b),

P, = -0.6, P2 = 1.3, P3 = -0.7

G, = "0.9, Q2 = 0.2, & = 0.7

A = 1/2(0.91 + 0.14) = 0.525
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Hence,

0.5571 -0.4571 -0.1
-0.4571 0.8238 -0.3667
-0.1 -0.3667 0.4667

Applying eq. (15.75) gives

v2
c42 c4 4j [v4

C21 C23

C41 C43

This can be written in a more convenient form as

1
0
0
0

0
C22

0
C42

0
0
1
0

0

c2 4
0
C44

v2

v4

1
-C21

0
-C41

0
- C 2 3

1
— C43

or

[Q[V] = [B]

The terms of the global coefficient matrix are obtained as follows:

C22 = C(22
} + Cff = 0.6929 + 0.5571 = 1.25

C42 = C24 = C$ + Cfl = 0.0857 - 0.1 = -0.0143

C44 = + C3f = 0.3714 + 0.4667 = 0.8381

C2i = C2\
} = -0.7786

(15.6.2.)

(15.6.3)

(15.6.4a)

(15.6.4b)

C23 = C(\2 = -0.4571

C4, = C3V = -0.4571

Q3 = C3f = -0.3667

Note that we follow local numbering for the element coefficient matrix and global num-
bering for the global coefficient matrix. Thus the square matrix [C] is obtained as

1 0 0 0
0 1.25 0 -0.0143
0 0 1 0
0 -0.0143 0 0.8381

(15.6.5)
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and the matrix [B] on the right-hand side of eq. (15.6.4a) is obtained as

0
4.571

10.0
3.667

(15.6.6)

By inverting matrix [C] in eq. (15.6.5), we obtain

[V\

0
3.708

10.0
4.438

Thus V, = 0, V2 = 3.708, V3 = 10, and V4 = 4.438. Once the values of the potentials at
the nodes are known, the potential at any point within the mesh can be determined using
eq. (15.51).

PRACTICE EXERCISE 15.6

Calculate the global coefficient matrix for the two-element mesh shown in
Figure 15.31 when: (a) node 1 is linked with node 3 and the local numbering
(/ - j - k) is as indicated in Figure 15.31(a), (b) node 2 is linked with node 4 with
local numbering as in Figure 15.31(b).

Answer: (a)

(b)

0.9964
0.05
0.2464
0.8

1.333
0.0777
0.0
1.056

0.05
0.7

-0.75
0.0

-0.7777
0.8192

-0.98
0.2386

-0.2464
-0.75
1.5964

-0.6

0.0
-0.98
2.04

-1.06

-0.8
0.0

-0.6
i.4

-1.056
0.2386

-1.06
1.877

N o d e l : ( 2 , 1 ) N o d e 3 : ( 2 , 2 . 4 )

N o d e 2: ( 3 , 2.5) N o d e 4 : ( 1 .5 , 1.6)

Figure 15.31 For Practice Exercise 15.6.
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EXAMPLE 15.7
Write a program to solve Laplace's equation using the finite element method. Apply the
program to the two-dimensional problem shown in Figure 15.32(a).

Solution:

The solution region is divided into 25 three-node triangular elements with the total
number of nodes being 21 as shown in Figure 15.32(b). This is a necessary step in order
to have input data defining the geometry of the problem. Based on our discussions in
Section 15.5, a general Matlab program for solving problems involving Laplace's equa-
tion using three-node triangular elements was developed as in Figure 15.33. The devel-

1.0

Figure 15.32 For Example 15.7:
(a) two-dimensional electrostatic
problem, (b) solution region di-
vided into 25 triangular elements.

100 V

1.0

(a)
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FINITE ELEMENT SOLUTION OF LAPLACE'S EQUATION FOR
TWO-DIMENSIONAL PROBLEMS
TRIANGULAR ELEMENTS ARE USED
ND = NO. OF NODES
NE = NO. OF ELEMENTS
NP = NO. OF FIXED NODES ' (WHERE POTENTIAL IS PRESCRIBED)
NDP(I) = NODE NO. OF PRESCRIBED POTENTIAL, I=1,2,...,NP
VAL(I) = VALUE OF PRESCRIBED POTENTIAL AT NODE NDP(I)
NL(I,J) = LIST OF NODES FOR EACH ELEMENT I, WHERE

J=l,2,3 REFERS TO THE LOCAL NODE NUMBER
CE(I,J) = ELEMENT COEFFICIENT MATRIX
C(I,J) = GLOBAL COEFFICIENT MATRIX
B(I) = RIGHT-HAND SIDE MATRIX IN THE SYSTEM OF
SIMULTANEOUS EQUATIONS; SEE EQ. (15.6.4)
X(I), Y(I) = GLOBAL COORDINATES OF NODE I
XL(J), YL(J) = LOCAL COORDINATES OF NODE J=l,2,3
V(I) = POTENTIAL AT NODE I
MATRICES P(I) AND Q (I) ARE DEFINED IN EQ. (15.62a)

FIRST STEP - INPUT DATA DEFINING GEOMETRY AND
BOUNDARY CONDITIONS

****************************************************

clear
input ("Name of input data file =

% SECOND STEP - EVALUATE COEFFICIENT MATRIX FOR EACH
ELEMENT AND ASSEMBLE GLOBALLY

^ ****************************************************

B = zeros(ND,1);
C = zeros(ND,ND);
for 1=1:NE
% FIND LOCAL COORDINATES XL(J), YL(J) FOR ELEMENT I

K = NL(I, [1: 3] ) ;
XL = X(K);
YL = Y(K);

P=zeros(3
Q=zeros(3

P(l) =
P(2) =
P(3) =

Q(D =
Q(2) =
Q(3) =
AREA =

,1) ;
,1) ;
YL(2) -
YL(3) -
YL(1) -
XL(3) -
XL (1) -
XL(2) -
0.5*abs

YL(3)
YL(1)
YL(2)
XL (2)
XL (3)
XL(1)
( P(2)*Q(3) - Q(2)*P(3) )

Figure 15.33 Computer program for Example 15.7.
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% DETERMINE COEFFICIENT MATRIX FOR ELEMENT I
CE=(P*P'+Q*Q')/(4.0*AREA);

% ASSEMBLE GLOBALLY - FIND C(I,J) AND B(I)
for J=l:3

IR = NL(I,J);
IFLAG1=O;

% CHECK IF ROW CORRESPONDS TO A FIXED NODE
for K = 1:NP

if (IR == NDP(K))
C(IR,IR) = 1.0;
B(IR) = VAL(K);
IFLAG1=1;

end
end % end for K = 1:NP
if(IFLAGl == 0)
for L = 1:3
IC = NL(I,L);
IFLAG2=0;

% CHECK IF COLUMN CORRESPONDS TO A FIXED NODE
for K=1:NP

if ( IC == NDP(K) ),
B(IR) = B(IR) - CE(J,L)*VAL(K);
IFLAG2=1;

end
end % end for K=1:NP

if(IFLAG2 == 0)
C(IR,IC) = C(IR,IC) + CE(J,L);
end

end % end for L=l:3
end %end if(ifiagl == 0)

end % end for J=l:3
end % end for 1=1:NE

% THIRD STEP - SOLVE THE SYSTEM OF EQUATIONS

V = inv(C)*B;
V=V' ;

% FOURTH STEP - OUTPUT THE RESULTS
•6

diary examl47.out
[ND, NE, NP]
[ [1:ND]' X' Y' V ]
diary off

Figure 15.33 (Continued)

I



710 Numerical Methods

opment of the program basically involves four steps indicated in the program and ex-
plained as follows.

Step 1: This involves inputting the necessary data defining the problem. This is the only step
that depends on the geometry of the problem at hand. Through a data file, we input the
number of elements, the number of nodes, the number of fixed nodes, the prescribed values
of the potentials at the free nodes, the x and y coordinates of all nodes, and a list identifying
the nodes belonging to each element in the order of the local numbering 1-2-3. For the
problem in Figure 15.32, the three sets of data for coordinates, element-node relationship,
and prescribed potentials at fixed nodes are shown in Tables 15.3, 15.4, and 15.5, respec-
tively.

TABLE
of the

15.3
Finite

of Figure 15

Node

1

2

3

4

5

6

7

8

9

10

11

X

0.0

0.2

0.4

0.6

0.8

1,0

0,0

0.2

0.4

0.6

0.8

Nodal Coordinates
Element Mesh
.32

Y

0.0

0.0

0.0

0.0

0.0
0.0

0.2

0.2

0.2

0.2

0.2

Node

12

13

14

15

16

17

18

19

20

21

X

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.0

0.2

0.0

y

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.8

0.8

1.0

TABLE 15.4 Element-Node Identification

Local Node No. Local Node No.

Element No.

1
2
3
4
5
6
7
8
9

10
11
12
13

1

1
2
2
3
3
4
4
5
5
7
8
8
9

2

2
8
3
9
4

10
5

11

6
8

13
9

14

3

7
7
8
8
9
9

10
10
11

12
12
13
13

Element No.

14
15
16
17
18
19
20
21
22
23
24
25

1

9
10
10
12
13
13
14
14
16
17
17
19

2

10
15
11
13
17
14
18
15
17

20
18
20

3

14
14
15
16
16
17
17
18
19
19
20
21
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TABLE 15.5 Prescribed

at Fixed Nodes

Node No.

1
2

3

4

5
6

11

15

Prescribed
Potential

0.0

0.0

0.0

0.0

0.0
50.0

100.0
100.0

Potentials

Node No.

18

20

21

19
16
12
7

Prescribed
Potential

100.0
100.0

50.0

0.0
0.0
0.0
0.0

TABLE 15.6 Input Data for the Finite Element
Program in Figure 15.33

NE
ND
NP
NL

= 25
= 21
= 15
= [
2 8
2 3

8

X =

Y =

NDP

VAL

•
;
1
7
8
3
3
4
4
5
5
7

2

9
4

7

8
9

10 9
5 10
11 10
6
8

13
8
9
9
10
10
12
13
13
14
14
16
17
17
19

=

9

1 1
12
12
13

14 13
10 14

0
0
0

0
0
0

15
1 1
13
17
14
18
15
17
20
18
20

. 0

. 2

.6

.0

. 2
• 4

; i

; o
5
5

14
15
16
16
17
17
18
19
19
20
2 1 ]

0 .
0 .
0 .

0 .
0 .
0 .

2

. 0
0 . 0
0 . 0

2
4
0

0
2
6

3

0 .
0 .
0 .

0 .
0 .
0 .

4 5

0 . 0
100
0 . 0

4
6
2

0
2
6

6

0
. 0

0 .
0 .
0 .

0 .
0 .
0 .

1 1

. 0

6
8
4

0
2
6

15

0 .
100 .

0 . 0

0
0
0

0
0
0

0
0

. 8

. 0

. 0

. 0

. 4

.8

18

0

0 .

1
0
0

0
0
0

20

. 0
100
0

. 0

. 2

. 2

. 0

. 4

. 8

2 1

. 0
0 .

0 .
0 .
0 .

0 .
0 .
1 .

IS

.0 . . .

.4 . . .

. 0] ;

,2 . . .
,4 . . .
.0] ;

) 16 12 7 ] ;

100 .0
0 ] ;
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Step 2: This step entails finding the element coefficient matrix [C^] for each element and
the global coefficient matrix [C]. The procedure explained in the previous example is
applied. Equation (15.6.4) can be written in general form as

1 0
0 C,•ff.

[Vp]

or

[C] [V] = [B]

Both "global" matrix [C] and matrix [B] are calculated at this stage.

Step 3: The global matrix obtained in the previous step is inverted. The values of the po-
tentials at all nodes are obtained by matrix multiplication as in eq. (15.76b). Instead of in-
verting the global matrix, it is also possible to solve for the potentials at the nodes using
Gaussian elimination technique.

Step 4: This involves outputting the result of the computation.
The input and output data are presented in Tables 15.6 and 15.7, respectively.

TABLE:i5.7
the Program

Node

1
2
3
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
19
20
21

X

0.00

0.20

0.40

0.60

0.80

1.00

0.00

0.20

0.40

0.60

0.80

0.00

0.20

0.40

0.60

0.00

0.20

0.40

0.00

0.20

0.00

Output 1Data of
in Figure 15.33

Y

0.00

0.00

0.00

0.00

0.00

0.00

0.20

0.20

0.20

0.20

0.20

0.40

0.40

0.40

0.40

0.60

0.60

0.60

0.80

0.80

1.00

Potential

0.000

0.000

0.000

0.000

0.000

50.000

0.000

18.182

36.364

59.091

100.000

0.000

36.364

68.182

100.000

0.000

59.091

100.000

0.000

100.000

50.000
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22 23 24 25 26 Figure 15.34 For Practice Exercise 15.7.

PRACTICE EXERCISE 15.7

Rework Example 15.3 using the finite element method. Divide the solution region
into triangular elements as shown in Figure 15.34. Compare the solution with that
obtained in Example 15.3 using the finite difference method.

Answer: See Example 15.3.

SUMMARY 1. Electric field lines and equipotential lines due to coplanar point sources can be plotted
using the numerical technique presented in this chapter. The basic concept can be ex-
tended to plotting magnetic field lines.

2. An EM problem in the form of a partial differential equation can be solved using the
finite difference method. The finite difference equation that approximates the differen-
tial equation is applied at grid points spaced in an ordered manner over the whole solu-
tion region. The field quantity at the free points is determined using a suitable method.

3. An EM problem in the form of an integral equation is conveniently solved using the
moment method. The unknown quantity under the integral sign is determined by match-
ing both sides of the integral equation at a finite number of points in the domain of the
quantity.

4. While the finite difference method is restricted to problems with regularly shaped solu-
tion regions, the finite element method can handle problems with complex geometries.
This method involves dividing the solution region into finite elements, deriving equa-
tions for a typical element, assembling all elements in the region, and solving the re-
sulting system of equations.
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Typical examples on how to apply each method to some practical problems have been
shown. Computer programs for solving the problems are provided wherever needed.

15.1 At the point (1, 2, 0) in an electric field due to coplanar point charges, E = 0.3 ax -
0.4 ay V/m. A differential displacement of 0.05 m on an equipotential line at that point
will lead to point

(a) (1.04,2.03,0)

(b) (0.96, 1.97,0)

(c) (1.04,1.97,0)

(d) (0.96, 2.03, 0)

15.2 Which of the following is not a correct finite difference approximation to dV/dx at xo if
h = Ax?

(a)

(b)

(c)

(d)

(e)

V(xo + h) - V{xo)

V(xo)

V(xo-

V(xo-

V(xo-

h

- V(xo

h

f h)-
h

f h)-
2h

f h/2) -

- h)

V(xo-

V(x0-

- V(xo

h)

h)

- h/2)

15.3 The triangular element of Figure 15.35 is in free space. The approximate value of the po-
tential at the center of the triangle is

(a) 10 V

(b) 7.5 V

(c) 5 V
(d) 0 V

15.4 For finite difference analysis, a rectangular plate measuring 10 by 20 cm is divided into
eight subregions by lines 5 cm apart parallel to the edges of the plates. How many free
nodes are there if the edges are connected to some source?

(a) 15

(b) 12

(c) 9
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(2,3) Figure 15.35 For Review Questions 15.3 and 15.10.

-20 V

(3,0)

(d) 6

(e) 3

15.5 Using the difference equation Vn = Vn^l + Vn+1 with Vo = Vs = 1 and starting with
initial values Vn = 0 for 1 < « < 4, the value of V2 after the third iteration is

(a) 1

(b) 3

(c) 9

(d) 15

(e) 25

15.6 The coefficient matrix [A] obtained in the moment method does not have one of these
properties:

(a) It is dense (i.e., has many nonzero terms).

(b) It is banded.

(c) It is square and symmetric.

(d) It depends on the geometry of the given problem.

15.7 A major difference between the finite difference and the finite element methods is that

(a) Using one, a sparse matrix results in the solution.

(b) In one, the solution is known at all points in the domain.

(c) One applies to solving partial differential equation.

(d) One is limited to time-invariant problems.

15.8 If the plate of Review Question 14.4 is to be discretized for finite element analysis such
that we have the same number of grid points, how many triangular elements are there?

(a) 32

(b) 16

(c) 12

(d) 9
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PROBLEMS

15.9 Which of these statements is not true about shape functions?

(a) They are interpolatory in nature.

(b) They must be continuous across the elements.

(c) Their sum is identically equal to unity at every point within the element.

(d) The shape function associated with a given node vanishes at any other node.

(e) The shape function associated with a node is zero at that node.

15.10 The area of the element in Figure 15.35 is

(a) 14

(b) 8

(c) 7

(d) 4

Answers: 15.1a, 15.2c,4 15.3a, 15.4e, 15.5c, 15.6b, 15.7a, 15.8b, 15.9e, 15.10d.

15.1 Using the program developed in Example 15.1 or your own equivalent code, plot the
electric field lines and equipotential lines for the following cases:

(a) Three point charges - 1 , 2, and 1 C placed at ( - 1 , 0), (0,2), and (1,0), respec-
tively.

(b) Five identical point charges 1 C located at ( - 1, - 1 ) , ( - 1 , 1), (1, - 1 ) , (1, 1), and
(0, 0), respectively.

15.2 Given the one-dimensional differential equation

dx2 0 < x <

subject to y(0) = 0, y(l) = 10, use the finite difference (iterative) method to find
y(0.25). You may take A = 0.25 and perform 5 iterations.

dV d2V
15.3 (a) From the table below, obtain — and ,

dx dx2
atx = 0.15.

X

V

0.1

1.0017

0.15

1.5056

0.2

2.0134

0.25

2.5261

0.3

3.0452

(b) The data in the table above are obtained from V = 10 sinh x. Compare your result
in part (a) with the exact values.

4The formula in (a) is known as a forward-difference formula, that in (b) as a backward-difference
formula, and that in (d) or (e) as a central-difference formula.
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m = 0

Figure 15.36 Finite difference grid in cylindri-
cal coordinates; for Problem 15.5.

= o

15.4 Show that the finite difference equation for Laplace's equation in cylindrical coordi-
nates, V = V(p, z), is

V(p0 , Zo) = \ I V(po, Z

V(po + A,

where h = Az — Ap.

- ^ - ) V( P o - fc, Z o )

15.5 Using the finite difference representation in cylindrical coordinates (p, 4>) at a grid point
P shown in Figure 15.36, let p = m Ap and <j> = n A<f> so that V(p, 4>)\p =
V(mAp, nA<t>) = V"m. Show that

1

(w A(t>f
(V"~l - 2 V" + V ">

15.6 A square conducting trough has its four sides held at potentials —10, 0, 30, and 60 V.
Determine the potential at the center of the trough.

15.7 Use FDM to calculate the potentials at nodes 1 and 2 in the potential system shown in
Figure 15.37.

-30 V Figure 15.37 For Problem 15.7.

- 2 0 V

\

/

1

/

2

\

\
20 V

0V

I



718 Numerical Methods

100 V

\

Figure 15.38 For Problem 15.9.

\

1

3

2

4

OV

100
15.8 Rework Problem 15.7 if ps = nC/m ,h = 0.lm, and e = eo, where h is the mesh

size.

15.9 Consider the potential system shown in Figure 15.38. (a) Set the initial values at the free
nodes equal to zero and calculate the potential at the free nodes for five iterations,
(b) Solve the problem by the band matrix method and compare result with part (a).

15.10 Apply the band matrix technique to set up a system of simultaneous difference equations
for each of the problems in Figure 15.39. Obtain matrices [A] and [B].

15.11 (a) How would you modify matrices [A] and [B] of Example 15.3 if the solution region
had charge density ps?

(b) Write a program to solve for the potentials at the grid points shown in Figure 15.40
assuming a charge density ps = x(y — 1) nC/m . Use the iterative finite difference
method and take er = 1.0.

—

oov-i-

v =

a

d

V =

100 V

b

e

OV

c

f

/

\

1

4

7

2

5

8

/

3 \

6

A • 1 5 V

(a) (b)

Figure 15.39 For Problem 15.10.
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Figure 15.40 For Problem 15.11.

719

1.0

15.12 The two-dimensional wave equation is given by

c2 dt2

By letting ^m n denote the finite difference approximation of <P(xm, z,,, tj), show that the
finite difference scheme for the wave equation is

= 2 a (<Pj +

, — 2

<PJ , - 2 <PJ

where /; = Ax = Az and a = (cAt/h)2.

15.13 Write a program that uses the finite difference scheme to solve the one-dimensional
wave equation

d2V d2V

dxz
0 < x < 1, > 0

given boundary conditions V(0, i) = 0, V(l, t) = 0, t > 0 and the initial condition
dV/dt (x, 0) = 0, V(x, 0) = sin 7TJC, 0 < JC < 1. Take Ax = At = 0.1. Compare your
solution with the exact solution V(x, t) = sin 7rx COS TT/ for 0 < t < 4.

15.14 (a) Show that the finite difference representation of Laplace's equation using the nine-

node molecule of Figure 15.41 is

Vo = 1/8 (V, + V2 + V3 + V4 + V5 + V6 + V1 + Vs)

(b) Using this scheme, rework Example 15.4.

15.15 A transmission line consists of two identical wires of radius a, separated by distance d as
shown in Figure 15.42. Maintain one wire at 1 V and the other at — 1 V and use MOM to
find the capacitance per unit length. Compare your result with exact formula for C in
Table 11.1. Take a = 5 mm, d = cm, € = 5 m, and e = eo.

15.16 Determine the potential and electric field at point (—1,4 , 5) due to the thin conducting

wire of Figure 15.19. Take Vo = 1 V, L = 1 m, a = 1 m m .

L
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4 3

0

2 Figure 15.41 Nine-node molecule of Problem 15.14.

15.17 Two conducting wires of equal length L and radius a are separated by a small gap and in-
clined at an angle 6 as shown in Figure 15.43. Find the capacitance between the wires
using the method of moments for cases 6 = 10°, 20°,. . ., 180°. Take the gap as 2 mm,
a = 1 mm, L = 2 m, er = 1.

15.18 Given an infinitely long thin strip transmission line shown in Figure 15.44(a), we want to
determine the characteristic impedance of the line using the moment method. We divide
each strip into N subareas as in Figure 15.44(b) so that on subarea i,

V,=

where

Ry is the distance between the rth and jth subareas, and V,• = 1 or - 1 depending on
whether the rth subarea is on strip 1 or 2, respectively. Write a program to find the char-
acteristic impedance of the line using the fact that

Zn =
C

Figure 15.42 For Problem 15.15.
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i For Problem 15.17.

gap
2a

where C is the capacitance per unit length and

and Vd = 2 V is the potential difference between strips. Take H = 2 m, W = 5 m, and
iV= 20.

15.19 Consider the coaxial line of arbitrary cross section shown in Figure 15.45(a). Using the
moment method to find the capacitance C per length involves dividing each conductor
into N strips so that the potential on they'th strip is given by

2N

where

-A€

* « =
In

-A€ I. At, , .
-z— In—'- - 1.52xe r i=j

J

(a)

I igure 15.44 Analysis of strip transmission line using moment
method; for Problem 15.18.
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AS,

(b)

Figure 15.45 For Problem 15.19; coaxial line of (a) arbitrary cross
section, and (b) elliptical cylindrical cross section.

and Vj; = - 1 or 1 depending on whether A€,- lies on the inner or outer conductor respec-
tively. Write a Matlab program to determine the total charge per length on a coaxial cable
of elliptical cylindrical cross section shown in Figure 15.45(b) using

and the capacitance per unit length using C = Q/2.

(a) As a way of checking your program, take A = B = 2 cm and a = b = 1 cm
(coaxial line with circular cross section), and compare your result with the exact
value of C = 2ire/ ln(A/a).

(b) Take A = 2 cm, B = 4 cm, a = 1 cm, and b = 2 cm.
(Hint: For the inner ellipse of Figure 15.45(b), for example,

r =
V sin2 v2cos2

where v = alb, di = r d<j>. Take ro = 1 cm.)

15.20 The conducting bar of rectangular cross section is shown in Figure 15.46. By dividing the
bar into Nequal segments, we obtain the potential at theyth segment as

where

4-ireoRy

. 2eo
=j
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Figure 15.46 For Problem 15.20.

and A is the length of the segment. If we maintain the bar at 10 V, we obtain

= 10[7]

where [/] = [ 1 1 1 . . .if and q{ = pvthA.

(a) Write a program to find the charge distribution pv on the bar and take € = 2 m,
h = 2 cm, t = 1 cm, and N = 20.

(b) Compute the capacitance of the isolated conductor using

C= Q/V= (<?, + q2+. . . + qN)/10

15.21 Another way of defining the shape functions at an arbitrary point (x, y) in a finite
element is using the areas AX,A2, and A3 shown in Figure 15.47. Show that

a* = 4*. 4 = 1 , 2 , 3
A

where A = A, + A2 + A3 is the total area of the triangular element.

15.22 For each of the triangular elements of Figure 15.48,

(a) Calculate the shape functions.

(b) Determine the coefficient matrix.

15.23 The nodal potential values for the triangular element of Figure 15.49 are VY = 100 V,
V2 = 50 V, and V3 = 30 V. (a) Determine where the 80 V equipotential line intersects
the boundaries of the element, (b) Calculate the potential of (2, 1).

Figure 15.47 For Problem 15.21.
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(0.5,1)

(0,0)

(a)

Figure 15.48 Triangular elements
of Problem 15.22.

(1,2) (2.5,2)

(2, 0.4)

(b)

15.24 The triangular element shown in Figure 15.50 is part of a finite element mesh. If
Vx = 8 V, V2 = 12 V, and V3 = 10 V, find the potential at (a) (1,2) and (b) the center
of the element.

15.25 Determine the global coefficient matrix for the two-element region shown in Figure
15.51.

15.26 Find the global coefficient matrix of the two-element mesh of Figure 15.52.

15.27 For the two-element mesh of Figure 15.52, let Vx = 10 V and V3 = 30 V. Find V2 and
V4.

(j .j . 2

(2,2)

( 3 , 1 )

Figure 15.-W For Problem 15.23.

(0,0)

(1,4) Fimire 15.50 For Problem 15.24.

(2, -1)
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Fijiure 15.51 For Problem 15.25.
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(0,0) (8,0)

(0,1)

(2,2)

Figure 15.52 For Problem 15.26 and 15.27.

(3,0)

15.28 The mesh in Figure 15.53 is part of a large mesh. The shading region is conducting and
has no elements. Find C5S and C5>1.

15.29 Use the program in Figure 15.33 to solve Laplace's equation in the problem shown in
Figure 15.54 where Vo = 100 V. Compare the finite element solution to the exact solu-
tion in Example 6.5; that is,

i// ^ 4 V ° -ST sin WTT x sinh nwy
V(x, y) = V ,

7T ^ o n sinh nit

n = 2k + 1

4 cm 7

Fi»nre 15.53 For Problem 15.28.

L
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3f

25

19

13

32 33 34 35
36 -d=r V,

30

24

18

12

5 6
x=1.0

Figure 15.54 For Problem 15.29.

15.30 Repeat the preceding problem for Vo = 100 sin irx. Compare the finite element solution
with the theoretical solution [similar to Example 6.6(a)]; that is,

V(x, y) =
100 sin it x sinh ir y

sinh 7T

15.31 Show that when a square mesh is used in FDM, we obtain the same result in FEM when
the squares are cut into triangles.
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MATHEMATICAL FORMULAS

A.1 TRIGONOMETRIC IDENTITIES

tan A =

sec A =

sin A

cos A'

1

cos A'

cot A =
1

esc A =

tan A

1

sin A

sin2 A + cos2 A = 1 , 1 + tan2 A = sec2 A

1 + cot2 A = esc2 A

sin (A ± B) = sin A cos B ± cos A sin B

cos (A ± B) = cos A cos B + sin A sin B

2 sin A sin B = cos (A - B) - cos (A + B)

2 sin A cos B = sin (A + B) + sin (A - B)

2 cos A cos B = cos (A + B) + cos (A - B)

sin A + sin B = 2 sin
B A -B

cos

. „ „ A + B A - B
sin A - sin B = 2 cos sin

A - BA + B
cos A + cos B = 2 cos cos

A n ^ . A + B A -B
cos A - cos B = - 2 sin sin

cos (A ± 90°) = +sinA

sin (A ± 90°) = ± cos A

tan (A ±90°) = -cot A

cos (A ± 180°) = -cos A

sin (A ± 180°) = -sin A

727
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tan (A ± 180°) = tan A

sin 2A = 2 sin A cos A

cos 2A = cos2 A - sin2 A = 2 cos2 A - 1 = 1 - 2 sin2 A

tan A ± B
tan (A ± B) = ——

tan 2A =

1 + tan A tan B

2 tan A

1 - tan2 A

sin A =
ejA - e~iA

cos A =
2/ ' — " 2

ejA = cos A + y sin A (Euler's identity)

TT = 3.1416

1 rad = 57.296°

\.2 COMPUX VARIABLES

A complex number may be represented as

z = x + jy = r/l = reje = r (cos 0 + j sin

where x = Re z = r cos 0, y = Im z = r sin 0

7 = l, T = -y,

The complex conjugate of z = z* = x — jy = r / - 0 = re je

= r (cos 0 - j sin 0)

(ej9)" = ejn6 = cos «0 + j sin «0 (de Moivre's theorem)

If Z\ = x, + jyx and z2 = ^2 + i)1!. then z, = z2 only if x1 = JC2 and j ! = y2.

Zi± Z2 = (xi + x2) ± j(yi + y2)

or

nr2/o,
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i j
y\

or

Z2

Vz = VxTjy = \Trem = Vr /fl/2

2n = (x + /y)" = r" e;nfl = rn /nd (n = integer)

z"» = (X + yj,)"" = r
1/n

 e ^ " = r
Vn /din + 27rfc/n (t = 0, 1, 2, , n -

In (re'*) = In r + In e7* = In r + jO + jlkir (k = integer)

A3 HYPERBOLIC FUNCTIONS

sinhx =

tanh x =

u ~ -

ex - e'x

2

sinh x

cosh x

1

coshx =

COttlJt =

ex

1

sechx =

tanhx

1

coshx

cosjx = coshx

coshyx = cosx

sinhx

sinyx — j sinhx,

sinhyx = j sinx,

sinh (x ± y) = sinh x cosh y ± cosh x sinh y

cosh (x ± y) = cosh x cosh y ± sinh x sinh y

sinh (x ± jy) = sinh x cos y ± j cosh x sin y

cosh (x ± jy) = cosh x cos y ±j sinh x sin y

sinh 2x sin 2y
tanh (x ± jy) = ± /

cosh 2x + cos 2y cosh 2x + cos 2y

cosh2 x - sinh2 x = 1

sech2 x + tanh2 x = 1

sin (x ± yy) = sin x cosh y ± j cos x sinh y

cos (x ± yy) = cos x cosh y + j sin x sinh y

L
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A.4 LOGARITHMIC IDENTITIES

If |

log xy = log x + log y

X

log - = log x - log y

log x" = n log x

log10 x = log x (common logarithm)

loge x = In x (natural logarithm)

l , ln ( l + x) = x

A.5 EXPONENTIAL IDENTITIES

ex =

where e == 2.7182

X ~f"

e

[e

In

x2

2 ! 4

V =

1" =

x3

" 3! +

ex+y

X

x4

4!

A.6 APPROXIMATIONS FOR SMALL QUANTITIES

If \x\ <Z 1,

(1 ± x)n == 1 ± ra

^ = 1 + x

In (1 + x) = x

sinx
sinx == x or hm = 1

>0 X

COS — 1

tanx — x
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A.7 DERIVATIVES

If U = U(x), V = V(x), and a = constant,

dx dx

dx dx dx

d\U

\

U
dx dx

V2

~(aUn) = naUn~i

dx

dx U dx

d 1 dU
— In U =
dx U dx

d v .t/, dU
— a = d In a —
dx dx

dx dx

dx dx

— sin U = cos U —
dx dx

d dU
—-cos U = -sin U —
dx dx

d , dU
—-tan U = sec £/ —
dx dx

d dU
— sinh U = cosh [/ —
dx dx

— cosh t/ = sinh {/ —
dx dx

d . dU
— tanh[/ = sech2t/ —
<ix dx

dx
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A.8 INDEFINITE INTEGRALS

lfU= U(x), V = V(x), and a = constant,

a dx = ax + C

UdV=UV- | VdU (integration by parts)

Un+l

Un dU = + C, n + -1
n + 1

dU

U
= In U + C

au dU = + C, a > 0, a
In a

eudU = eu +C

eaxdx = - eax + C
a

xeax dx = —r(ax - 1) + C

x eaxdx = — (a
2x2 - lax + 2) + C

a'

In x dx = x In x — x + C

sin ax cfcc = — cos ax + C
a

cos ax ax = — sin ax + C

tan ax etc = - In sec ax + C = — In cos ax + C
a a

sec ax ax = — In (sec ax + tan ax) + C
a
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2 x sin 2ax
sin axdx = — 1- C

2 4a

x sin 2ax2 x
cos ax dx = —I

22 4a
C

sin ax dx = — (sin ax — ax cos ax) + C

x cos ax dx = —x (cos ax + ax sin ax) + C

eax sin bx dx = —~ r (a sin bx - b cos to) + C
a + ft

eajc cos bx dx = -= ~ (a cos ftx + ft sin /?x) + C
a + b

sin (a - ft)x sin (a + b)x 2 2

sin ax sin ox ax = —— ~ TT,—:—~ •" >̂ a + b

sin ax cos bx dx = —

l(a - b) l(a +

cos (a - b)x cos (a + b)x

cos ax cos bx dx =

a - ft) 2(a + ft)

sin (a - ft)x sin (a + ft)x

2(a - ft) 2(a + b)

C, a1

+ C, a2 # b2

sinh flitfa = - cosh ax + C
a

cosh c a & = - sinh ax + C
a

tanh axdx = -In cosh ax + C
a

ax 1 _• x „
- r r = - tan ' - + C
x

2 + a2 a a

X X l ( 2 + 2)
2 2

x + a I

C

x2 dx _, x
— r = x - a tan - + C
x2 + a ' «
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dx x + a x2>a2

x2-a2 1 a - x 2 , 2
T— In —• h C, x < a
2a a + x

dx

\ / 2 ,
Vx ±

xdx

x2

2
a

_, x
= sin ' - + C

= In (x + V x 2 ± a2) + C

a2 + C

dx x/az

(x2 + a2)3'2
+ C

xdx

(x2 + a2)3'2 'x2 + a2

x2dx

(x2 + a2f2 = In
+ a2 x

a a V + a2 + C

dx

(xz + az

1 / x 1 _! *\
r^f "i j + - tan l-} + C
la \x + a a a,

A.9 DEFINITE INTEGRALS

'o

sin mx sin nx dx = cos mx cos nx dx = { ', m + n
ir/2, m = n

, i w, m + n = even
sin mx cos nx dx = I

o i — r, m + n = odd
m - «

sin mx sin nx dx = sin mx sin nx dx = J, m =F n
w, m = n

sin ax
ir/2, a > 0,

dx = ^ 0, a = 0
-ir/2, a < 0

sin
2x
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f-sin ax , , x

xne~axdx =

'1" dx =

w!

1 Iv

2 V a

a-(ax2+bx+c) £x_ \J_

e M cos bx dx =

e'"1 sin bxdx =
a2 + b2

A.10 VECTOR IDENTITIES

If A and B are vector fields while U and V are scalar fields, then

V (U + V) = VU + VV

V (t/V) = U VV + V Vt/

V(VL0 -

V V" = n V " 1 VV (« = integer)

V (A • B) = (A • V) B + (B • V) A + A X (V X B) + B X (V X A)

V • (A X B) = B • (V X A) - A • (V X B)

V • (VA) = V V • A + A • W

V • (VV) = V2V

V • (V X A) = 0

V X ( A + B) = V X A + V X B

V X (A X B) = A (V • B) - B (V • A) + (B • V)A - (A • V)B

V x (VA) = VV X A + V(V X A)
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V x (VV) = 0

V X (V X A) = V(V • A) - V2A

A • d\ = I V X A - d S

Vd\ = - I VV X dS

A • dS = V • A dv

K

VdS = \ Wdv

A X J S = -
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MATERIAL CONSTANTS

TABLE B.1 Approximate Conductivity* of Some
Common Materials at 20°C

Material

Conductors

Silver

Copper (standard annealed)

Gold

Aluminum
Tungsten
Zinc
Brass

Iron (pure)

Lead

Mercury

Carbon

Water (sea)
Semiconductors

Germanium (pure)
Silicon (pure)

Insulators

Water (distilled)

Earth (dry)
Bakelite
Paper
Glass
Porcelain
Mica
Paraffin

Rubber (hard)

Quartz (fused)
Wax

Conductivity (siemens/meter)

6.1 X 10'
5.8 X 10'
4.1 X 10'
3.5 X 10'
1.8 x 10'
1.7 x 10'
1.1 x 10'

10'
5 X 106

106

3 X 104

4

2.2
4.4 X 10"4

io-4

io-5

io-'°
io-"
l O " 1 2

io-'2

io-'5

l O " 1 5

io-'5

io-"
10""

The values vary from one published source to another due to the fact
that there are many varieties of most materials and that conductivity
is sensitive to temperature, moisture content, impurities, and the like.

737
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TABLE B.2 Approximate Dielectric Constant
or Relative Permittivity (er) and Strength
of Some Common Materials*

Material

Barium titanate

Water (sea)

Water (distilled)

Nylon
Paper
Glass
Mica
Porcelain

Bakelite

Quartz (fused)

Rubber (hard)
Wood
Polystyrene
Polypropylene
Paraffin

Petroleum oil

Air (1 atm.)

Dielectric Constant
er (Dimensionless)

1200

80

81

8
7

5-10
6

6
5

5

3.1
2.5-8.0

2.55
2.25

2.2
2.1

1

Dielectric Strength
RV/m)

7.5 x 106

12 X 10"

35 x 106

70 X 106

20 X 106

30 X 106

25 X 106

30 X 106

12 X 106

3 X 106

*The values given here are only typical; they vary from one
published source to another due to different varieties of most
materials and the dependence of er on temperature, humidity, and the
like.
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TABLE B.3 Relative
Permeability (/*,) of
Some Materials*

Material

Diamagnetic

Bismuth

Mercury

Silver

Lead
Copper

Water

Hydrogen (s.t.p.)

Paramagnetic

Oxygen (s.t.p.)

Air

Aluminum

Tungsten

Platinum

Manganese

Ferromagnetic

Cobalt

Nickel

Soft iron

Silicon-iron

V-r

0.999833

0.999968

0.9999736

0.9999831

0.9999906
0.9999912

= 1.0

0.999998

1.00000037

1.000021

1.00008

1.0003

1.001

250

600

5000

7000

*The values given here are only typical;
they vary from one published source to
another due to different varieties of
most materials.
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ANSWERS TO ODD-NUMBERED
PROBLEMS

CHAPTER 1

1.1
1.3

-0.8703aJC-0.3483a,-0.3482a,
(a) 5a* + 4a, + 6s,
(b) - 5 3 , - 3s, + 23a,
(c) 0.439a* - 0.11a,-0.3293az

(d) 1.1667a* - 0.70843, - 0.7084az

1.7 Proof
1.9 (a) -2.8577

(b) -0.2857a* + 0.8571a,
(c) 65.91°

1.11 72.36°, 59.66°, 143.91°
1.13 (a) (B • A)A - (A • A)B

(b) (A • B)(A X A) - (A •
1.15 25.72
1.17 (a) 7.681

(b)
(c) 137.43C

(d) 11.022
(e) 17.309

1.19 (a) Proof
(b) cos 0! cos 02 + sin i

- 0 i

0.4286a,

A)(A X B)

- 2 a , - 5a7

sin 02, cos 0i cos 02 — sin 0, sin 02

(c) sin

1.21 (a) 10.3
(b) -2.175ax + 1.631a, 4.893a.
(c) -0.175ax + 0.631ay - 1.893a,

740
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CHAPTER 2

2.1 (a) P(0.5, 0.866, 2)
(b) g(0, 1, -4 )
(c) #(-1.837, -1.061,2.121)
(d) 7(3.464,2,0)

2.3 (a) pz cos 0 - p2 sin 0 cos 0 + pz sin 0
(b) r2(l + sin2 8 sin2 0 + cos 8)

2.5 (a) -
, 2 4 s i n 0 \ /

(pap + 4az), I sin 8 H ] ar + sin 0 ( cos i

+ / V x 2 + y2 + z
2.9 Proof

2.11 (a)
xl + yz yz\), 3

(b) r(sin2 0 cos 0 + r cos3 0 sin 0) ar + r sin 0 cos 0 (cos 0 — r cos 0 sin 0) a#, 3
2.13 (a) r sin 0 [sin 0 cos 0 (r sin 0 + cos 0) ar + sin 0 (r cos2 0 - sin 0 cos 0)

ag + 3 cos 0 a^], 5a# - 21.21a0

p - •- z a A 4.472ap + 2.236az

2.15 (a) An infinite line parallel to the z-axis
(b) Point ( 2 , - 1 , 10)
(c) A circle of radius r sin 9 = 5, i.e., the intersection of a cone and a sphere
(d) An infinite line parallel to the z-axis
(e) A semiinfinite line parallel to the x-y plane
(f) A semicircle of radius 5 in the x-y plane

2.17 (a) â  - ay + 7az

(b) 143.26°
(c) -8.789

2.19 (a) -ae
(b) 0.693lae

(c) - a e + O.6931a0

(d) 0.6931a,,,
2.21 (a) 3a0 + 25a,, -15.6a r + lOa0

(b) 2.071ap - 1.354a0 + 0.4141a,
(c) ±(0.5365ar - 0.1073a9 + 0.8371a^,)

2.23 (sin 8 cos3 0 + 3 cos 9 sin2 0) ar + (cos 8 cos3 0 + 2 tan 8 cos 6 sin2 0 -
sin 6 sin2 0) ae + sin 0 cos 0 (sin 0 - cos 0) a0
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CHAPTER 3

3.1

3.3

3.5
3.7

3.9
3.11

3.13

3.15
3.17

3.19

3.21
3.23
3.25

3.27
3.29

3.31

3.33
3.35

(a)
(b)
(c)
(a)
(b)
(c)

2.356
0.5236
4.189
6
110
4.538

0.6667
(a)
(b)

4a,
(a)
(b)
(a)
(b)
(c)

- 5 0
-39.5

, + 1.333az

( -2 , 0, 6.2)
-2a* + (2 At +
-0.5578ax - 0.
2.5ap + 2.5a0 -
- a r + 0.866a<,

Along 2a* + 2a>, -
(a)
(b)

(a)
(b)
2(z:

-y2ax + 2zay -
(p2 - 3z2)a0 +

COt (7 COS (p ~

Proof
2xyz

z - y 2 - y )
Proof
(a)
(b)
(c)
(d)

6yzax + 3xy2ay •

Ayzax + 3xy2a3, •

6xyz + 3xy3 + ;
2(x2 + y2 + z2)

Proof
(a)
(b)

(c)

(a)

(b)

(c)

(6xy2 + 2x2 + x
3z(cos 4> + sin 4

e~r sin 6 cos </>( ]

7

6
7

6
Yes

50.265
(a)
(b)
(c)

Proof, both sides
Proof, both sides
Proof, both sides

5)3;, m/s
8367ay - 3.047a,
- 17.32az

az

x\, 0
4p2az, 0

1 / c o s <t>
r- , . + COS

r V sin 6

+ 3x2yzaz

•f 4x2yzaz

\x2yz

•5y2)exz, 24.46
»), -8 .1961

A \

L - - j , 0.8277

equal 1.667
equal 131.57
equal 136.23

6 a* 0
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CHAPTER 4

3.37 (a) 4TT - 2
(b) 1-K

3.39 0
3.41 Proof
3.43 Proof
3.45 a = 1 = 0 = 7, - 1

4.1 -5.746a., - 1.642a, + 4.104a, mN
4.3 (a) -3.463 nC

(b) -18.7 nC
4.5 (a) 0.5 C

(b) 1.206 nC
(c) 157.9 nC

MV/m

4.13
4.15
4.17

4.19
4.21

4.23

(a) Proof
(b) 0.4 mC, 31.61a,/iV/m
-0.591ax-0.18a zN
Derivation
(a) 8.84xyax + 8.84x2a, pC/m2

(b) 8.84>>pC/m3

5.357 kJ
Proof

(0, p<\

1 < p < 2

28
P

4.25 1050 J
4.27 (a) -1250J

(b) -3750 nJ
(c) 0J
(d) -8750 nJ

4.29 (a) -2xax - Ayay - 8zaz

(b) -(xax + yay + zaz) cos (x2 + y2 + z2)m

(c) -2p(z + 1) sin 4> ap - p(z + 1) cos <j> a0 - p2 sin <t> az

(d) e"r sin 6 cos 20 ar cos 6 cos 20 ae H sin 20

4.31

4.33

(a)
(b)

72ax

- 3 0
Proof

+
.95

27a, -
PC

36a, V/m
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4.35 (a)

(b)

(c)

CHAPTER 5

2po 2p0

I5eor
2 n I5eor

1) Psdr--^
5 J &r' eoV20 6

2po 1 poa
15eo 60sn

15
(d) Proof

4.37 (a) -1.136 a^kV/m
(b) (a, + 0.2a^) X 107 m/s

4.39 Proof,

4.41

(2 sin 0 sin 0 ar - cos 0 sin <t> ae - cos 0 a^) V/m

4.43 6.612 nJ

5.1 -6.283 A
5.3 5.026 A
5.5 (a) - 16ryz eo, (b) -1.131 mA
5.7 (a) 3.5 X 107 S/m, aluminum

(b) 5.66 X 106A/m2

5.9 (a) 0.27 mil
(b) 50.3 A (copper), 9.7 A (steel)
(c) 0.322 mfi

5.11 1.000182
5.13 (a) 12.73zaznC/m2, 12.73 nC/m3

(b) 7.427zaz nC/m2, -7.472 nC/m3

5.15 (a)
4?rr2

(b) 0

(o e

1

Q
4-Kb2

5.17 -24.72a* - 32.95ay + 98.86a, V/m
5.19 (a) Proof

( b ) ^

5.21 (a) 0.442a* + 0.442ay + 0.1768aznC/m2

(b) 0.2653a* + 0.5305ay + 0.7958a,
5.23 (a) 46.23 A

(b) 45.98 ,uC/m3

5.25 (a) 1 8 . 2 ^
(b) 20.58
(c) 19.23%
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5.27 (a) -1.061a, + 1.768a,, + 1.547az nC/m2

(b) -0.7958a* + 1.326a, + 1.161aznC/m2

(c) 39.79°
5.29 (a) 387.8ap - 452.4a,*, + 678.6azV/m, 12a, - 14a0 + 21aznC/m2

(b) 4a, - 2a ,̂ + 3az nC/m2, 0
(c) 12.62 mJ/m3 for region 1 and 9.839 mJ/m3 for region 2

5.31 (a) 705.9 V/m, 0° (glass), 6000 V/m, 0° (air)
(b) 1940.5 V/m, 84.6° (glass), 2478.6 V/m, 51.2° (air)

5.33 (a) 381.97 nC/m2

0955a, 2

(b) 5—nC/m
r

(c) 12.96 pi

CHAPTER 6

6.1 120a* + 1203,, " 12az' 5 3 0 - 5 2 1
, . , , . PvX3 , PoX2 , fV0 pod\ (py PaX Vo pod\

pod s0V0 s0V0 pod
( b ) 3 ~ d ' d + 6

6.5 157.08/ - 942.5;y2 + 30.374 kV
6.7 Proof
6.9 Proof
6.11 25z kV, -25az kV/m, -332az nC/m2, ± 332az nC/m2

6.13 9.52 V, 18.205ap V/m, 0.161a,, nC/m2

6.15 11.7 V, -17.86aeV/m
6.17 Derivation

6.19

6.21
6.23
6.25

(a)-±

HA 4V°( L ) x

{) x

Proof
Proof
Proof

00

V

CO

n = odd

Ddd

sin

i

sin

1

m I

niry

a

1 b
nira

n sinh
b

nirx
sinh

a

n-wb
n sinh

a
niry

b

n

• h
 n 7 r

 ( n ,

b

sinh
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6.27
6.29
6.31

6.33

6.35

6.37
6.39
6.41
6.43
6.45
6.47

6.49

0.5655 cm2

Proof
(a) 100 V
(b) 99.5 nC/m2, - 99
(a) 25 pF
(b) 63.662 nC/m2

4x

1 1 1 1
c d be
21.85 pF
693.1 s
Proof
Proof
0.7078 mF
(a) lnC
(b) 5.25 nN
-0.1891 (a, + av + .

.5 nC/m2

1 1
a b

a7)N
6.51 (a) -138 .24a x - 184.32a, V/m

(b) -1.018 nC/m2

CHAPTER 7

7.1 (b) 0.2753ax + 0.382ay H
7.3 0.9549azA/m
7.5 (a) 28.47 ay mA/m

(b) -13a , + 13a, mA/m
(c) -5.1a, + 1.7ay mA/n
(d) 5.1ax + 1.7a, mA/m

7.7 (a) -0.6792az A/m
(b) 0.1989azmA/m
(c) 0.1989ax

7.9 (a) 1.964azA/m
(b) 1.78azA/m
(c)
(d)

7.11 (a)
(b)
(c)

7.13 (a)

0.1404a7A/m

0.1989a, A/m

-0.1178a, A/m
-0.3457a,, - 0.3165ay + 0.1798azA/m
Proof
1.78 A/m, 1.125 A/m
Proof
1.36a7A/m

(b) 0.884azA/m
7.15 (a) 69.63 A/m

(b) 36.77 A/m
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7.17 (b)

0,
/ (p2-a2

2-KP \b2 - a2

I

p < a

a< p<b

p>b

7.19

7.21

7.23

7.25
7.27

7.29

7.31

(a) -2a, A/m2

(b) Proof, both sides equal -30 A
(a) 8Oa0nWb/m2

(b) 1.756/i Wb
(a) 31.433, A/m
(b) 12.79ax + 6.3663, A/m
13.7 nWb
(a) magnetic field
(b) magnetic field
(c) magnetic field
(14a, + 42a0) X 104 A/m, -1.011 Wb
IoP a

2?ra2 *

7.33 —
/

7.35

7.37

7.39

A/m2

28x
(a) 50 A
(b) -250 A
Proof

8/Xo/

CHAPTER 8

8.1 -4.4ax + 1.3a, + 11.4a, kV/m
8.3 (a) (2, 1.933, -3.156)

(b) 1.177 J
8.5 (a) Proof

8.7 -86.4azpN
8.9 -15.59 mJ
8.11 1.949axmN/m
8.13 2.133a* - 0.2667ay Wb/m2

8.15 (a) -18.52azmWb/m2

(b) -4a,mWb/m2

(c) -Il ia, . + 78.6a,,mWb/m2

I
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8.17

8.19

8.21

8.23

8.25
8.27

8.29

8.31
8.33
8.35
8.37
8.39
8.41

8.43

(a)
(b)
(c)
(d)

5.5
81.68ax + 204
-220az A/m
9.5 mJ/m2

476.68 kA/m

2 -
a

(a)
(b)
26.
(a)
(b)
(c)
(a)
(b)
11.

)

25ap + 15a0 -
666.5 J/m3, 57.

833^ - 30ay +
-5a,, A/m, - 6
— 35ay A/m, —

2ay - 326.7az jtWb/m2

- 50az mWb/m2

7 J/m3

33.96a, A/m
.283a,, jtWb/m2

110ay^Wb/m2

5ay A/m, 6.283ay /iWb/m2

167.4
6181 kJ/m3

58 mm
5103 turns
Proof
190.8 A • t, 19,080
88.
(a)
(b)

5 mWb/m2

6.66 mN
1.885 mN

Proof

A/m

CHAPTER 9

9.1 0.4738 sin 377?
9.3 - 5 4 V
9.5 (a) -0.4? V

(b) -2? 2

9.7 9.888 JUV, point A is at higher potential
9.9 0.97 mV
9.11 6A, counterclockwise
9.13 277.8 A/m2, 77.78 A
9.15 36 GHz
9.17 (a) V • Es = pje, V-H s = 0 , V x E 5

BDX dDy BDZ
(b) —— + —— + ^ ~

ox dy oz
dBx dBv dBz

dx dy dz
d£z dEy _ dBx

dy dz dt

, V X H, = (a -

Pv

= 0
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dEx

dz
dEy

dx
dHz

dy
dHx

dz
dHy

dx
9.19 Proof

dEz

dx
dEx _
dy
dHy

dz
_dH1_

dx
dHx _

dy ~

j
Jx

Jy

Jz

dB}

dt
dBk

dt

I

+

+

BDX

dt

dDy

dt
dDz

dt

9.21 - 0 . 3 z 2 s i n l 0 4 r m C / m 3

9.23 0.833 rad/m, 100.5 sin j3x sin (at ay V/m
9.25 (a) Yes

(b) Yes
(c) No
(d) No

9.27 3 cos <j> cos (4 X 106r)a, A/m2, 84.82 cos <j> sin (4 X 106f)az kV/m

( l + 0 ( 3 - p ) , r t 7 .„-,_
4TT

9.29 (2 - p)(l + t)e~p~'az Wb/m2, •

9.31 (a) 6.39/242.4°
(b) 0.2272/-202.14°
(c) 1.387/176.8°
(d) 0.0349/-68°

9.33 (a) 5 cos (at - Bx - 36.37°)a3,
20

(b) — cos (at - 2z)ap

22.36
(c) — j — cos (at - <j) + 63.43°) sin 0 a0

9.35 Proof

CHAPTER 10

10.1 (a) along ax

(b) 1 us, 1.047 m, 1.047 X 106 m/s
(c) see Figure C. 1

10.3 (a) 5.4105 +y6.129/m
(b) 1.025 m
(c) 5.125 X 107m/s
(d) 101.41/41.44° 0

(e) -59A6e-J4h44° e ' ^

I
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—25 I-

Figured For Problem 10.1.

25

-25

25

- 2 5

- 2 5 I-

t= 778

\/2

t= 774

t = Til

10.5

10.7

10.9

10.11

(a) 1.732
(b) 1.234
(c) (1.091 - jl.89) X 10~nF/in
(d) 0.0164 Np/m
(a) 5 X 105 m/s
(b) 5 m
(c) 0.796 m
(d) 14.05/45° U
(a) 0.05 + j2 /m
(b) 3.142 m
(c) 108m/s
(d) 20 m
(a) along -x-direction
(b) 7.162 X 10"10F/m
(c) 1.074 sin (2 X 108 + 6x)azV/m
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10.13 (a) lossless
(b) 12.83 rad/m, 0.49 m
(c) 25.66 rad
(d) 4617 11

10.15 Proof
10.17 5.76, -0.2546 sin(109r - 8x)ay + 0.3183 cos (109r - 8x)a, A/m
10.19 (a) No

(b) No
(c) Yes

10.21 2.183 m, 3.927 X 107 m/s
10.23 0.1203 mm, 0.126 n
10.25 2.94 X 10"6m
10.27 (a) 131.6 a

(b) 0.1184 cos2 (2ir X 108r - 6x)axW/m2

(c) 0.3535 W
0 225

10.29 (a) 2.828 X 108 rad/s, sin (cor - 2z)a^ A/m

9 , --,
(b) -^ sin2 (cor - 2z)az W/m2

P
(c) 11.46 W

10.31 (a)~|,2

(b) - 1 0 cos (cor + z)ax V/m, 26.53 cos (cor + z)ay mA/m
10.33 26.038 X 10~6 H/m
10.35 (a) 0.5 X 108 rad/m

(b) 2
(c) -26.53 cos (0.5 X 108r + z)ax mA/m
(d) 1.061a, W/m2

10.37 (a) 6.283 m, 3 X 108 rad/s, 7.32 cos (cor - z)ay V/m
(b) -0.0265 cos (cor - z)ax A/m
(c) -0.268,0.732
(d) E t = 10 cos (cor - z)ay - 2.68 cos (ut + z)ay V/m,

E2 = 7.32 cos (cor - z)ay V/m, P,ave = 0.1231a, W/m2,
P2me = 0.1231a, W/m2

10.39 See Figure C.2.

10.41 Proof, Hs = ^ — [ky sin (k^) sin (kyy)ax + kx cos (jfĉ ) cos (kyy)ay]
C0/Xo

10.43 (a) 36.87°
(b) 79.583^ + 106.1a, mW/m2

(c) (-1.518ay + 2.024a,) sin (cor + Ay - 3z) V/m, (1.877a,, - 5.968av)
sin (cor - 9.539y - 3z) V/m

10.45 (a) 15 X 108 rad/s
(b) (-8a* + 6a,, - 5az) sin (15 X 108r + 3x + Ay) V/m
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(i = 0 Figure C.2 For Problem 10.39; curve n corre-
sponds to ? = n778, n = 0, 1, 2, . . . .

A/4

CHAPTER 11

11.1 0.0104 n/m, 50.26 nH/m, 221 pF/m, 0 S/m
11.3 Proof
11.5 (a) 13.34/-36.240, 2.148 X 107m/s

(b) 1.606 m
11.7 Proof

y
11.9 — sin (at - j8z) A

11.11

11.13
11.15
11.17

11.19
11.21

11.23
11.25
11.27

11.29
11.31

11.33

(a)

(b)

79S

Proof
2«

n + 1
(ii) 2
(iii) 0
(iv) 1

S.3 rad/m, 3.542 X 107 m/s
Proof
(a)
(b)
0.2
(a)'
(b)

0.4112,2.397
34.63/-4O.650 Q

/40°A
46.87 0
48.39 V

Proof
io.:
(a)
(b)

2 + 7I3.8 a 0.7222/154°, 6.2
7300 n
15 + 70.75 U

0.35 + yO.24
(a)
(b)
(c)
(a)
(b)

125 MHz
72 + 772 n
0.444/120°
35 + 7'34 a
0.375X
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11.35 (a) 24.5 0 ,
(b) 55.33 Cl, 61.1A £1

11.37 10.25 W
11.39 20 + yl5 mS, -7IO mS, -6.408 + j5.189 mS, 20 + J15 mSJIO mS,

2.461 + j5.691 mS
11.41 (a) 34.2 +741.4 0

(b) 0.38X, 0.473X,
(c) 2.65

11.43 4, 0.6/-900 , 27.6 - y52.8 Q
11.45 2.11, 1.764 GHz, 0.357/-44.50, 70 - j40 0
11.47 See Figure C.3.
11.49 See Figure C.4.
11.51 (a) 77.77 (1, 1.8

(b) 0.223 dB/m, 4.974 dB/m
(c) 3.848 m

11.53 9.112 Q < Z O < 21.030

V(0,t) 14.4 V

12 V

Figure C.3 For Problem 11.47.

2.4 V
2.28 V

10
t (us)

150 mA
142.5 mA

10
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V(ht)
80 V

74.67 V 75.026 V

0

/(1,0 mA

t (us)

533.3

0

497.8
500.17

0 1 2 3

Figure C.4 For Problem 11.49.

-+-*• t (us)

CHAPTER 12

12.1
12.3

12.5

12.7
12.9
12.11

12.13

Proof
(a)
(b)
(c)
(a)
(b)
43C
375
(a)
(b)
(c)
(a)
(b)

See Table C.I
i7TEn = 573.83 Q, r/TM15 = 3.058 fi
3.096 X 107m/s
No
Yes

Ins
AQ, 0.8347 W
TE23

y400.7/m
985.3 0
Proof
4.06 X 108 m/s, 2.023 cm, 5.669 X 108 m/s, 2.834 cm
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12.15 (a) 1.193
(b) 0.8381

12.17 4.917

TABLE C.1

Mode

TEo,

TE10, TE02

TEn.TM,,

TE I 2 ,TM I 2

TE03

TE l 3 > TM l 3

TEM

TE 1 4 ,TM 1 4

TE0 5 , TE2 3 , TM 2 3

TE l 5 , TM1 5

fc (GHz)

0.8333
1.667

1.863

2.357

2.5

3

3.333

3.727
4.167

4.488

4ir i\ b
12.21 0.04637 Np/m, 4.811 m
12.23 (a) 2.165 X 10~2Np/m

(b) 4.818 X 10"3Np/m
12.25 Proof

12.27 Proof, — j

12.29 (a) TEo,,
(b) TM110

(c) TE101

12.31 See Table C.2

r. . (mzx\ (niry\
— ) Ho sin cos cos

V a J \ b J
piK

c

TABLE

Mode

Oil

110

101

102

120
022

C.2

fr (GHz)

1.9
3.535

3.333

3.8
4.472
3.8

12.33 (a) 6.629 GHz
(b) 6,387

12.35 2.5 (-sin 30TTX COS 30X^3^ + cos 30irx sin 3070^) sin 6 X 109
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CHAPTER 13

13.1
Cf\/D

sin (w? - /3r)(-sin <Aâ, + cos 6 cos <t>ae) V/m

A/msin (oit - 0r)(sin <j>&6 + cos 8 cos
fir

13.3 94.25 mV/m, jO.25 mA/m
13.5 1.974 fl
13.7 28.47 A

jnh^e'i0r sinfl
13.9 (a) £fe = t f fi

OTT?'

(b) 1.5
13.11 (a) 0.9071 /xA

(b) 25 nW
13.13 See Figure C.5
13.15 See Figure C.6
13.17 8 sin 6 cos <t>, 8
13.19 (a) 1.5 sin 0

(b) 1.5

Figure C.5 For Problem 13.13.

1 = 3X/2

1 = X

1 = 5x/8
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Figure C.6 For Problem 13.15.

(c)
1.5A2sin20

13.21
13.23

13.25

(d) 3.084 fl
99.97%
(a) 1.5 sin2 9, 5
(b) 6 sin2 0 cos2 <j>, 6
(c) 66.05 cos2 0 sin2 <j>/2, 66.05

1
sin 6 cos

2irr
13.27 See Figure C.7
13.29 See Figure C.8
13.31 0.2686
13.33 (a) Proof

(b) 12.8
13.35 21.28 pW
13.37 19 dB

- 13d cos 6»

Figure C.7 For Problem 13.27.
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Figure C.8 For Problem 13.29.

N=l

N=4

13.39 (a) 1.708 V/m
(b) 11.36|tiV/m
(c) 30.95 mW
(d) 1.91 pW

13.41 77.52 W

CHAPTER 14

14.1
14.3
14.5
14.7
14.9
14.11

14.13

14.15
14.17

Discussion
0.33 -yO. 15, 0.5571 - ;0.626
3.571
Proof
1.428
(a) 0.2271
(b) 13.13°
(c) 376
(a) 29.23°
(b) 63.1%
aw = 8686a14

Discussion
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CHAPTER 15

15.1 See Figure C.9
15.3 (a) 10.117, 1.56

(b) 10.113,1.506
15.5 Proof
15.7 6 V, 14 V
15.9 V, = V2 = 37.5, V3 = V4 = 12.5

Figure C.9 For Problem 15.1.
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15.11 (a) Matrix [A] remains the same, but -h2ps/s must be added to each term
of matrix [B].

(b) Va = 4.276, Vb = 9.577, Vc = 11.126
Vd = -2.013, Ve = 2.919, Vf = 6.069
Vg = -3.424, Vh = -0.109, V; = 2.909

15.13 Numerical result agrees completely with the exact solution, e.g., for t = 0,
V(0, 0) = 0, V(0.1, 0) = 0.3090, V(0.2, 0) = 0.5878, V(0.3, 0) = 0.809,
V(0.4, 0) = 0.9511, V(0.5, 0) = 1.0, V(0.6, 0) = 0.9511, etc.

15.15 12.77 pF/m (numerical), 12.12 pF/m (exact)
15.17 See Table C.3

TABLE C.3

6 (degrees)

10

20
30
40

170

180

C(pF)

8.5483

9.0677
8.893
8.606

11.32

8.6278

15.19 (a) Exact: C = 80.26 pF/m, Zo = 41.56 fi; for numerical solution, see Table C.4

TABLE C.4

N C (pF/m) Zo (ft)

10 82.386 40.486
20 80.966 41.197
40 80.438 41.467
100 80.025 41.562

(b) For numerical results, see Table C.5

TABLE C.5

N C (PF/m) Zo (ft)

10 109.51 30.458
20 108.71 30.681
40 108.27 30.807

100 107.93 30.905
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15.21 Proof
15.23 (a) At (1.5, 0.5) along 12 and (0.9286, 0.9286) along 13.

(b) 56.67 V
0 -0.6708

-1.2 -0.1248
1.408 -0.20815.25

0.8788
-2.08

0
-0.6708

15.27 18 V, 20 V
15.29 See Table C.6

-0.208
1.528

-1.2
-0.1248 -0.208 1.0036

TABLE C.6

Node No.

8

9

10

11
14

15

16

17

20

21

22

23

26

27

28

29

FEM

4.546

7.197

7.197

4.546

10.98

17.05

17.05

10.98

22.35

32.95

32.95

22.35

45.45

59.49

59.49

45.45

Exact

4.366

7.017

7.017

4.366

10.66

16.84

16.84

10.60

21.78

33.16

33.16

21.78

45.63

60.60

60.60

45.63

15.31 Proof



INDEX

Acceptance angle, 653
Ac resistance, 427
Ampere's law, 262, 273, 290

applications of, 274-278
Amperian path, 274
Amplitude, 412
Angle of incidence, 451
Angular frequency, 412
Antenna pattern. See Radiation pattern
Antenna arrays, 612-618

binomial type, 621
broadside type, 615
end-fire type, 615

Antennas, 588-618
types of, 589

Array factor, 613
Attenuation, 649, 654
Attenuation constant, 421, 479
Azimuthal angle, 30

Bac-cab rule, 16
Band matrix method, 672, 702
Bandwidth, 638, 649
Bessel differential equation, 223
Biot-Savart's law, 262-266, 290, 307
Bonding, 647
Bonding effectiveness, 648
Bounce diagram, 514
Boundary conditions, 182-187, 330-332,

385
Boundary-value problems, 199
Brewster angle, 455

Capacitance, 224-230
Capacitor, 224-230
Cartesian coordinates, 29, 53
Characteristic admittance, 480
Characteristic impedance, 479, 525
Charge conservation, 180
Charged ring, 118
Charged sphere, 128
Circular cylindrical coordinates, 29, 55
Circulation, 60

Closed form solution, 660
Coaxial capacitor, 227
Coaxial line, 276
Colatitude, 33
Complex permittivity, 422
Complex variables, 728-729
Components of a vector, 6
Conductivity, 162, 164

values of, 737
Conductors, 161, 164-167
Conservation of magnetic flux, 283
Conservative field, 87
Constant-coordinates surfaces, 41^14
Constitutive relations, 385
Continuity equation, 180, 385
Coulomb's law, 104-107, 305
Critical angle, 653
Cross product, 13
Curie temperature, 328
Curl, 75-80

definition of, 76
properties of, 78

Current, 162-164
conduction type, 164
convection type, 163
definition of, 162
displacement type, 382

Current density,
definition of, 163

Current reflection coefficient, 487
Cutoff, 549
Cutoff frequency, 542, 550
Cutoff wavelength, 550

Dc resistance, 427, 647
Definite integrals, 734
Degenerate modes, 576
Del operator, 63
Derivatives, 731
Diamagnetism, 327
Dielectric breakdown, 175
Dielectric constant, 175

values of, 738

Dielectric strength, 175
Dielectrics, 161
Difference equations, 669
Differential displacement, 53, 55, 56, 89
Differential normal area, 54, 55, 57, 89
Differential solid angle, 606
Differential volume, 54, 55, 57, 89
Dipole antenna, 589
Dipole moment, 143
Directional derivative, 67
Directive gain, 606
Directivity, 606
Dispersion, 654
Displacement current density, 381
Distance vector, 8
Distortionless line, 481
Divergence, 69-73

definition of, 69
properties of, 72

Divergence theorem, 72, 125
Dominant mode, 554, 578
Dot product, 12

Effective area, 621
Effective relative permittivity, 525
Electric dipole, 142
Electric displacement, 123
Electric field intensity, 106
Electric flux, 123
Electric flux density, 122, 123
Electric flux lines, 144
Electric susceptibility, 174
Electrical length, 486
Electrohydrodynamic pump. 203
Electromagnetic compatibility (EMC). 644
Electromagnetic interference (EMI). 644
Electromagnetics (EM), 3
Electrometer, 179
Electromotive force (emf), 370
Electrostatic field, 103, 592
Electrostatic shielding, 186
Electrostatics, 103
Element coefficient matrix, 698

763
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Emf. See Electromotive force
Energy, 146, 339-341
Equipotential line, 144
Equipotential surface, 144
Evanescent mode, 549
Exponential identities, 730
External inductance, 338

Far field, 592
Faraday's law, 370
Ferromagnetism, 328
Field,

classification of, 86-88
definition of, 5
harmonic type, 84
time-harmonic type, 389
uniform type, 8

Field pattern, 604
Field plotting, 661-663
Filtering, 649
Finite difference method, 669-674
Finite element method, 694-703
Finite elements, 694
Five-node molecule, 672
Fixed node, 670
Force, 104, 304-308, 349
Flux, 60
Flux linkage, 336
Free node, 670
Frequency, 412
Fresnel's equations, 455, 457
Friss transmission formula, 623

Gauss's law, 124, 125, 283
applications of, 126-130, 224-228

Gaussian surface, 126
Global coefficient matrix, 699
Gradient, 65-67
Gradient operator, 63
Grounding, 647
Group pattern, 613
Group velocity, 563

Half-wave dipole antenna, 594
Helmholtz's equation, 419
Helmholtz's theorem, 88
Hertzian dipole, 590
Homogeneous material, 175
Hyperbolic functions, 729
Hysteresis, 329

Indefinite integrals, 732-734
Inductance, 336
Inductive field, 592
Inductor, 336
Infinite line charge, 114, 127
Infinite line current, 274

Infinite sheet of charge, 115, 128
Infinite sheet of current, 275
Input impedance, 484-486
Insertion loss, 649
Insulators, 161,162. See also Dielectrics
Integral equation, 683
Internal inductance, 338
Intrinsic impedance, 420

of free space, 424
Irrotational field, 87
Isolated sphere, 228
Isotropic antenna, 606
Isotropic material, 175
Iteration method, 672, 702

Joule's law, 167

Kernel, 683
Kirchhoff's current law, 180, 348,478
Kirchhoff 's voltage law, 477

Laplace's equation, 84, 199-202, 285,
671,703

Laplacian, 83-85
Lattice diagram. See Bounce diagram
Lenz'slaw, 371, 374
Line charge, 112, 242
Line integral, 60
Linear material, 175
Logarithmic identities, 730
Lorentz condition, 388
Lorentz force, 305, 314
Lorentz force equation, 305, 384
Loss angle, 422
Loss tangent, 422
Lossless line, 480
Lossy dielectric, 418
Lossy line, 480

Magnetic dipole, 318
Magnetic dipole moment, 317
Magnetic field intensity, 263, 281
Magnetic flux density, 281
Magnetic potentials, 284-287
Magnetic susceptibility, 326
Magnetization, 324
Magnetization, 329
Magnetization volume current density. 325
Magnetization surface current density, 325
Magnetomotive force, 347
Magnetostatic field, 261
Magnitude, 5
Matched line, 489
Maxwell's equations, 4, 125, 139, 182,

273, 283, 369-389, 418,438, 451,
543, 545

Medium velocity, 563

Mesh size, 671
Method of images, 240
Microstrip lines, 524-526
Microwave components, 639
Microwaves, 638
Mode, 546, 548
Moment method, 683-687
Monopole, 143
Motional emf, 373
Mutual inductance, 337

Newton's laws, 308
Noise susceptibility, 649
Nonmagnetic materials, 327
Normalized impedance, 493
Numerical aperture, 652

Ohm's law, 164, 166, 181,348
Ohmic resistance, 608
Open-circuited line, 489
Optical fiber, 649

definition of, 650
Orthogonal system, 28

Parallel-plate capacitor, 225, 226
Paramagnetism, 327
Pattern multiplication, 613
Penetration depth. See Skin depth
Period, 412
Permeability, 326

of free space, 281
Permeance, 348
Permittivity, 175

of free space, 104
Phase, 412
Phase constant, 412,421,479
Phase matching conditions, 452
Phase velocity, 563
Phasor, 389
Plane of incidence, 451
Point charge, 104, 126,241
Poisson's equation, 199-202, 291, 670,

671,683
Polarization, 171-174,425
Polarization surface charge density, 173
Polarization volume charge density, 173
Position vector, 7, 106, 135, 451
Potential, 134
Potential difference, 133
Power, 167,435^138
Power gain, 607, 608
Power pattern, 604
Poynting's theorem, 436, 437
Poynting vector, 436
Pressure, 350

Propagation constant, 419, 479
Propagation vector, 451



Quality factor, 578, 579
Quarter-wave monopole antenna, 598
Quarter-wave transformer, 505

Radar, 641,625
types of, 627

Radar cross section, 626
Radar range equation, 627
Radar transmission equation, 627
Radiated emissions, 644
Radiation, 588
Radiation efficiency, 608
Radiation field, 592
Radiation intensity, 605
Radiation pattern, 604
Radiation resistance, 593
Reactance circle, 495
Reflection coefficient, 442, 642, 643
Refraction law, 185,332
Refractive index, 453
Relative permeability, 326

values of, 739
Relative permittivity, 175. See also

Dielectric constant
Relaxation time, 181, 229
Reluctance, 348
Resistance, 166, 223
Resistance circle, 494
Resistivity, 167
Resonant frequency, 577
Resultant pattern, 613
Retarded potentials, 389
Right-hand rule, 14, 80, 263, 372
Right-hand screw rule, 80, 263

Satellite, 639
Scalar, 5
Scalar component, 16
Scalar product, 12-15

Scattering cross section, 626
Scattering parameters, 641
Self-inductance, 336
Semiconductor, 162
Separation constant, 212, 221
Separation of variables, 212, 221
Shape functions, 696
Shielding effectiveness, 648
Shorted line, 489
Single-stub tuner, 506
Skin depth, 426
Skin effect, 427
Skin resistance, 428
Slotted line, 507
Small loop antenna, 599
Smith chart, 492-498
Snell's law, 453
Solenoid, 271
Solenoidal field, 87
Spectrum, 415
Spherical capacitor, 227
Spherical coordinates, 32,56
Standing wave, 442
Standing wave ratio (SWR), 444
Stokes's theorem, 79
Superconductors, 162
Superposition, 106, 135, 216
Surface charge, 114
Surface integral, 60

Tensor, 176
Time-harmonic field, 389
Torque, 316
Total reflection, 653
Transformation,

of point, 34
of vector, 35

Transformer emf, 373
Transient, 512
Transmission coefficient, 442

Transmission line equaoccs. ~ —1~"-
Transmission line parameters -I"-!—-~~
Transmission lines, 473-526
Transverse electric (TE) mode. 54".

552-556
Transverse electromagnetic (TEM) wave.

425, 546
Transverse magnetic (TM) mode, 547-551
Trigonometric identities, 727-728

Uniform plane wave, 425
Unit vector, 5, 6
Uniqueness theorem, 201-202

Vector,
addition of, 6
definition of, 5
multiplication of, 11
subtraction of, 6

Vector component, 16
Vector identities, 735
Vector product, 13-15
Voltage reflection coefficient, 486, 487
Volume charge, 115
Volume integral, 62

Wave, 410
definition of, 411

Wave equation, 388, 411, 419, 479
Wave number, 412
Wave velocity, 411
Waveguide resonator, 575
Waveguide wavelength, 563
Wavelength, 412
Work done, 133

Xerographic copying machine, 204


