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Digital Design is concerned with the design of digital electronic circuits. The subiect
is also known by other names such as logic design, digital logic, switching circuits, and
digital systems. Digital circuits arc employed in the design of systems such as digital
computers, control systems, data communications, and many other applications that re-
quire electronic digital hardware. This book presents the basic tools for the design of
digital circuits and provides methods and procedures suitable for a variety of digital de-
sign applications.

Many features of the second edition remain the same as those of the first edition.
The material is still organized in the same manner. The first five chapters cover combi-
national circuits. The next three chapters deal with synchronous clocked sequential cir-
cuits. Asynchronous sequential circuits are introduced next. The last three chapters
deal with various aspects of commercially available integrated circuits.

The second edition, however, offers several improvements over the first edition.
Many sections have been rewritten to clarify the presentation. Chapters 1 through 7
and Chapter 10 have been revised by adding new up-to-date material and deleting ob-
solete subjects. New problems have been formulated for the first seven chapters. These
replace the problem set from the first edition. Three new experiments have been added
in Chapter 11. Chapter 12, a new chapter, presents the IEEE standard graphic symbols
for logic elements.

The following is a brief description of the subjects that are covered in each chapter
with an emphasis on the revisions that were made in the second edition.

x
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Chapter 1 presents the various binary systems suitable for representing information
in digital systems. The binary number system is explained and binary codes are illus-
trated. A new section has been added on signed binary numbers.

Chapter 2 introduces the basic postulates of Boolean algebra and shows the correla-
tion between Boolean expressions and their corresponding logic diagrams. All possible
logic operations for two variables are investigated and from that, the most useful logic
gates used in the design of digital systems are determined. The characteristics of inte-
grated circuit gates are mentioned in this chapter but a more detailed analysis of the
electronic circuits of the gates is done in Chapter 11.

Chapter 3 covers the map and tabulation methods for simplifying Boolean expres-
sions. The map method is also used to simplify digital circuits constructed with AND-
OR, NAND, or NOR gates. All other possible two-level gate circuits are considered
and their method of implementation is summarized in tabular form for easy reference.

Chapter 4 outlines the formal procedures for the analysis and design of combina-
tional circuits. Some basic components used in the design of digital systems, such as
adders and code converters, are introduced as design examples. The sections on multi-
level NAND and NOR implementation have been revised to show a simpler procedure
for converting AND-OR diagrams to NAND or NOR diagrams.

Chapter 5 presents various medium scale integration (MSI) circuits and pro-
grammable logic device (PLD) components. Frequently used digital logic functions
such as parallel adders and subtractors, decoders, encoders, and multiplexers, are ex-
plained, and their use in the design of combinational circuits is illustrated with exam-
ples. In addition to the programmable read only memory (PROM) and programmable
logic array (PLA) the book now shows the internal construction of the programmable
array logic (PAL). These three PLD components are extensively used in the design and
implementation of complex digital circuits.

Chapter 6 outlines the formal procedures for the analysis and design of clocked syn-
chronous sequential circuits. The gate structure of several types of flip-flops is pre-
sented together with a discussion on the difference between pulse level and pulse tran-
sition triggering. Specific examples are used to show the derivation of the state table
and state diagram when analyzing a sequential circuit. A number of design examples
are presented with added emphasis on sequential circuits that use D-type flip-flops.

Chapter 7 presents various sequential digital components such as registers, shift
registers, and counters. These digital components are the basic building blocks from
which more complex digital systems are constructed. The sections on the random ac-
cess memory (RAM) have been completely revised and a new section deals with the
Hamming error correcting code.

Chapter 8 presents the algorithmic state machine (ASM) method of digital design.
The ASM chart is a special flow chart suitable for describing both sequential and paral-
lel operations with digital hardware. A number of design examples demonstrate the use
of the ASM chart in the design of state machines.

Chapter 9 presents formal procedures for the analysis and design of asynchronous
sequential circuits. Methods are outlined to show how an asynchronous sequential cir-
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cuit can be implemented as a combinational circuit with feedback. An alternate imple-
mentation is also described that uses SR latches as the storage elements in an asyn-
chronous sequential circuit.

Chapter 10 presents the most common integrated circuit digital logic families. The
electronic circuits of the common gate in each family is analyzed using electrical circuit
theory. A basic knowledge of electronic circuits is necessary to fully understand the
material in this chapter. Two new sections are included in the second edition. One sec-
tion shows how to evaluate the numerical values of four electrical characteristics of a
gate. The other section introduces the CMOS transmission gate and gives a few exam-
ples of its usefulness in the construction of digital circuits.

Chapter 11 outlines 18 experiments that can be performed in the laboratory with
hardware that is readily and inexpensively available commercially. These experiments
use standard integrated circuits of the TTL type. The operation of the integrated cir-
cuits is explained by referring to diagrams in previous chapters where similar compo-
nents are originally introduced. Each experiment is presented informally rather than in
a step-by-step fashion so that the student is expected to produce the details of the cir-
cuit diagram and formulate a procedure for checking the operation of the circuit in the
laboratory.

Chapter 12 presents the standard graphic symbols for logic functions recommended
by ANSI/IEEE standard 91-1984. These graphic symbols have been developed for SSI
and MSI components so that the user can recognize each function from the unique
graphic symbol assigned to it. The best time to learn the standard symbols is while
learning about digital systems. Chapter 12 shows the standard graphic symbols of all
the integrated circuits used in the laboratory experiments of Chapter 11.

The various digital componets that are represented throughout the book are similar
to commercial MSI circuits. However, the text does not mention specific integrated cir-
cuits except in Chapters 11 and 12. The practical application of digital design will be
enhanced by doing the suggested experiments in Chapter 11 while studying the theory
presented in the text.

Each chapter in the book has a list of references and a set of problems. Answers to
most of the problems appear in the Appendix to aid the student and to help the inde-
pendent reader. A solutions manual is available for the instructor from the publisher.

M. Morris Mano
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DIGITAL COMPUTERS AND DIGITAL SYSTEMS

Digital computers have made possible many scientific, industrial, and commercial ad-
vances that would have been unattainable otherwise. Our space program would have
been impossible without real-time, continuous computer monitoring, and many busi-
ness enterprises function efficiently only with the aid of automatic data processing.
Computers are used in scientific calculations, commercial and business data processing,
air traffic control, space guidance, the educational field, and many other areas. The
most striking property of a digital computer is its generality. It can follow a sequence
of instructions, called a program, that operates on given data. The user can specify and
change programs and/or data according to the specific need. As a result of this
fiexibility, general-purpose digital computers can perform a wide variety of informa-
tion-processing tasks.

The general-purpose digital computer is the best-known example of a digital system.
Other examples include telephone switching exchanges, digital voltmeters, digital

counters, electronic calculators, and digital displays. Characteristic of a digital system _
is its manipulation of discrete elements of information. Such discrete élements may be

electric impulses, the decimal digits, the letters of an alphabet, arithmetic operations,
punctuation marks, or any other set of meaningful symbols. The juxtaposition of dis-
crete elements of information represents a quantity of information. For example, the
letters d, o, and g form the word dog. The digits 237 form a number. Thus, a sequence
of discrete elements forms a language, that is, a discipline that conveys information.
Early digital computers were used mostly for numerical computations. In this case, the
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discrete elements used are the digits. From this application, the term digital computer
has emerged. A more appropriate name for a digital computer would be a “discrete in-
formation-processing system.”

Discrete elements of information are represented in a digital system by physical
quantities called signals. Electrical signals such as voltages and currents are the most
common. The signals in all present-day electronic digital systems have only two dis-
crete values and are said to be binary. The digital-system designer is restricted to the
use of binary signals because of the lower reliability of many-valued electronic circuits.
In other words, a circuit with ten states, using one discrete voltage value for each state,
can be designed, but it would possess a very low reliability of operation. In contrast, a
transistor circuit that is either on or off has two possible signal values and can be con-
structed to be extremely reliable. Because of this physical restriction of components,
and because human logic tends to be binary, digital systems that are constrained to take
discrete values are further constrained to take binary values.

Discrete quantities of information arise either from the nature of the process or may
be quantized from a continuous process. For example, a payroll schedule is an inher-
ently discrete process that contains employee names, social security numbers, weekly
salaries, income taxes, etc. An employee’s paycheck is processed using discrete data
values such as letters of the alphabet (names), digits (salary), and special symbols such
as $. On the other hand, a research scientist may observe a continuous process but
record only specific quantities in tabular form. The scientist is thus quantizing his con-
tinuous data. Each number in his table is a discrete element of information.

Many physical systemns can be described mathematically by differential equations
whose solutions as a function of time give the complete mathematical behavior of the
process. An analog computer performs a direct simulation of a physical system. Each
section of the computer is the analog of some particular portion of the process under
study. The variables in the analog computer are represented by continuous signals, usu-
ally electric voltages that vary with time. The signal variables are considered analogous
to those of the process and behave in the same manner. Thus, measurements of the
analog voltage can be substituted for variables of the process: The term analog signal is
sometimes substituted for continuous signal because “analog computer” has come to
mean a computer that manipulates continuous variables.

To simulate a physical process in a digital computer, the quantities must be quan-
tized. When the variables of the process are presented by real-time continuous signals,
the latter are quantized by an analog-to-digital conversion device. A physical system
whose behavior is described by mathematical equations is simulated in a digital com-
puter by means of numerical methods. When the problem to be processed is inherently
discrete, as in commercial applications, the digital computer manipulates the variables
in their natural form.

A block diagram of the digital computer is shown in Fig. 1-1. The memory unit
stores programs as well as input, output, and intermediate data. The processor unit per-
forms arithmetic and other data-processing tasks as specified by a program. The con-
trol unit supervises the flow of information between the various units. The control unit
retrieves the instructions, one by one, from the program that is stored in memory. For
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Block diagram of a digital computer

each instruction, the control unit informs the processor to execute the operation
specified by the instruction. Both program and data are stored in memory. The control
unit supervises the program instructions, and the processor manipulates the data as
specified by the program.

The program and data prepared by the user are transferred into the memory unit by
means of an input device such as a keyboard. An output device, such as a printer, re-
ceives the result of the computations and the printed results are presented to the user.
The input and output devices are special digital systems driven by electromechanical
parts and controlled by electronic digital circuits.

An electronic calculator is a digital system similar to a digital computer, with the in-
put device being a keyboard and the output device a numerical display. Instructions are
entered in the calculator by means of the function keys, such as plus and minus. Data
are entered through the numeric keys. Results are displayed directly in numeric form,
Some calculators come close to resembling a digital computer by having printing capa-
bilities and programmable facilities. A digital computer, however, is a more powerful
device than a calculator. A digital compiter can accommodate many other input and
output devices; it can perform not only arithmetic computations, but logical operations
as well and can be programmed to make decisions based on internal and external con-
ditions.

A digital computer is an interconnection of digital modules. To understand the oper-
ation of each digital module, it is necessary to have a basic knowledge of digital sys-
tems and their general behavior. The first four chapters of the book introduce the basic
tools of digital design such as binary numbers and codes, Boolean algebra, and the bas-
ic building blocks from which electronic digital circuits are constructed. Chapters 5
and 7 present the basic components found in the processor unit of a digital computer.
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The operational characteristics of the memory unit are explained at the end of Chapter
7. The design of the control unit is discussed in Chapter 8 using the basic principles of
sequential circuits from Chapter 6.

It has already been mentioned that a digital computer manipulates discrete elements
of information and that these elements are represented in the binary form. Operands
used for calculations may be expressed in the binary number system. Other discrete ele-
ments, including the decimal digits, are represented in binary codes. Data processing is
carried out by means of binary logic elements using binary signals. Quantities are
stored in binary storage elements. The purpose of this chapter is to introduce the vari-
ous binary concepts as a frame of reference for further detailed study in the succeeding
chapters.

1-2 BINARY NUMBERS

A decimal number such as 7392 represents a quantity equal to 7 thousands plus 3 hun-
dreds, plus 9 tens, plus 2 units. The thousands, hundreds, etc. are powers of 10 implied
by the position of the coefficients. To be more exact, 7392 should be written as

Tx10°+3x10°+9x 10"+ 2 x10°

However, the convention is to write only the coefficients and from their position de-
duce the necessary powers of 10. In general, a number with a decimal point is repre-
sented by a series of coefficients as follows:

asAs i @o.d— 1 d-2d-2

The a, coefficients are one of the ten digits (0, 1, 2, . . ., 9), and the subscript value j
gives the place value and, hence, the power of 10 by which the coefficient must be mui-
tipiied.

100a;s + 10%as + 10°as + 10%a2 + 10'a; + 10%, + 107'a + 107%a_, + 10~%a_,

The decimal number system is said to be of base, or radix, 10 because it uses ten digits
and the coefficients are multiplied by powers of 10. The bikary system is a different
number system. The coefficients of the binary numbers system have two possible val-
ues: 0 and 1. Each coefficient @, is multiplied by 2°. For example, the decimal equiva-
Jent of the binary number 11010.11 is 26.75, as shown from the multiplication of the
coefficients by powers of 2:

I X 2 I X2 +0x2+1%x224+0x2°4+1x2"+1x27%=2675

In general, a number expressed in base-r system has coefficients multiplied by powers
of r:

o 7"t Qoo P+t arr + oao
tayrttayr?t ot anr™”
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The coefficients a; range in value from 0 to r ~ 1. To distinguish between numbers of
different bases, we enclose the coefficients in parentheses and write a subscript equal to
the base used (except sometimes for decimal numbers, where the content makes it ob-
vious that it is decimal). An example of a base-5 number is

(4021.2)s =4 X S+ 0 X2+ 2 x5+ 1 x5 4+2x%x5"=(511.4)

Note that coefficient values for base 5 can be only 0, 1, 2, 3, and 4.

it is customary to borrow the needed r digits for the coefficients from the decimal
system when the base of the number is less than 10. The letters of the alphabet are used
to supplement the ten decimal digits when the base of the number is greater than 10,
For example, in the hexadecimal (base 16) number system, the first ten digits are bor-
rowed from the decimal system. The letters A, B, C, D, E, and F are used for digits
10, 11, 12, 13, 14, and 15, respectively. An example of a hexadecimal number is

(B65F)16 =11 X 163 + 6 ><_ 162 +5xX16+15= (46687)]0

The first 16 numbers in the decimal, binary, octal, and hexadecimal systems are listed
in Table 1-1.

TABLE 1-1
Numbers with Different Bases
Decimal Binary Octal Hexadecimal
(base 10) (base 2) {base B) {base 16}
00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Arithmetic operations with numbers in base r follow the same rules as for decimal
numbers. When other than the familiar base 10 is used, one must be careful to use only
the r allowable digits. Examples of addition, subtraction, and multiplication of two bi-
nary numbers are as follows:
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augend: 101101 minuend: 101101 multiplicand: 1011
addend: +100111 subtrahend: —100111  multiplier: X 101
sum: 1010100 difference: 000110 1011
0000
1011
product: 110111

The sum of two binary numbers is calculated by the same rules as in decimal, except
that the digits of the sum in any significant position can be only 0 or 1. Any carry ob-
tained in a given significant position is used by the pair of digits one significant position
higher. The subtraction is slightly more complicated. The rules are still the same as in
decimal, except that the borrow in a given significant position adds 2 to a minuend
digit. (A borrow in the decimal system adds 10 to a minuend digit.) Multiplication is
very simple. The multiplier digits are always 1 or 0. Therefore, the partial products are
equal either to the multiplicand or to 0.

A binary number can be converted to decimal by forming the sum of the powers of 2
of those coefficients whose value is 1. For example

(1010011, =22 + 22 + 22+ 277 = (10375

The binary number has four I’s and the decimal equivalent is found from the sum of
four powers of 2. Similarly, a number expressed in base r can be converted to its deci-
mal equivalent by multiplying each coefficient with the corresponding power of r and
adding. The following is an example of octal-to-decimal conversion:

(630.4); = 6 X 8 + 3 X 8 + 4 X 8" = (408.5)0

The conversion from decimal to binary or to any other base-r system is more con-
venient if the number is separated into an integer part and a fraction part and the
conversion of each part done separately. The conversion of an integer from decimal to
binary is best explained by example.

Example
1-1

Convert decimal 41 to binary. First, 41 is divided by 2 to give an integer quotient of 20
and a remainder of 3. The quotient is again divided by 2 to give a new quotient and
remainder. This process is continued until the integer quotient becomes 0. The coef-
Sicients of the desired binary number are obtained from the remainders as follows:
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integer
quotient Remainder Coefiicient
41 1 _
5 = 20 + 3 a =1
2—20 = 10 + 0 a =90
1
- s + 0 @ =0
3 - 1 -
5 = 2 + 5 ds = 1
% = | + 0 a =0
1 — l =
E = 0 + 2 s 1

dnswer: (41)10 = (0504030201010)2 = (101001)2

The arithmetic process can be manipulated more conveniently as follows:

Integer Remainder

41

20 1

10 0

5 0

2 1

| 0

0 1 101001 = answer |

The conversion from decimal integers to any base-r system is similar to the exam-
ple, except that division is done by r instead of 2.

Example
1-2

Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to
give an integer quotient of 19 and a remainder of 1. Then 19 is divided by 8 to give an
integer quotient of 2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient
of 0 and a remainder of 2. This process can be conveniently manipulated as follows:

153
1

o

1
213
012 t_ = (231 |
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The conversion of a decimal fraction to binary is accomplished by a method similar
to that used for integers. However, multiplication is used instead of division, and in-
tegers are accumulated instead of remainders. Again, the method is best explained by
example.

Convert (0.6875),s to binary. First, 0.6875 is multiplied by 2 to give an integer and a

Example
1-3 fraction. The new fraction is multiplied by 2 to give a new integer and a new fraction.
This process is continued until the fraction becomes O or until the number of digits
have sufficient accuracy. The coefficients of the binary number are obtained from the
integers as follows:
integer Fractlon Coefficient
0.6875 x 2 = 1 +  0.3750 a- =1
0.3750 x 2 = 0 + 0.7500 a2 =10
0.7500 x 2 = 1 +  0.5000 a3 =1
0.5000 x 2 = 1 +  0.0000 as =1
Answer: (06875)10 = (Oa 1@ — 20 — 380 — 4)2 = (0]01 1)2 n
To convert a decimal fraction to a number expressed in base r, a similar procedure is
used. Multiplication is by r instead of 2, and the coefficients found from the integers
may range in value from 0 to r — 1 instead of 0 and 1.
Exampie Convert (0.513), to octal.
1-4

0.513 x § = 4.14
0.104 x § = 0.832
0.832 X § = 6.656
0.656 X 8 = 5.248
0.248 X 8 = 1,984
0.984 x 8 = 7.872

The answer, to seven significant figures, is obtained from the integer part of the prod-
ucts:

(0.513),, = {0.406517 . . . ) |

The coaversion of decimal numbers with both integer and fraction parts is done by
converting the integer and traction separately and then combining the two answers. Us-
ing the results of Examples 1-1 and 1-3, we obtain
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(41.6875)5 = (101001.1011),
From Examples 1-2 and 1-4, we have
(153.513),0 = (231.406517)s

1-4 OCTAL AND HEXADECIMAL NUMBERS

The conversion from and to binary, octal, and hexadecimal plays an important part in
digital computers. Since 2° = 8 and 2* = 16, each octal digit corresponds to three bi-
nary digits and each hexadecimal digit corresponds to four binary digits. The conver-
sion from binary to octal is casily accomplished by partitioning the binary number into
groups of three digits each, starting from the binary point and proceeding to the left
and to the right. The corresponding octal digit is then assigned to each group. The fol-
lowing example illustrates the procedure:
(10 110 001 101 O11 . 111 100 000 I.E)J )2 = (26153.7460);

S B VY I | L — -

2 6 1 5 3 7 4 0 6

Conversion from binary to hexadecimal is similar, except that the binary number is di-
vided into groups of four digits:

( 10 1100 0110 1011 . 1111 0010 ); = (2C6B.F2)s
L L 1 L. 1 L 1 L | L 1
2 C 6 B F 2

The corresponding hexadecimal (or octal) digit for each group of binary digits is easily
remembered after studying the values listed in Tabie 1-1.

Conversion from octal or hexadecimal to binary is done by a procedure reverse to
the above. Each octal digit is converted to its three-digit binary equivalent. Similarly,
each hexadecimal digit is converted to its four-digit binary equivalent. This is illus-
trated in the following examples:

(673.124)s = ( 110 111 011 . 001 010 100 ),
L L R N R
6 7 3 | 2 4
(306.D);s = ( 0011 0000 0110 . 1101 ).
| I L | L ] L |
3 0 6 D

Binary numbers are difficult to work with because they require three or four
times as many digits as their decimal equivalent. For example, the binary number
FI1111111111 is equivalent to decimal 4095. However, digital computers use binary
numbers and it is sometimes necessary for the human operator or user to communicate
directly with the machine by means of binary numbers. One scheme that retains the bi-
nary system in the computer but reduces the number of digits the human must consider
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utilizes the relationship between the binary number system and the octal or hexadeci-
mal system. By this method, the human thinks in terms of octal or hexadecimal num-
bers and performs the required conversion by inspection when direct communication
with the machine is necessary. Thus the binary number 111111111111 has 12 digits
and is expressed in octal as 7777 (four digits) or in hexadecimal as FFF (three digits).
During communication between people (about binary numbers in the computer), the
octal or hexadecimal representation is more desirable because it can be expressed more
compactly with a third or a quarter of the number of digits required for the equivalent
binary number. When the human communicates with the machine (through console
switches or indicator lights or by means of programs written in machine language), the
conversion from octal or hexadecimal to binary and vice versa is done by inspection by
the human user.

1-5 COMPLEMENTS

Complements arc used in digital computers for simplifying the subtraction operation
and for logical manipulation. There are two types of complements for each base-r sys-
tem: the radix complement and the diminished radix complement. The first is referred
to as the r’s complement and the second as the (r — 1)’s complement. When the value
of the base 7 is substituted in the name, the two types are referred to as the 2’s comple-
ment and 1's complement for binary numbers, and the 10’s complement and 9’s com-
plement for decimal numbers.

Diminished Radix Complement

Given a number N in base r having n digits, the (+ — 1)’s complement of N is defined
as (r" — 1) — N. For decimal numbers, r = 10 and r — 1 = 9, so the 9’s comple-
ment of N is (10" — 1) — N. Now, 10" represents a number that consists of a single 1
followed by # 0's. 10" — 1 is a number represented by n 9's. For example, if n = 4,
we have 10° = 10,000 and 10° — 1 = 9999. It follows that the 9°s complement of a
decimal number is obtained by subtracting each digit from 9. Some numerical examples
follow.

The 9's complement of 546700 is 999999 — 546700 = 453299.
The 9’s complement of 012398 is 999999 — 012398 = 987601,

For binary numbers, r = 2 and r — 1 = 1, so the 1's complement of N is
(2" — 1) — N. Again, 2" is represented by a binary number that consists of a 1 fol-
lowed by n O’s. 2" — | is a binary number represented by n 1’s. For example, if
n = 4, we have 2* = (10000); and 2* — 1 = (1111),. Thus the 1’s complement of a
binary number is obtained by subtracting each digit from 1. However, when subtract-
ing binary digits from 1, we can have either 1 — 0 = 1 or 1 — 1 = 0, which causes
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the bit to change from 0 to 1 or from t to 0. Therefore, the 1’s complement of a binary
number is formed by changing 1’s to 0’s and O's to 1's. The following are some nu-
merical examples.

The 1’s complement of 1011000 is 0100111,
The 1's complement of 0101101 is 1010010,

The (» — 1)’s complement of octal or hexadecimal numbers is obtained by subtracting
each digit from 7 or F (decimal 15), respectively.

Radix Complement

ﬂ

¥

The r’s complement of an n-digit number N in base r is defined as r" — N for N #. Q,_
and 0 for N = 0. Comparing with the (r — 1)’s complement, we note that the r’s
‘comiplemént 15 obtained by adding 1 to the (r — 1)’s complement since r" — N =

F[(r" — 1) — N] + 1. Thus, the 10’s cornplement of decimal 2389 is 7610 + 1 = 7611

and is obtained by adding 1 to the 9’s-complement value. The 2’s complement of bi-
nary. 101100 is 010011 + 1 = 010100 and is obtained by addmg l to the 1’s-comple-
ment value. :

Since 10" is a number represented by a 1 followed by n 0’s, 10®* — N, which is the
10’s complement of N, can be formed also by leaving all least significant 0’s un-
changed, subtracting the first nonzero least significant digit from 10, and subtracting all
higher significant digits from 9.

The 10’s complement of 012398 is 987602.
The 10’s complement of 246700 is 753300.

The 10's complement of the first number is obtained by subtracting 8 from 10 in the
least significant position and subtracting all other digits from 9. The 10’s complement
of the second number is obtained by leaving the two least significant 0's unchanged,
subtracting 7 from 10, and subtracting the other three digits from 9.

Similarly, the 2’s complement can be formed by leaving all least significant 0’s and
the first 1 unchanged, and replacing 1’s with (’s and 0’s with 1's in all other higher
significant digits.

The 2’s complement of 1101100 is 0010100.
The 2’s complement of 0110111 is 1001001.

The 2's complement of the first number is obtained by leaving the two least 51gmﬁcant_
0’s and the first 1 unchanged, and then replacing 1’s with 0’s and 0’s with 1’s in the
other four most-significant digits. The 2's complement of the second number is ob-
tained by leaving the least significant 1 unchanged and complementing all other digits.
In the previous definitions, it was assumed that the numbers do not have a radix
point. If the original number N contains a radix point, the point should be removed
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temporarily in order to form the r's or (r — 1)’s complement. The radix point is then
restored to the complemented number in the same relative position. It is also worth
mentioning that the complement of the complement restores the number to its original
value. The r’s complement of N is r* — N. The complement of the complement is
r* — {r" — N) = N, giving back the original number.

Subtraction with Complements

The direct method of subtraction taught in elementary schools uses the borrow con-
cept. In this method, we borrow a 1 from a higher significant position when the minu-
end digit is smaller than the subtrahend digit. This seems to be easiest when people per-
form subtraction with paper and pencil. When subtraction is implemented with digital
hardware, this method is found to be less efficient than the method that uses comple-
ments.

The subtraction of two n-digit unsigned numbers M — N in base r can be done as
follows:

1. Add the minuend M to the r’s complement of the subtrahend N. This performs
M+ {(r"—N)=M-N+r.

2. If M = N, the sum will produce an end carry, r*, which is discarded; what is left
is the result M — N.

3. If M <N, the sum does not produce an end carry and is equal to
r" — (N — M), which is the r’s complement of (N — M). To obtain the answer
in a familiar form, take the r’s complement of the sum and place a negative sign
in front.

The following examples illustrate the procedure.

Example
1-5

Using 10°s complement, subtract 72532 — 3250.

M= 72532

10’s complement of N = + 96750

Sum = 169282

Discard end carry 10° = — 100000
Answer = 69282 |

Note that M has 5 digits and N has only 4 digits. Both numbers must have the same
number of digits; so we can write NV as 03250, Taking the 10’s complement of N pro-
duces a 9 in the most significant position. The occurrence of the end carry signifies that
M = N and the result is positive.
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Example
1-6

Using 10’s complement, subtract 3250 — 72532,
M= 03250
10’s complement of N = + 27468
Sum = 30718
There is no end carry.
Answer: —(10’s complement of 30718) = —69282 [}
Note that since 3250 <t 72532, the result is negative. Since we are dealing with un-
signed numbers, there is really no way to get an unsigned result for this case. When

subtracting with complements, the negative answer is recognized from the absence of
the end carry and the complemented result. When working with paper and pencil, we

~ can change the answer to a signed negative number in order to put it in a familiar form.

Subtraction with complements is done with binary numbers in a similar manner us-
ing the same procedure outlined before.

Example
1-7

Given the two binary numbers X = 1010100 and ¥ = 1000011, perform the subtrac-
tion (a) X — Y and (b) ¥ — X using 2’s complements.

(a) ‘ X= 1010100
2’s complement of ¥ = + 0111101
Sum = 10010001
Discard end carry 27 = - — 10000000
Answer: X — Y = 0010001
(b) Y = 1000011
2’s compiement of X = + 0101100

Sum = 1101111

There is no end cari’y.
Answer: ¥ — X = —(2’s complement of 1101111) = —0010001 |

Subtraction of unsigned numbers can be done also by means of the (r — 1)’s com- -
plement. Remember that the (r — 1)’s complement is one less than the r’s comple-
ment. Because of this, the result of adding the minuend to the complement of the sub-
trahend produces a sum that is 1 less than the correct difference when an end carry
occurs. Removing the end carry and adding 1 to the sum is referred to as an end-
around carry.
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Exampie
1-8

Repeat Example 1-7 using 1’s complement.
(a) X — ¥ = 1010100 — 1000011
X

1010160
+ 0111100

If

1’s complement of ¥

Sum ]: 10010000
End-around carry + 1

Answer: X — Y = 0010001

(by ¥ — X = 1000011 — 1010100

Y = 1000011
1’s complement of X = + 0101011
Sum = 1101110

There is no end carry.
Answer: Y — X = —(1’s complement of 1101110) = —0010001
Note that the negative result is obtained by taking the 1’s complement of the sum

since this is the type of complement used. The procedure with end-around carry is also
applicable for subtracting unsigned decimal numbers with 9's complement.

1-6 SIGNED BINARY NUMBERS

Positive integers including zero can be represented as unsigned numbers. However, to
represent negative integers, we need a notaticn for negative values. In ovdinary arith-
metic, a negative number is indicated by a minus sign and a positive number by a plus
sign. Because of hardware limitations, computers must represent everything with bi-
nary digits, commonly referred to as bits. It is customary to represent the sign with a
bit placed in the leftmost position of the number. The convention is to make the sign
bit 0 for positive and | for negative.

It is important to realize that both signed and unsigned binary numbers consist of a
string of bits when represented in a computer. The user determines whether the number
is signed or unsigned. If the binary number is signed, then the leftmost bit represents
the sign and the rest of the bits represent the number. If the binary number is assumed
to be unsigned, then the leftmost bit is the most significant bit of the number. For ex-
ample, the string of bits 01001 can be considered as 9 (unsigned binary) or a +9
(signed binary) because the leftmost bit is 0. The string of bits 11001 represent the bi-
nary equivalent of 25 when considered as an unsigned number or as — 9 when consid-
ered as a signed number because of the | in the leftmost position, which designates neg-
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ative, and the other four bits, which represent binary 9. Usually, there is no confusion
in identifying the bits if the type of representation for the number is known in advance,

. The representation of the signed numbers in the last example is referred.to as the
signed-magnitude convention. In this notation, the number consists of a magnitude and
a symbol (+ or —) or a bit (0 or 1) indicating the sign. This is the representation of
signed numbers used in ordinary arithmetic. When arithmetic operations are imple-
mented in a computer, it is more convenient to use a different system for repreSenting,
negative numbers, referred to as the signed-complement system. In this system, a nega-
tive number is indicated by its complement. Whereas the signed-magnitude system
negates a number by changing its sign, the signed-complement system negates a number
by taking its complement. Since positive numbers always start with 0 (plus) in the left-
most position, the complement will always start with a 1, indicating a negative number.
The signed-complement system can use either the 1’s or the 2’s complement, but the
2’s complement is the most common.

As an example, consider the number 9 represented in binary with eight bits, +9 is
represented with a sign bit of 0 in the leftmost position followed by the binary equiva-
lent of 9 to give 00001001. Note that all eight bits must have a value and, therefore, 0’s
are inserted following the sign bit up to the first 1. Although there is only one way to
represent +9, there are three different ways to represent — 9 with eight bits:

In signed-magnitude representation: 10001001
In signed-1”s-complement representation: 11110110
In signed-2’s-complement representation: 11110111

In signed-magnitude, —9 is obtained from +9 by changing the sign bit in the leftmost
position from 0 to 1. In signed-1's complement, —9 is obtained by complementing all
the bits of +9, including the sign bit, The signed-2’s-complement representation of
~9 is obtained by taking the 2’s complement of the positive number, including the
signbit.

The signed-magnitude system is used in ordinary arithmetic, but is awkward when
employed in computer arithmetic. Therefore, the signed-complement is normally used.
The 1’s complement imposes some difficulties and is seldom used for arithmetic op-
erations except in some older computers. The 1’s complement is useful as a logical op-
eration since the change of 1 to 0 or 0 to 1 is equivalent to a logical complement
operation, as will be shown in the next chapter. The following discussion of signed bi-
nary arithmetic deals exclusively with the signed-2’s-complement representation of
negative numbers. The same procedures can be applied to the signed-1’s-complement
system by including the end-around carry as done with unsigned numbers.

Arithmetic Addition

-

The addition of two numbers in the signed-magnitude system follows the rules of ordi-
nary arithmetic. If the signs are the same, we add the two magnitudes and give the
sum the common sign. If the signs are different, we subtract the smaller magnitude
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from the larger and give the result the sign of the larger magnitude. For example,
(+25) + (=37 = —(37 — 25) = —12 and is done by subtracting the smaller mag-
nitude 25 from the larger magnitude 37 and using the sign of 37 for the sign of the re-
sult. This is a process that requires the comparison of the signs and the magnitudes and
then performing cither addition or subtraction. The same procedure applies to binary
pumbers in signed-magnitude representation. In contrast, the rule for adding numbers
in the signed-complement system does not require a comparison or subtraction, but
only addition. The procedure is very simple and can be stated as follows for binary
numbers.

The addition of two signed binary numbers with negative numbers represented in signed-
2's-complement form is obtained from the addition of the two numbers, including their
sign bits. A carry out of the sign-bit position is discarded.

Numerical examples for addition follow. Note that negative numbers must be initially in
2’s complement and that the sum obtained after the addition if negative is in 2’s-com-
plement form.

+ 6 00000110 -6 13111010
413 00001101 +13 00001101
+19 00010011 + 7 00000111
+ 6 (0000110 -6 11111010
=13 11110611 —13 11110011
-1 11111001 —19 11101101

In each of the four cases, the operation performed is addition with the sign bit included.
Any carry out of the sign-bit position 1s discarded, and negative results are automati-
cally in 2’s-complement form.

In order to obtain a correct answer, we must ensure that the result has a sufficient
pumber of bits to accommodate the sum. If we start with two n-bit numbers and the
sum occupies # + 1 bits, we say that an overflow occurs. When one performs the addi-
tion with paper and pencil, an overflow is not a problem since we are not limited by the
width of the page. We just add another 0 to a positive number and another | to a nega-
tive number in the most-significant position 10 extend them to n + 1 bits and then per-
form the addition. Overflow is a problem in computers because the number of bits that
hold a number is finite, and a result that exceeds the finite value by 1 cannot be accom-
modated.

The complement form of representing negative numbers is unfamiliar to those used
to the signed-magnitude system. To determine the value of a negative number when in
signed-2’s complement, it is necessary to convert it to a positive number to place it in 2
more familiar form. For example, the signed binary number 11111001 is negative be-
cause the leftmost bit is 1. Its 2’s complement is 00000111, which is the binary eqguiva-
lent of +7. We therefore recognize the original negative number to be equal to =7.
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Arithmetic Subtraction

Subtraction of two signed binary numbers when negative numbers are in 2’s-comple-
ment form is very simple and can be stated as follows:

Take the 2's complement of the subtrahend (including the sign bit} and add it to the minu-
end (including the sign bit). A carry out of the sign-bit position is discarded.

This procedure occurs because a subtraction operation can be changed to an addition
operation if the sign of the subtrahend is changed. This is demonstrated by the follow-
ing relationship:

(x4) — (+B) =(xA) + (-B)
(xA) — (—B) = (xA) + (+B)

But changing a positive number to a negative number is easily done by taking its 2’s
complement. The reverse is also true because the complement of a negative number in
complement form produces the equivalent positive number. Consider the subtraction of
(~6) — (—13) = +7. In binary with eight bits, this is written as (11111010 —
11110011). The subtraction is changed to addition by taking the 2’s complement of the
subtrahend (—13) to give (+13). In binary, this is 11111010 + 00001101 =
100000111. Removing the end carry, we obtain the correct answer 00000111 (+7).

It is worth noting that binary numbers in the signed-complement system are added
and subtracted by the same basic addition and subtraction rules as unsigned numbers.
Therefore, computers need only one common hardware circuit to handle both types of
arithmetic. The user or programmer must interpret the results of such addition or sub-
traction differently, depending on whether it is assumed that the numbers are signed or
unsigned.

1-7 BINARY CODES

Electronic digital systems use signals that have two distinct values and circuit elements
that have two stable states. There is a direct analogy among binary signals, binary cir-
cuit elements, and binary digits. A binary number of » digits, for example, may be rep-
resented by » binary circuit elements, each having an output signal equivalent to a 0 or
a 1. Digital systems represent and manipulate not only binary numbers, but also many
other discrete elements of information. Any discrete element of information distinct
among a group of quantities can be represented by a binary code. Binary codes play an
important role in digital computers. The codes must be in binary because computers
can only hold 1’s and 0’s. It must be realized that binary codes merely change the sym-
bols, not the meaning of the elements of information that they represent. If we inspect
the bits of a computer at random, we will find that most of the time they represent
some type of coded information rather than binary numbers.

A bit, by definition, is a binary digit. When used in conjunction with a binary code,
it is better to think of it as denoting a binary quantity equal to O or 1. To represent a
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group of 2 distinct elements in a binary code requires a minimum of n bits. This is be-
cause it is possible to arrange » bits in 2" distinct ways. For example, a group of four
distinct guantities can be represented by a two-bit code, with each guantity assigned
one of the following bit combinations: 00, 01, 10, 11. A group of eight elements re-
quires a three-bit code, with each element assigned to one and only one of the follow-
ing: 000, 001, 010, 011, 100, 101, 110, 111. The examples show that the distinct bit
combinations of an n-bit code can be found by counting in binary from 0 to (2" — 1).
Some bit combinations are unassigned when the number of elements of the group to be
coded is not a multiple of the power of 2. The ten decimal digits 0, 1, 2, . . ., 9 arc an
example of such a group. A binary code that distinguishes among ten elements must
contain at least four bits; three bits can distinguish a maximum of eight elements. Four
bits can form 16 distinct combinations, but since enly ten digits are coded, the remain-
ing six combinations are unassigned and not used.

Although the minimum number of bits required to code 27 distinet quantities is n,
there is no maximum number of bits that may be used for a binary code. For example,
the ten decimal digits can be coded with ten bits, and each decimal digit assigned a bit
combination of nine ('s and a 1. In this particular binary code, the digit 6 is assigned
the bit combination 0001000000.

Decimal Codes

Binary codes for decimal digits require a minimum of four bits. Numerous different
codes can be obtained by arranging four or more bits in ten distinct possible combina-
tions. A few possibilities are shown in Table 1-2.

TABLE 1-2

Binary codes for the decimal digits

Decimal (BCD} (Biquinary)

digit 842] Excess-3 84-2-1 2421 5043210
0 0000 0011 0000 0000 0100001
1 0001 0100 o111 0001 0100010
2 0010 0101 0110 0010 0100100
3 0011 0110 o1 0011 0101000
4 0100 0111 0100 0100 0110000
5 0101 1000 1011 1011 1000001
6 0110 1001 1010 1100 1000010
7 0111 1010 1001 1101 1000100
8 1000 1011 1000 1110 1001000
9

1001 1100 1111 1111 1010000

The BCD (binary-code decimal) is a straight assignment of the binary equivalent. It
is possible to assign weights to the binary bits according to their positions. The weights
in the BCD code are 8, 4, 2, 1. The bit assignment 0110, for example, can be inter-
preted by the weights to represent the decimal digit 6 because 0 X 8 + 1 X 4 +
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1 X2+ 0X1=6. Itis also possible to assign negative weights to a decimal code,
as shown by the 8, 4, —2, —1 code. In this case, the bit combination 0110 is inter-
preted as the decimal digit 2, as obtained from 0 X 8 + 1 X 4 + 1 x (=2) + 0 X
(—1) = 2. Two other weighted codes shown in the table are the 2421 and the 5043210.
A decimal code that has been used in some old computers is the excess-3 code. This is
an unweighted code; its code assignment is obtained from the corresponding value of
BCD after the addition of 3.

Numbers are represented in digital computers either in binary or in decimal through
a binary code. When specifying data, the user likes to give the data in decimal form.
The input decimal numbers are stored internally in the computer by means of a decimal
code. Each decimal digit requires at least four binary storage elements. The decimal
numbers are converted to binary when arithmetic operations are done internally with
numbers represented in binary. It is also possible to perform the arithmetic operations
directly in decimal with all numbers left in a coded form throughout. For example, the
decimal number 395, when converted to binary, is equal to 110001011 and consists of
nine binary digits. The same¢ number, when represented internally in the BCD code,
occupies four bits for each decimal digit, for a total of 12 bits: 001110010101. The first
four bits represent a 3, the next four a 9, and the last four a 5.

It is very important to understand the difference between conversion of a decimal
number to binary and the binary coding of a decimal number. In each case, the final
result is a series of bits. The bits obtained from conversion are binary digits. Bits ob-
tained from coding are combinations of 1’s and 0’s arranged according to the rules of
the code used. Therefore, it is extremely important to realize that a series of 1’s and 0's
in a digital system may sometimes represent a binary number and at other times repre-
sent some other discrete quantity of information as specified by a given binary code.
The BCD code, for example, has been chosen to be both a code and a direct binary
conversion, as long as the decimal numbers are integers from O to 9. For numbers
greater than 9, the conversion and the coding are completely different. This concept is
so important that it is worth repeating with another example. The binary conversion of
decimal 13 is 1101; the coding of decimal 13 with BCD is 00010011.

From the five binary codes listed in Table 1-2, the BCD seems the most natural to
use and is indeed the one most commonly encountered. The other four-bit codes listed
have one characteristic in common that is not found in BCD. The excess-3, the 2, 4, 2, 1,
and the 8, 4, —2, —1 are self-complementing codes, that is, the 9°s complement of
the decimal number is easily obtained by changing 1’s to 0’s and 0’s to 1’s. For exam-
ple, the decimal 395 is represented in the 2, 4, 2, 1 code by 001111111011. Its 9’s
complement 604 is represented by 110000000100, which is easily obtained from the
replacement of 1’s by 0’s and 0’s by 1’s. This property is useful when arithmetic oper-
ations are internally done with decimal numbers (in a bmary code) and subtraction is
calculated by means of 9’s complement.

The biquinary code shown in Table 1-2 is an example of a seven-bit code with error-
detection properties. Each decimal digit consists of five 0’s and two 1’s placed in the
corresponding weighted columns. The error-detection property of this code may be un-
derstood if one realizes that digital systems represent binary 1 by one distinct signal
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and binary 0O by a second distinct signal. During transmission of signals from one loca-
tion to another, an error may occur. One or more bits may change value. A circuit in
the receiving side can detect the presence of more (or less) than two 1’s and if the re-
ceived combination of bits does not agree with the allowable combination, an error is
detected.

,
I

\ Error-Detection Code

Binary information can be transmitted from one location to another by electric wires or
other communication medium. Any external noise introduced into the physical commu-
nication medium may change some of the bits from O to 1 or vice versa. The purpose of
an error-detection code is to detect such bit-reversal errors. One of the most common
ways to achieve error detection is by means of a parity bit. A parity bit is an extra bit
included with a message to make the total number of 1’s transmitted either odd or
even. A message of four bits and a parity bit P are shown in Table 1-3. If an odd parity
is adopted, the P bit is chosen such that the total number of 1's is odd in the five bits
that constitute the message and P. If an even parity is adopted, the P bit is chosen so
that the total number of 1’s in the five bits is even. In a particular situation, one or the
other parity is adopted, with even parity being more common.

The parity bit is helpful in detecting errors during the transmission of information
from one location to another. This is done in the following manner. An even parity bit
is generated in the sending end for each message transmission. The message, together
with the parity bit, is transmitted to its destination. The parity of the received data is

TABLE 1-3
Parity bit
Odd parity Even parity
Message P Message r
0000 1 0000 0
0001 0 0001 1
0010 0 0010 I
0011 1 0011 0
0100 0 0100 1
0101 l 0101 0
0110 1 0110 0
0111 0 0111 1
1000 0 1000 1
1001 1 1001 0
1010 1 1010 0
1011 0 1011 1
1100 1 1100 0
1101 0 1101 1
1110 0 1110 |
1 1111 0

111
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checked in the receiving end. If the parity of the received information is not even, it
means that at least one bit has changed value during the transmission. This method de-
tects one, three, or any odd combination of errors in each message that is transmitted.
An even combination of errors is undetected. Additional error-detection schemes may
be needed to take care of an even combination of errors.

What is done after an error is detected depends on the particular application. One
possibility is to request retransmission of the message on the assumption that the error
was random and will not occur again. Thus, if the receiver detects a parity error, it
sends back a negative acknowledge message. If no error is detected, the receiver sends
back an acknowledge message. The sending end will respond to a previous error by
transmitting the message again until the correct parity is received. If, after a number of
attempts, the transmission is still in error, a message can be sent to the human operator
to check for malfunctions in the transmission path.

Digital systems can be designed to process data in discrete form only. Many physicai
systems supply continuous output data. These data must be converted into digital form
before they are applied to a digital system. Continuous or analog information is con-
verted into digital form by means of an analog-to-digital converter. It is sometimes
convenient to use the Gray code shown in Table 1-4 to represent the digital data when
it is converted from analog data. The advantage of the Gray code over binary numbers
is that only one bit in the code group changes when going from one number to the next.
For example, in going from 7 to 8, the Gray code changes from 0100 to 110{. Only the

TABLE 1-4
Four-bit Gray code

Gray code Decimal equivalent

0000 0
0001 1
0011 2
0010 3
0110 4
0111 3
0101 6
0100 7
1100 8
1101 9
1111 10
1110 11
1010 12
1011 13
1001 14
1000 15
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first bit from the left changes from 0 to 1; the other three bits remain the same. When
comparing this with binary numbers, the change from 7 to 8 will be from 0111 to
1000, which causes all four bits to change values.

The Gray code is used in applications where the normal sequence of binary numbers
may produce an error or ambiguity during the transition from one number to the next.
If binary numbers are used, a change from 0111 to 1000 may produce an intermediate
erroneous number 1001 if the rightmost bit takes more time to change than the other
three bits. The Gray code eliminates this problem since only one bit changes in value
during any transition between two numbers.

A typical application of the Gray code occurs when analog data are represented by
continuous change of a shaft position. The shaft is partitioned into segments, and each
segment is assigned a number. If adjacent segments are made to correspond with the
Gray-code sequence, ambiguity is eliminated when detection is sensed in the line that
separates any two segments.

ASCII Character Code

Many applications of digital computers require the handling of data not only of num-
bers, but also of letters. For instance, an insurance company with thousands of policy
holders will use a computer to process its files. To represent the names and other perti-
nent information, it is necessary to formulate a binary code for the letters of the alpha-
bet. In addition, the same binary code must represent numerals and special characters
such as $. An alphanumeric character set is a set of elements that includes the 10 deci-
mal digits, the 26 letters of the alphabet, and a number of special characters. Such a set
contains between 36 and 64 elements if only capital letters are included, or between 64
and 128 elements if both uppercase and lowercase letters are included. In the first case,
we need a binary code of six bits, and in the second we need a binary code of seven
bits.

The standard binary code for the alphanumeric characters is ASCIl (American Stan-
dard Code for Information Interchange). It uses seven bits to code 128 characters, as
shown in Table 1-5. The seven bits of the code are designated by b, through b, , with b;
being the most-significant bit. The letter A, for example, is represented in ASCII as
1000001 (cotumn 100, row 0001). The ASCII code contains 94 graphic characters that
can be printed and 34 nonprinting characters used for various control functions. The
graphic characters consist of the 26 uppercase letters (A through Z), the 26 lowercase
letters (a through z), the 10 numerals (0 through 9), and 32 special printable characters
such as %, *, and $.

The 34 control characters are designated in the ASCII table with abbreviated names.
They are listed in the table with their full functional names. The control characters are
used for routing data and arranging the printed text into a prescribed format. There are
three types of control characters: format effectors, information separators, and commu-
nication-control characters. Format effectors are characters that control the layout of
printing. They include the familiar typewriter controls such as backspace (BS), hori-
zontal tabulation (HT), and carriage return {CR). Information separators are used to
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TABLE 1-5
American Standard Code for information Interchange [ASCII}
bbb

bababa b, 000 0ot Q10 ol 100 101 110 111
0000 NUL DLE SP 0 @ P * P
0001 SOH DC1 ! 1 A Q a q
0o10 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c 8
0100 EOT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U [ u
0110 ACK SYN & 6 F \Y f v
0111 BEL ETB ’ 7 G w g w
1000 BS CAN ( 8 H X h X
1001 HT EM ) 9 I Y i y
1010 LF SUB * : J z j z
1011 vT ESC + ; K [ k {
1100 FF FS , < L \ 1 :
1101 CR GS - = M ] m }
1110 SO RS . > N A n o
1111 SI Us f 7 0 - o DEL

Control characters

NUL Null DLE Data-link escape

SOH Start of heading DC1 Device control 1

STX Start of text DC2 Device control 2

ETX End of text DC3 Device control 3

EOT End of transmission DC4 Device control 4

ENQ Enquiry NAK Negative acknowledge

ACK Acknowledge SYN Synchronous idle

BEL Bell ETB End-of-transmission block

BS Backspace CAN Cancel

HT Horizontal tab EM End of medium

LF Line feed SUB Substitute

VT Vertical tab ESC Escape

FF Form feed FS File separator

CR Carriage return GS Group separator

S0 Shift out RS Record separator

S Shift in us Unit separator

SP Space DEL Delete
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separate the data into divisions such as paragraphs and pages. They include characters
such as record separator (RS) and file separator (FS}. The communication-controd char-
acters are useful during the transmission of text between remote terminals. Examples of
communication-control characters are STX (start of text) and ETX (end of text), which
are used to frame a text message when transmitted through telephone wires.

ASCITI is a 7-bit code, but most computers manipulate an 8-bit quantity as a single
unit called a byte. Therefore, ASCII characters most often are stored one per byte. The
extra bit is sometimes used for other purposes, depending on the application. For exam-
ple, some printers recognize 8-bit ASCTI characters with the most-significant bit sct to
0. Additional 128 8-bit characters with the mostsignificant bit set to 1 are used for
other symbols such as the Greek alphabet or italic type font. When used in data com-
munication, the eighth bit may be employed to indicate the parity of the character.

Other Alphanumeric Codes

Another alphanumeric code used in IBM equipment is the EBCDIC (Extended Binary-
Coded Decimal Interchange Code). It uses eight bits for each character. EBCDIC bas
the same character symbols as ASCII, but the bit assignment for characters is different.
As the name implies, the binary code for the letters and numerals is an extension of the
binary-coded decimal (BCD) code. This means that the last four bits of the code range
from 0000 though 1001 as in BCD.

When characters are used internally in a computer for data processing (not for trans-
mission purposes), it is sometimes convenient to use a 6-bit code to represent 64 char-
acters. A 6-bit code can specify 64 characters consisting of the 26 capital letters, the 10
numerals, and up to 28 special characters. This set of characters is usually sufficient for
data-processing purposes. Using fewer bits to code characters has the advantage of re-
ducing the space needed to store large quantities of alphanumeric data.

A code developed in the early stages of teletype transmission is the 5-bit Baudot
code. Although five bits can specify only 32 characters, the Baudot code represents 58
characters by using two modes of operation. In the mode called /letters, the five bits en-
code the 26 letters of the alphabet. In the mode called figures, the five bits encode the
numerals and other characters. There are two special characters that are recognized by
both modes and used to shift from one mode to the other. The lerter-shift character
places the reception station in the letters mode, after which all subsequent character
codes are interpreted as letters. The figure-shift character places the system in the
figures mode. The shift operation is analogous to the shifting operation on a typewriter
with a shift lock key.

When alphanumeric information is transferred to the computer using punched cards,
the alphanumeric characters are coded with 12 bits. Programs and data in the past were
prepared on punched cards using the Hollerith code. A punched card consists of 80
columns and 12 rows. Each column represents an alphanumeric character of 12 bits
with holes punched in the appropriate rows. A hole is sensed as a | and the absence of
a hole is sensed as a 0. The 12 rows are marked, starting from the top, as 12, 11,0, 1,
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2, ..., 9. The first three are called the zone punch and the last nine are called the nu-
meric punch. Decimal digits are represented by a single hole in a numeric punch. The
letters of the alphabet are represented by two holes in a column, one in the zone punch
and the other the numeric punch. Special characters are represented by one, two, or
three holes in a column. The 12-bit card code is ineffecient in its use of bits. Conse-
quently, computers that receive input from a card reader convert the input 12-bit card
code into an internal six-bit code to conserve bits of storage.

1-8 BINARY STORAGE AND REGISTERS

Registers

The discrete elements of information in a digital computer must have a physical exist-
ence in some information-storage medium. Furthermore, when discrete elements of in-
formation are represented in binary form, the information-storage medium must con-
tain binary storage elements for storing individual bits. A binary cell is a device that
possesses two stable states and is capable of storing one bit of information. The input to
the cell receives excitation signals that set it to one of the two states. The output of the
cell is a physical quantity that distinguishes between the two states. The information
stored in a cell is a 1 when it is in one stable state and a 0 when in the other stable state.
Examples of binary cells are electronic flip-flop circuits, ferrite cores used in memo-
ries, and positions punched with a hole or not punched in a card.

A register is a group of binary cells. Since a cell stores one bit of information, it fol-
lows that a register with n cells can store any discrete quantity of information that con-
tains n bits. The state of a register is an n-tuple number of 1°s and 0’s, with each bit
designating the state of one cell in the register. The content of a register is a function of
the interpretation given to the information stored in it. Consider, for example, the fol-
lowing 16-cell register:

111[0j0j0jO0|1]1|1|1|0O}jO|1|0]|0O]1

1 23 45 6 7 8 9101112131415 16

Physically, one may think of the register as composed of 16 binary cells, with each cell
storing either a 1 or a 0. Suppose that the bit configuration stored in the register is as
shown. The state of the register is the 16-tuple number 1100001111001001. Clearly, a
register with n cells can be in one of 2" possible states. Now, if one assumes that the
content of the register represents a binary integer, then obviously the register can store
any binary number from 0 to 2'° — 1. For the particular example shown, the content of
the register is the binary equivalent of the decimal number 50121. If it is assumed that
the register stores alphanumeric characters of an eight-bit code, the content of the reg-
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ister is any two meaningful characters. For the ASCII code with an even parity placed
in the eighth most-significant bit position the previous example represents the two char-
acters C (left eight bits) and I (right eight bits). On the other hand, if one interprets the
content of the register to be four decimal digits represented by a four-bit code, the con-
tent of the register is a four-digit decimal number. In the excess-3 code, the previous
example is the decimal number 9096. The content of the register is meaningless in
BCD since the bit combination 1100 is not assigned to any decimal digit. From this ex-
ample, it is clear that a register can store one or more discrete elements of information
and that the same bit configuration may be interpreted differently for different types of
elements of information. It is important that the vser store meaningful information in
registers and that the computer be programmed to process this information according to
the type of information stored.

Register Transfer

A digital computer is characterized by its registers. The memory unit (Fig. 1-1) is
merely a collection of thousands of registers for storing digital information. The pro-
cessor unit is composed of various registers that store operands upon which operations
are performed. The control unit uses registers to keep track of various computer se-
quences, and every input or output device must have at least one register to store the in-
formation transferred to or from the device. An interregister transfer operation, a basic
operation in digital systems, consists of a transfer of the information stored in one reg-
ister into another. Figure 1-2 illustrates the transfer of information among registers and
demonstrates pictorially the transfer of binary information from a keyboard into a reg-
ister in the memory unit. The input unit is assumed to have a keyboard, a control cir-
cuit, and an input register. Each time a key is struck, the control enters into the input
register an equivalent cight-bit alphanumeric character code. We shall assume that the
code used is the ASCII code with an odd-parity eighth bit. The information from the
input register is transferred into the eight least significant cells of a processor register.
After every transfer, the input register is cleared to enable the control to insert a new
eight-bit code when the keyboard is struck again. Each eight-bit character transferred to
the processor register is preceded by a shift of the previous character to the next cight
cells on its left. When a transfer of four characters is completed, the processor register
is full, and its contents are transferred into a memory register. The content stored in
the memory register shown in Fig. 1-2 came from the transfer of the characters JOHN
after the four appropriate keys were struck.

To process discrete quantities of information in binary form, a computer must be
provided with (1) devices that hold the data to be processed and (2) circuit elements
that manipulate individual bits of information. The device most commonly used for
holding data is a register. Manipulation of binary variables is done by means of digital
logic circuits. Figure 1-3 illustrates the process of adding two 10-bit binary numbers.
The memory unit, which normally consists of thousands of registers, is shown in the
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FIGURE 1-2

Transfer of information with registers

diagram with only three of its registers. The part of the processor unit shown consists
of three registers, R1, R2, and R3, together with digital logic circuits that manipulate
the bits of R1 and R2 and transfer into R3 a binary number equal to their arithmetic
sum, Memory registers store information and are incapable of processing the two
operands. However, the information stored in memory can be transferred to processor
registers. Results obtained in processor registers can be transferred back into a memory
register for storage until needed again. The diagram shows the contents of two
operands transferred from two memory registers into R1 and R2. The digital logic cir-
cuits produce the sum, which is transferred to register R3. The contents of R3 can now
be transferred back to one of the memory registers.

The last two examples demonstrated the information-flow capabilities of a digital
system in a very simple manner. The registers of the system are the basic elements for
storing and holding the binary information. The digital logic circuits process the infor-
mation. Digital logic circuits and their manipulative capabilities are introduced in the
next section. Registers and memory are presented in Chapter 7.
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1-9 BINARY LOGIC

Binary logic deals with variables that take on two discrete values and with operations
that assume logical meaning. The two values the variables take may be called by differ-
ent names (e.g., true and fulse, yes and no, etc.), but for our purpose, it is convenient
to think in terms of bits and assign the values of I and 0. Binary logic is used to de-
scribe, in a mathematical way, the manipulation and processing of binary information.
It is particularly suited for the analysis and design of digital systems. For example, the
digital logic circuits of Fig. 1-3 that perform the binary arithmetic are circuits whose
behavior is most conveniently expressed by means of binary variables and logical oper-
ations. The binary logic to be introduced in this section is equivalent to an algebra
called Boolean algebra. The formal presentation of a two-valued Boolean algebra is
covered in more detail in Chapter 2. The purpose of this section is to introduce
Boolean algebra in a heuristic manner and relate it to digital logic circuits and binary
signals.
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Definition of Binary Logic

Binary logic consists of binary variables and logical operations. The variables are des-
ignated by letters of the alphabet such as A, B, C, x, y, z, etc., with each variable hav-
ing two and only two distinct possible values: 1 and 0. There are three basic logical op-
erations: AND, OR, and NOT.

1. AND: This operation is represented by a dot or by the absence of an operator. For
example, x-y = z or xy = z is read “x AND ¥ is equal to z.” The logical opera-
tion AND is interpreted to mean that z = 1 if and only if x = 1 and y = 1;
otherwise z = 0. (Remember that x, y, and z are binary variables and can be
equal either to 1 or 0, and nothing else.)

2. OR: This operation 1s represented by a plus sign. For example, x + y = z is read
“x OR y is equal to z,” meaning that z = 1 ifx = lorify = Ll orifbothx = 1
andy = 1.Ifbothx =0andy = 0, thenz = 0.

3. NOT: This operation is represented by a prime (sometimes by a bar). For exam-
ple, x" = z (or X = z) is read “pot x is equal to z,” meaning that z is what x is
not. In other words, if x = 1, thenz = 0; butif x = 0, thenz = 1.

Binary logic resembles binary arithmetic, and the operations AND and OR have
some similarities to multiplication and addition, respectively. In fact, the symbols used
for AND and OR are the same as those used for multiplication and addition. However,
binary logic should not be confused with binary arithmetic. One should realize that an
arithmetic variable designates a number that may consist of many digits. A logic vari-
able is always either a 1 or a 0. For example, in binary arithmetic, we have | + 1 = 10
(read: “one plus one is equal to 2”), whereas in binary logic, we have 1 + 1 = 1 (read:
“one OR one is equal to one™).

For each combination of the values of x and y, there is a value of z specified by the
definition of the logical operation. These definitions may be listed in a compact form
using truth tables. A truth table is a table of all possible combinations of the variables
showing the relation between the values that the variables may take and the result of
the operation. For example, the truth tables for the operations AND and OR with vari-
ables x and y are obtained by listing all possible values that the variables may have
when combined in pairs. The result of the operation for each combination is then listed
in a separate row. The truth tables for AND, OR, and NOT are listed in Table 1-6.
These tables clearly demonstrate the definition of the operations.

Switching Circuits and Binary Signals

The use of binary variables and the application of binary logic are demonstrated by the
simple switching circuits of Fig. 1-4. Let the manual switches A and B represent two
binary variables with values equal to O when the switch is open and 1 when the switch
is closed. Similarly, let the lamp L represent a third binary variable equal to 1 when the
light is on and O when off. For the switches in series, the light turns on if A and B are
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Logic Gates

TABLE 1-6
Truth Tables of Logical Operations
AND OR NOT

X Xy x ¥ x+y X x'
o0 i\ (U] 0 0 i
01 0 0 1 1 i 0
1 0 0 1 0 1
1 1 I 1 1

closed. For the switches in parallel, the light turns on if A or B is closed. It is obvious
that the two circuits can be expressed by means of binary logic with the AND and OR
operations, respectively:

L=A-B for the circuit of Fig. 1-4(a)
L=A+BH for the circuit of Fig. 1-4(b)

Electronic digital circuits are sometimes called switching circuits because they be-
have like a switch, with the active element such as a transistor either conducting (switch
closed) or not conducting (switch open). Instead of changing the switch manually, an
electronic switching circuit uses binary signals to control the conduction or nonconduc-
tion state of the active element. Electrical signals such as voltages or currents exist
throughout a digital system in either one of two recognizable values (except during
transition). Voltage-operated circuits, for example, respond to two separate voltage lev-
els, which represent a binary variable equal to logic-1 or logic-0. For example, a par-
ticular digital system may define logic-1 as a signal with a nominal value of 3 volts and
logic-0 as a signal with a nominal value of O volt. As shown in Fig. 1-5, each voltage
level has an acceptable deviation from the nominal. The intermediate region between
the allowed regions is crossed only during state transitions. The input terminals of digi-
tal circuits accept binary signals within the allowable tolerances and respond at the out-
put terminal with binary signals that fall within the specified talerances.

Electronic digital circuits are also called logic circuits because, with the proper input,
they establish logical manipulation paths. Any desired information for computing or

T

- @ L A L
A B e o —
Voltage Yoltage B
source source
{a) Switches in series —logic AND (b) Switches in parallel —logic OR
FIGURE 1-4

Switching areuits that demonstrate binary logic
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Example of binary signals

control can be operated upon by passing binary signals through various combinations of
logic circuits, each signal representing a variable and carrying one bit of information.
Logic circuits that perform the logical operations of AND, OR, and NOT are shown
with their symbols in Fig. 1-6. These circuits, called gates, are blocks of hardware that
produce a logic-1 or logic-0 output signal if input logic requirements are satisfied. Note
that four different names have been used for the same type of circuits: digital circuits,
switching circuits, logic circuits, and gates. All four names are widely used, but we
shall refer to the circuits as AND, OR, and NOT gates. The NOT gate is sometimes
called an inverter circuit since it inverts a binary signal.

The input signals x and y in the two-input gates of Fig. 1-6 may exist in one of four
possible states: 00, 10, 11, or 01. These input signals are shown in Fig. 1-7, together
with the output signals for the AND and OR gates. The timing diagrams in Fig. 1-7 il-

P z=xy xDZ:_H')’
X x
y— y D

(a) Two-input AND gate (b) Two-input OR gate (c) NOT gate or inverter

A
4— F == ABC Bj. G=A+B+C+D
c— c

D
(d) Three -input AND gate (e) Four -input OR gate
FIGURE 1-6
Symtxols for digital logic circuits
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- 0 1 1 0 0
¥ 0 0 1 1 0
AND: x -y 9 of T o o
OR. x+y _0Ff 1 3 10
NOT: =’ 1 0 0 1 1
FIGURE 1-7
Input—output signals for gates (4], [b}, and {c] of Fig. 1-6

lustrate the response of each circuit to each of the four possible input binary combina-
tions. The reason for the name “inverter” for the NOT gate is apparent from a compari-
son of the signal x (input of inverter) and that of x’ {output of inverter).

AND and OR gates may have more than two inputs. An AND gate with three inputs
and an OR gate with four inputs are shown in Fig. 1-6. The three-input AND gate re-
sponds with a logic-1 output if all three input signals are logic-1. The output produces a
logic-0 signal if any input is Jogic-0. The four-input OR gate responds with a logic-1
when any input is a logic-1. Its output becomes logic-0 if all input signals are logic-0.

The mathematical system of binary logic is better known as Boolean, or switching,
algebra. This algebra is conveniently used to describe the operation of complex net-
works of digital circuits. Designers of digital systems use Boolean algebra to transform
circuit diagrams to algebraic expressions and vice versa. Chapters 2 and 3 are devoted
to the study of Boolean algebra, its properties, and manipulative capabilities. Chapter 4
shows how Boolean algebra may be used to express mathematically the interconnec-
tions among networks of gates.
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1-3
1-4

1-5
1-6

1-7
1-8

1-10
1-11
1-12

1-13

1-14

1-17

List the first 16 numbers in base 12. Use the letters A and B to represent the last two dig-
its.

What is the largest binary number that can be obtained with 16 bits? What is its decimal
equivalent?

Convert the following binary numbers to decimai: 101110, 1113101.11; and 110110100.

Convert the following numbers with the indicated bases to decimal: (12121)s; (4310)5;
(50)7 N and (198)12 .

Convert the following decimal numbers to binary: 1231; 673.23; 10%; and 1998.

Convert the following decimal numbers to the indicated bases:
(a) 7562.45 to octal.

{b) 1938.257 to hexadecimal.

{c) 175.175 10 binary.

Convert the hexadecimal number F3A7C2 to binary and octal.

Convert the following numbers from the given base to the other three bases indicated.
{a) Decimal 225 to binary, octal, and hexadecimal.

(b) Binary 11010111 to decimal, octal, and hexadecimal.

(c) Octal 623 to decimal, binary, and hexadecimal.

{d) Hexadecimal 2ACS to decimal, octal, and binary.

Add and multiply the following numbers without converting to decimal. i
(b) (15F)|6 and (A7)]ﬁ .
{c} (110110); and (110101),.

Perform the following division in binary: 11111111/101.
Determine the value of base x if (211), = (152).

Noting that 32 = 9, formulate a simple procedure for converting base-3 numbers directly
to base-9. Use the procedure to convert (2110201102220112); to base 9.

Find the 9’s complement of the following 8-digit decimal numbers: 12349876; 00980100;
90009951; and 00000000,

Find the 10’s complement of the following 6-digit decimal numbers: 123900; 090657;
100000; and 000000.

Find the 1I’s and 2’s complements of the following 8-digit binary numbers: 10101110;
16000001; 10000000; 00000001 ; and 00000000,

Perform subtraction with the following unsigned decimal numbers by taking the 10's
complement of the subtrahend,

(a) 5250 — 1321

(b) 1753 — 8640

{c) 20 — 100

{d) 1200 — 250

Perform the subtraction with the following unsigned binary numbers by taking the 2’s
complement of the subtrzhend.
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1-20
1-21

(a) 11010 — 10000

(b} 11010 — 1101

() 100 — 110000

(d) 1010100 — 1010100

Perform the arithmetic operations (+42) + (—13) and (—42) — (—13) in binary using the
signed-2’s-complement representation for negative numbers.

The binary numbers listed have a sign in the leftmost position and, if negative, are in 2’s-
complement form. Perform the arithmetic operations indicated and verify the answers.
(a) 101011 + 111000

(b} 001110 + 110010

{c) 111001 — 001010

(d) 101011 — 100110

Represent the following decimal numbers in BCD: 13597, 93286; and 99880.

Determine the binary code for each of the ten decimal digits using a weighted code with
weights 7, 4, 2, and 1.

The (r — 1)’s complement of base-6 numbers is called the 5°s compiement.

(a) Determine a procedure for obtaining the 5’s complement of base-6 numbers.

(b) Obtain the 5’s complement of (543210)s .

(c) Design a 3-bit code Lo represent each of the six digits of the basc-6 number system.
Make the binary code self-complementing so that the 5°s complement is obtained by
changing 1’s to 0’s and 0’s to 1's in all the bits of the coded number.

Represent decimal number 8620 in (a) BCD, (b) excess-3 code, (c)2421 code, and (d) as a
binary number.

Represent decimal 3864 in the 2421 code of Table 1-2. Show that the code is self-comple-
menting by taking the 9's complement of 3864.

Assign a binary code in some orderly manner to the 52 playing cards. Use the minimum
number of bits.

List the ten BCD digits with an even parity in the leftmost position. (Total of five bits per
digit.} Repeat with an odd-parity bit.

Write your full name in ASCIH using an eight-bit code with the leftmost bit always 0. In-
clude a space between names and a period after a middle initial.

Decode the following ASCII code: 1001010 1101111 1101000 1101110 0100000 1000100
1104111 1100101,

Show the bit configuration that represents the decimal number 295 (a) in binary, (b) in
BCD. and (c) in ASCIL.

How many printing characters are there in ASCII? How many of them are not letters or
oumerals?

The state of a 12-bit register is 010110010111, What is its content if it represents:
(a) three decimal digits in BCD;

(b) three decimal digits in the excess-3 code;

(c) three decimal digits in the 242} code?



Problems 35

1-32 Show the contents of all registers in Fig. 1-3 if the two binary numbers added have the
decimal equivalent of 257 and 514.

1-33 Show the signals (by means of diagram similar to Fig. 1-7) of the outputs F and G in the
two gates of Figs. 1-6(d) and (¢). Use all 16 possible combinations of the input signals A,
B, C, and D.

1-34 Express the switching circuit shown in the figure in binary logic notation.

L

~ ®

/W/::.

Voltage
source

FIGURE P1-34
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Boolean algebra, like any other deductive mathematical system, may be defined with a
set of elements, a set of operators, and a number of unproved axioms or postulates. A
set of elements is any collection of objects having a common property. If S is a set, and
x and y are certain objects, then x € S denotes that x is a member of the set S, and
y € § denotes that v is not an element of S. A set with a denumerable number of ele-
ments is specified by braces: A = {1, 2, 3, 4}, i.e., the elements of set A are the num-
bers 1, 2, 3, and 4. A binary operator defined on a set S of elements is a rule that as-
signs to each pair of elements from S a unique element from S. As an example,
consider the relation @ * b = ¢. We say that * is a binary operator if it specifies a rule
for finding ¢ from the pair (a, b) and also if @, , ¢ € S. However, * is not a binary
operator if a, » & §, whereas the rule finds ¢ GE S.

The postulates of a mathematical system form the basic assumptions from which it 1s
possible to deduce the rules, theorems, and properties of the system. The most com-
mon postulates used to formulate various algebraic structures are:

1. Closure. A set S is closed with respect to a binary operator if, for every pair of
elements of S, the binary opertor specifies a rule for obtaining a unique element
of S. For example, the set of natural numbers N = {1, 2, 3, 4, . . . } is closed
with respect to the binary operator plus (+) by the rules of arithmetic addition,
since for any ¢, b & N we obtain a unique ¢ € N by the operationa + b = c.
The set of natural numbers is not closed with respect to the binary operator minus
(—) by the rules of arithmetic subtraction because 2 — 3 = —l and 2, 3 € N,
while (—1) & N.
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Associative law. A binary operator * on a set S is said to be associative whenever

(x*y)*z=xx(y*z) forallx,y,z,ES

. Commutative law. A binary operator * on a set S is said to be commutative

whenever
X *y=1y%x forallx,y € 8§

Identity element. A set S is said to have an identity element with respect to a bi-
nary operation * on $ if there exists an element ¢ € S with the property

eFxX=x%e=x forevery x € §
Example: The element 0 is an identity element with respect to operation + on the
setof integers I = { ., .., -3, -2, -1,0,1,2,3, .. . } since
x+0=04+x=1x for any x €1

The set of natural numbers N has no identity element since O is excluded from
the set.

Inverse. A set S having the identity element ¢ with respect to a binary operator
* is said to have an inverse whenever, for every x € S, there exists an element
¥ € 8§ such that

X*y=¢
Example: In the set of integers I with ¢ = 0, the inverse of an element q is (—a)
since @ + {(—~a) = 0.
Distributive law. If * and - are two binary operators on a set S, * is said to be dis-
tributive over - whenever

x*(yzt=(x*y)(x *2z)

An example of an aigebraic structure is a field. A field is a set of elements, together
with two binary operators, each having properties 1 to 5 and both operators combined
to give property 6. The set of real numbers together with the binary opera-

tors + and - form the field of real numbers. The field of real numbers is the basis for

arithmetic and ordinary algebra. The operators and postulates have the following mean-

ings:

The bindty operator + defines addition,

The additive identity is 0.

The additive inverse defines subtraction.

The binary operator - defines multiplication.

The multiplicative identity is 1.

The multiplicative inverse of a = 1/a defines division, i.e., a-1/a = 1,
The only distributive law applicable is that of - over +:

a-(b+c)=(a-b)+ (a-c
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2-2 AXIOMATIC DEFINITION OF 'BOOLEAN ALGEBRA

In 1854 George Boole introduced a systematic treatment of logic and developed for this
purpose an algebraic system now called Boolean algebra. In 1938 C. E. Shannon intro-
duced a two-valued Boolean algebra called switching algebra, in which he demonstrated
that the properties of bistable electrical switching circuits can be represented by this al-
gebra. For the formal definition of Boolean algebra, we shall employ the postulates for-
mulated by E. V. Huntington in 1904,

Boolean algebra is an algebraic structure defined on a set of elements B together
with two binary operators + and - provided the following (Huntington) postulates are
satisfied:

1.

2.

6.

(a) Closure with respect to the operator +.

(b} Closure with respect to the operator -

(a) An identity element with respect to -+, designated by 0: x + 0=
0+ x=nx.

(b) An identity element with respect to -, designated by 1: x- 1 = 1-x = x.

(a) Commutative with respectto +:x + y =y + X.

(b} Commutative with respect to =2 x-y = ¥- X,

(a) - is distributive over +:x-{y + z) = (x-y) + (x-2).

(b) + is distributive over 1 x + (y-z) = (x + y}-{x + z).

For every element x € B, there exists an element x' & B (called the comple-

ment of x) such that (a) x + x” = 1l and (b) x-x' = 0.

There cxists at least two elements x, v € B such that x # y.

Comparing Boolean algebra with arithmetic and ordinary algebra (the field of real
numbers), we note the following differences:

1.

Huntington postulates do not include the associative law. However, this law holds
for Boolean algebra and can be derived (for both operators) from the other postu-
lates.

The distributive law of + over -, i.e., x+{(y-z) = (x + y}-(x + z), is valid for
Boolean algebra, but not for ordinary algebra.

Boolean algebra does not have additive or multiplicative inverses; therefore, there
are no subtraction or division operations.

Postulate 5 defines an operator called complement that is not available in ordinary
algebra.

. Ordinary algebra deals with the real numbers, which consitute an infinite set of

elements. Boolean algebra deals with the as yet undefined set of elements B, but
in the two-valued Boolean algebra defined below (and of interest in our subse-
quent use of this algebra), B is defined as a set with only two clements, 0 and 1.

Boolean algebra resembles ordinary algebra in some respects. The choice of sym-
bols + and - is intentional to facilitate Boolean algebraic manipulations by persons
already familiar with ordinary algebra. Although one can use some knowledge from
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ordinary algebra to deal with Boolean algebra, the beginner must be careful not to sub-
stitute the rules of ordinary algebra where they are not applicable.

It is important to distinguish between the elements of the set of an algebraic struc-
ture and the variables of an algebraic system. For example, the elements of the field of
real numbets are numbers, whereas variables such as a, b, ¢, etc., used in ordinary al-
gebra, are symbols that stand for real numbers. Similarly in Boolean algebra, one
defines the elements of the set B, and variables such as x, ¥, z are merely symbols that
represent the elements. At this point, it is important to realize that in order to have a
Boolean algebra, one must show:

1. the elements of the set B,
2. the rules of operation for the two binary operators, and

3. that the set of elements B, together with the two operators, satisfies the six Hunt
ington postulates.

One can formulate many Boolean algebras, depending on the choice of elements of
B and the rules of operation. In our subsequent work, we deal only with a two-valued
Boolean algebra, i.¢., one with only two elements. Two-valued Boolean algebra has ap-
plications in set theory (the algebra of classes) and in propositional logic. Our interest
here is with the application of Boolean algebra to gate-type circuits.

Two-Valued Boolean Algebra

A two-valued Boolean algebra is defined on a set of two elements, B = {0, 1}, with
rules for the two binary operators + and * as shown in the following operator tables
(the ruie for the complement operator is for verification of postulate 5):

Xy X'y Xy X+y X x'
00 0 0 0 0 0 1
01 0 01 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1

These rules are exactly the same as the AND, OR, and NOT operations, respectively,
defined in Table 1-6. We must now show that the Huntington postulates are valid for
the set B = {0, 1} and the two binary operators defined before.

1. Closure is obvious from the tables since the result of each operation is ¢ither 1 or
Oand 1,0 € B.

2. From the tables we see that
@0+0=0 0+1=1+0=1
h1l-1=1 1-0=0-1=0
which establishes the two identity elements 0 for + and 1 for - as defined by pos-
tulate 2.
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3. The commutative laws are obvious from the symmetry of the binary operator ta-

bles.

4. (a) The distributive law x-{y + z) = (x-y) + (x-z) can be shown to hold true
from the operator tables by forming a truth table of all possible values of x, v,
and z. For each combination, we derive x - (y + z} and show that the value is
the same as (x-y) + (x*2).

X v z Ytz Afy + 2) Xy X-Z {x- ) + [x-2)
o o0 0 ¢ 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 g
0 1 | 1 0 0 0 0
] ] 0 0 0 0 0 0
1 0 1 | I 0 1 1
1 | 0 1 | 1 0 1
1 1 1 1 1 1 l 1

(b) The distributive law of + over - can be shown to hold true by means of a
truth table similar to the one above.
5. From the complement table it is easily shown that
(a)x+x':1,since0+0':0+l=1and1 +1"=1+0=1.
(b x x" =0, since 0-0"=0-1=0 and 1-1" = 1-0 =0, which verifies
postulate 3.
6. Postulate 6 is satisfied because the two-valued Boolean algebra has two distinct el-
ements, | and 0, with | # 0.

We have just established a two-valued Boolean algebra having a set of two elements,
1 and 0, two binary operators with operation rules equivalent to the AND and OR op-
erations, and a complement operator equivalent to the NOT operator. Thus, Boolean al-
gebra has been defined in a formal mathematical manner and has been shown to be
equivalent to the binary logic presented heuristically in Section 1-9. The heuristic pre-
sentation is helpful in understanding the application of Boolean algebra to gate-type cir-
cuits. The formal presentation is necessary for developing the theorems and properties
of the algebraic system. The two-valued Boolean algebra defined in this section is also
called “switching algebra” by engineers. To emphasize the similarities between two-
valued Boolean algebra and other binary systems, this algebra was called “binary logic”
in Section 1-9. From here on, we shall drop the adjective “two-valued” from Boolean
algebra in subsequent discussions.
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2-3 BASIC THEOREMS AND PROPERTIES
OF BOOLEAN ALGEBRA

Duality

The Huntington postuiates have been listed in pairs and designated by part (a) and part
(b). One part may be obtained from the other if the binary operators and the identity
clements are interchanged. This important property of Boolean algebra is called the
duality principle. It states that every algebraic expression deducible from the postulates
of Boolean algebra remains valid if the operators and identity elements are inter-
changed. In a two-valued Boolean algebra, the identity elements and the elements of
the sct B are the same: 1 and 0. The duality principle has many applications. If the dual
of an algebraic expression is desired, we simply interchange OR and AND aperators
and replace 1°s by 0°s and 0’s by 1's.

Basic Theorems

Table 2-1 lists six theorems of Boolean algebra and four of its postulates. The notation
is simplified by omitting the - whenever this does not lead to confusion. The theorems
and postulates listed are the most basic relationships in Boolean algebra. The reader is
advised to become familiar with them as soon as possible. The theorems, like the pos-
tulates, are listed in pairs; each relation is the dual of the one paired with it. The postu-
lates are basic axioms of the algebraic structure and need no proof. The theorems must
be proven from the postulates. The proofs of the theorems with one variable are pre-
sented below. At the right is listed the number of the postulate that justifies each step of
the proof.

TABLE 241

Postulates and Theorems of Boolean Algebra

Postulate 2 fa) x+0=ux b) x1=x
Postulate 5 @x+x =1 b) x-x'=0
Theorem 1 (ax+x=x (b) x-x=x
Theorem 2 @x+1=1 b)) x-0=0
Theorem 3, involution (') =x

Postulate 3, commutative  (a) x + y = y + x (b) xy = yx
Theorem 4, associative @x+@+2=(x+ y+z o (b x(yz) = (xy)z
Postulate 4, distributive @xy+z)=xy+xz ) x+yz={x+ y)(x + 2
Theorem 5, DeMorgan (@ (x +y)y =x'y' ) (xy) =x" + y’

Theorem 6, absorption (@ x+xy=x ) x(x + y) =x
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THEOREM 1[a): X * X = X.

x+x=x+x-1 by postulate: 2{b)
=(x + x)x +x") 5(a)
=x + xx' 4(b)
=x+0 5(b)
=x 2(a)

THEOREM 1{b): x -x = x.

xx=xx+0 by postulate: 2(a)
= xx + xx’ 5(b)
=x(x+x) 4(a)
=x-1 5(a)
= 2(b}

Note that theorem [{b) is the dual of theorem 1(a) and that each step of the proof in
part (b) is the dual of part (a). Any dual theorem can be similarly derived from the
proof of its corresponding pair.

THEOREM 2[a]: x + ! =1

x+1=1(x+1 by postulate: 2(b)
=(x+xMx+ 1) 5(a)
=x+x'-1 4(b)
=x+x' 2(b)
=1 5(a)

THEOREM 2(b): x 0 = 0by duality.

THEOREM 3: (x') = x. From postulate 5, we have x + x" = land x-x" = 0,
which defines the complement of x. The complement of x” is x and is also (x)".
Therefore, since the complement is unique, we have that (x")" = x.

The theorems involving two or three variables may be proven algebraically from the
postulates and the theorems that have already been proven. Take, for example, the ab-
sorption theorem.
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THEOREM 6{a): x + xy = x.

x+xy=x-1+xy  bypostulate:  2(b)

= x(1 +y) 4(a)
=x(y + 1) 3(a)
= x-1 2a)
= x 2(b)

THEOREM 6(b): x(x + y) = x by duality.

The theorems of Boolean algebra can be shown to hold true by means of truth ta-
bles. In truth tables, both sides of the relation are checked to yield identical results for
all possible combinations of variables involved. The following truth table verifies the
first absorption theorem.

=/
X ¥y Xy X+ xy
G 0 0 0
0 1 0 0
1 0 0 1
1 1 1 1

The algebraic proofs of the associative law and DeMorgan’s theorem are long and will
not be shown here. However, their validity is casily shown with truth tables. For exam-
ple, the truth table for the first DeMorgan’s theorem (x + ¥)' = x'y’ is shown below.

Xy X+y (x+y) x' y' x'y’!
0 0 0 1 1 1 1
0 1 1 0 1 1] 0
1 0 1 0 0 1 0
1 1 1 0 0 0 0

Operator Precedence

The operator precedence for evaluating Boolean expressions is (1) parentheses,
(2) NOT, (3} AND, and (4) OR. In other words, the expression inside the parentheses
must be evaluated before all other operations. The next operation that holds precedence
is the complement, then follows the AND, and finally the OR. As an example, consider
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the truth table for DeMorgan’s theorem. The left side of the expression is (x + ).
Therefore, the cxpression inside the parentheses is evaluated first and the result then
complemented. The right side of the expression is x'y’. Therefore, the complement of
x and the complement of y are both evaluated first and the result is then ANDed. Note
that in ordinary arithmetic, the same precedence holds (except for the complement)

when multiplication and addition are replaced by AND and OR, respectively.

Venn Diagram

A helpful illustration that may be used to visualize the relationships among the variables
of a Boolean expression is the Venn diagram. This diagram consists of a rectangle such
as shown in Fig. 2-1, inside of which are drawn overlapping circles, one for each vari-
able. Each circle is labeled by a variable. We designate all points inside a circle as be-
longing to the named variable and all points outside a circle as not belonging to the
variable. Take, for example, the circle labeled x. If we are inside the circle, we say that
x = 1; when outside, we say x = 0. Now, with two overlapping circles, there are four
distinet areas inside the rcctangle: the area not belonging to either x or y (x'y’), the
area inside circle y but outside x (x'y), the area inside circle x but outside y (xy’), and
the area inside both circles (xy).

Venn diagrams may be used to illustrate the postulates of Boolean algebra or to show
the validity of theorems. Figure 2-2, for example, illustrates that the area belonging to
xy is inside the circle x and therefore x + xy = x. Figure 2-3 illustrates the distributive
law x(y + z) = xy + xz. In this diagram, we have three overlapping circles, one for
each of the variables x, v, and z. It is possible to distinguish eight distinct arcas in a
three-variable Venn diagram. For this particular example, the distributive law is
demonstrated by noting that the area intersecting the circle .x with the area enclosing ¥
or 7 is the same area belonging to xy or xz.

FIGURE 2-1
Vvenn diagram for two variables
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FIGURE 2-2
Venn diagram illustration x = xy -+ x
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x(y +2) Xy + xz
FIGURE 2-3
Venn diagram illustration of the distributive law

2-4 BOOLEAN FUNCTIONS

A binary variable can take the value of 0 or 1. A Boolean function is an expression
formed with binary variables, the two binary operators OR and AND, and unary oper-
ator NOT, parentheses, and an equal sign. For a given value of the variables, the func-
tion can be either O or 1. Consider, for example, the Boolean function

F = xyz’

The function Fiis equal to 1 if x = landy = 1 and z' = 1; otherwise F; = 0. The
above is an example of a Boolean function represented as an algebraic expression. A
Boolean function may also be represented in a truth table. To represent a function in a
truth table, we need a list of the 2" combinations of 1's and 0’s of the » binary vari-
ables, and a column showing the combinations for which the function is equal to 1 or 0.
As shown in Table 2-2, there are eight possible distinct combinations for assigning bits
to three variables. The column labeled F, contains either a O or a 1 for each of these
combinations. The table shows that the function F, is equal to 1 only when x = 1,
y =1,and z = 0. It is equal to O otherwise. (Note that the statement z' = 1 is equiva-
lent to saying that z = 0.) Consider now the function

TABLE 2-2
Truth Tables for F; = xyz' . F=x + y'z,
FR=xyzt+xyz+xy,andF,=xy' + x'z

X ¥ z Fi F2 F Fa
0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 0 O 0 0
0 1 1 0 0 1 1
1 0 0 0 1 1 1
1 0 1 0 1 1 1
1 1 0 1 | 0 0
1 1 1 0 1 0 0
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Fr=ux+y'z

F,=1ifx=1orify =0, while z = 1. In Table 2-2, x = 1 in the last four rows
and yz = 01 in rows 001 and 101. The latter combination applies also for x = 1.
Therefore, there are five combinations that make F> = 1. As a third example, consider
the function

F=x'y'z +x'yz+xy

This is shown in Table 2-2 with four 1’s and four 0’s. Fs is the same as F and is consid-
ered below.

Any Boolean function can be represented in a truth table. The number of rows in the
table is 2", where n is the number of binary variables in the function. The 1’s and 0’s
combinations for each row is easily obtained from the binary numbers by counting
from 0 to 2 — 1. For each row of the table, there is a value for the function equal to
either 1 or 0. The question now arises, is it possible to find two algebraic expressions
that specify the same function? The answer to this question is yes. As a matter of fact,
the manipulation of Boolean algebra is applied mostly to the problem of finding simpler
expressions for the same function. Consider, for example, the function:

Fyo=xv' +x'z

From Table 2-2, we find that F; is the same as F3, since both have identical I's and 0s
for each combination of values of the three binary variables. In general, two functions
of n binary variables are said to be equal if they have the same value for all possible 2"
combinations of the n variables.

A Boolean tunction may be transtormed from an algebraic expression into a logic di-
agram composed of AND, OR, and NOT gates. The implementation of the four func-
tions introduced in the previous discussion is shown in Fig. 2-4. The logic diagram in-
cludes an inverter circuit for every variable present in its complement form. (The
inverter is unnecessary if the complement of the variable is available.) There is an
AND gate for each term in the expression, and an OR gate is used to combine two or
more terms. From the diagrams, it is obvious that the implementation of F; requires
fewer pates and fewer inputs than F5. Since £ and F, are equal Boolean functions, it is
more economical to implement the Fi form than the F; form. To find simpler circuits,
one must know how to manipulate Boolean functions to obtain equal and simpler ex-
pressions. What constitutes the best form of a Boolean function depends on the particu-
lar application. In this section, consideration is given to the criterion of equipment min-
imization,

Algebraic Manipulation

A literal is a primed or unprimed variable. When a Boolean function is implemented
with logic gates, cach literal in the function designates an input to a gate, and each term
is implemented with a gate. The minimization of the number of literals and the number
of terms results in a circuit with less equipment. It is not always possible to minimize
both simultaneously; usually, further criteria must be available. At the moment, we
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FIGURE 2-4
Implementation of Boolean functions with gates

shall narrow the minimization criterion to literal minimization. We shall discuss other
criteria in Chapter 5. The number of literals in a Boolean function can be minimized by
algebraic manipulations. Unfortunately, there are no specific rules to follow that will
guarantee the final answer. The only method available is a cut-and-try procedure em-
ploying the postulates, the basic theorems, and any other manipulation method that be-
comes familiar with use. The following examples illustrate this procedure.

Example
2-1

Simplify the following Boolean functions to a minimum number of literals.

Lx+x'y=(x+x)Yx+y)=1-x+y)=x+y
2, x(x" +y)=xx"+txy=0+xy =2xy
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’

Jox'yz+xyzHxy =xz(y +y) oy =x'z oy
4, xy +x'z tyz=xy + x'z+ yz{x + x’)
=xy + x'z+ xyz + x'yz
=xy(1 +z2) + x'z(1 + y)
=xy + x'z

5 (x + yv)(x' + 2)(y +2) = (x + y)x' + z) by duality from function 4. [ |

Functions | and 2 are the duals of each other and use dual expressions in corresponding
steps. Function 3 shows the equality of the functions F; and Fi discussed previously.
The fourth illustrates the fact that an increase in the number of literals sometimes leads
to a final simpler expression. Function 5 is not minimized directly but can be derived
from the dual of the steps used to derive function 4.

Complement of a Function

The complement of a function F is F’ and is obtained from an interchange of 0’s for
I’s and 1’s for 0’s in the value of F. The complement of a function may be derived al-
gebraically through DeMorgan’s theorem. This pair of theorems is listed in Table 2-1
for two variables. DeMorgan’s theorems can be extended to three or more variables.
The three-variable form of the first DeMorgan’s theorem is derived below. The postu-
Jates and theorems are those listed in Table 2-1.

(A+B+C)=(A+ XY letB +C =X
=A'X' by theorem 5(a) (DeMorgan)
=A"-(B+C) substitute B + C = X
=A-(B'C") by theorem 5(a) (DeMorgan)
=A'B'C’ by theorem 4(b) (associative)

DeMorgan’s theorems for any number of variables resemble in form the two variable
case and can be derived by successive substitutions similar to the method used in the
above derivation. These theorems can be generalized as follows:

(A+B+C+D+ -+ F) =ABCD - F'
(ABCD-'-F)’XA'+B'+C'+[)’+....+,F'

The generalized form of DeMorgan’s theorem states that the complement of a function
is obtained by interchanging AND and OR operators and complementing each literal.

Exampie
2-2

Find the complement of the functions Fi = x'yz’ + x'y'zand F; = x(y'z’ + yz). By
applying DeMorgan’s theorem as many times as necessary, the complements are ob-
tained as follows:
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F; — (xiyzf + xrylz)r — (xryzl)r(xrylz)r = (x + yf + Z)(x + y + Z')
Fo=l(z +y)l =x" + 'z +y2) = x" + (y'2') - (y2)'
=x"+ @+ )y +2z) |

A simpler procedure for deriving the complement of a function is to take the dual of
the function and complement each literal. This method follows from the generalized
DeMorgan’s theorem. Remember that the dual of a function is obtained from the inter-
change of AND and OR operators and 1’s and (’s.

Example Find the complement of the functions F, and F; of Example 2-2 by taking their duals
2-3 and complementing each literal.

1. Fi=x"yz" + x'y'z
The dual of Fyis (x" + y + z')(x’ + y' + 2).
Complement each literal: (x + y' + 2)(x + y + z') = F!.

2. B=x(y'z' + y2).
The dual of Fris x + (y' + z')(y + 2).
Complement each literal: x* + (y + 2)(y’ + z') = F}. [

2-5 CANONICAL AND STANDARD FORMS

Minterms and Maxterms

A binary variable may appear either in its normal form (x) or in its complement form
(x'). Now consider two binary variabes x and y combined with an AND operation,
Since each variable may appear in either form, there are four possible combinations:
x'y’, x'y, xy', and xy. Each of these four AND terms represents one of the distinct
areas in the Venn diagram of Fig. 2-1 and is called a minterm, or a standard product.
In a similar manner, n variables can be combined to form 2” minterms. The 2" different
minterms may be determined by a method similar to the one shown in Table 2-3 for
three variables. The binary numbers from 0 to 2* — I are listed under the n variables.
Each minterm is obtained from an AND term of the # variables, with each variable be-
ing primed if the corresponding bit of the binary number is a 0 and unprimed if a 1. A
symbol for each minterm is also shown in the table and is of the form m; , where j de-
notes the decimal equivalent of the binary number of the minterm designated,

In a similar fashion, n variables forming an OR term, with each variable being
primed or unprimed, provide 2" possible combinations, called maxterms, or standard
sums. The eight maxterms for three variables, together with their symbolic designation,
are listed in Table 2-3. Any 2" maxterms for » variables may be determined similarly.
Each maxterm is obtained from an OR term of the n variables, with each variable being
unprimed if the corresponding bit is a O and primed if a 1. Note that each maxterm is
the complement of its corresponding minterm, and vice versa.
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TABLE 2-3
Minterms and Maxterms for Three Binary Variables

Minterms Maxterms
X ¥ z Term Designation Term Designation
0 0 0 x'y'z' My x+y+r My
0 0 1 x'y'z n, x+y+z M,
0 1 0 x'yz' m; x+yv +z M,
0 I 1 x'yz m; x+y +z M;
1 0 0 xy'z’ s x'+y+z M.
1 0 1 xy'z Mms x'ty+tz Ms
1 1 0 xyz' my, x' vy 4z M
1 1 1 xyz my x'+y M,

A Boolean function may be expressed algebraically from a given truth table by
forming a minterm for each combination of the variables that produces a 1 in the func-
tion, and then taking the OR of all those terms. For example, the function f in Table
2-4 is determined by expressing the combinations 001, 100, and 111 as x 'y'z, xy'z’,
and xyz, respectively. Since each one of these minterms results in f; = 1, we should

have

fi=x'yz+ xy'z’ +xyz=mtmstom

Similarly, it may be easily verified that

fr=x'yz+ xy'z +xyz’ +xyz =mytms + me + m

These examples demonstrate an important property of Boolean algebra: Any Boolean
function can be expressed as a sum of minterms (by “sum” is meant the ORing of

terms).

TABLE 2-4

Functions of Three Variables

X ¥ z Function £, Function fz
0 0 0 0 0
0 0 1 | 0
0 1 0 0 0
0] 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
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Now consider the complement of a Boolean function. It may be read from the truth
table by forming a minterm for each combination that produces a ¢ in the function and
then ORing those terms. The complement of f; is read as

fA=x"y'z2' +x'yz' + x'yz+ xy'z + xyz’
If we take the complement of f1, we obtain the function fi:
fi=x+y+ax+y +t2x+y +20x" +y+z0x" +y +2)
=My -M; - M;-Ms- M
Similarly, it is possible to read the expression for f> from the table:
L=+ y+2)a+y+z0x+y +2)x" +y+2)
= MM M:M,

These examples demonstrate a second important property of Boolean algebra: Any
Boolean function can be expressed as a product of maxterms (by “product” is meant the
ANDing of terms). The procedure for obtaining the product of maxterms directly from
the truth table is as follows. Form a maxterm for each combination of the variables that
produces a 0 in the function, and then form the AND of all those maxterms. Boolean
functions expressed as a sum of minterms or product of maxterms are said to be in
canonical form.

Sum of Minterms

It was previously stated that for # binary variables, one can obtain 2" distinct minterms,
and that any Boolean function can be expressed as a sum of minterms. The minterms
whose sum defines the Boolean function are those that give the 1’s of the function in a
truth table. Since the function can be either 1 or O for each minterm, and since there
are 2" minterms, one can calculate the possible functions that can be formed with »n
variables to be 2¥. It is sometimes convenient to express the Boolean function in its
sum of minterms form. If not in this form, it can be made so by first expanding the ex-
pression into a sum of AND terms. Each term is then inspected to see if it contains all
the variables. If it misses one or more variables, it is ANDed with an expression such
as x + x', where x is one of the missing variables. The following examples clarifies
this procedure.

Exampie
2-4

Express the Boolean function F = A + B'C in a sum of minterms. The function has
three variables, A, B, and C. The first term A is missing two variables; therefore:

A=A(B + B') = AB + AB’

This is still missing one variable:
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A=AB(C + C') + AB(C + (')
= ABC + ABC' + AB'C + AB'C’

The second term B’C is missing one variable:

B'C=BCA+AY=AB'C+ A'B'C
Combining all terms, we have

F=A+B'C
= ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C
But AB'C appears twice, and according to theorem 1 {x + x = x), itis possible to re-
move one of them. Rearranging the minterms in ascending order, we finally obtain
F=AB'C +AB'C' + AB'C + ABC’ + ABC
=m +mt mt+ mgt+ o |

It is sometimes convenient to express the Boolean function, when in its sum of
minterms, in the following short notation:

F(A,B,C) =2(1,4.5.6,7)

The summation symbol = stands for the ORing of terms; the numbers following 1t are
the minterms of the function. The letters in parentheses following F form a list of the
variables in the order taken when the minterm is converted to an AND term.

An alternate procedure for deriving the minterms of a Boolean function is to obtain
the truth table of the function directly from the algebraic expression and then read the
minterms from the truth table. Consider the Boolean function given in Example 2-4:

F=A+BC

The truth table shown in Table 2-5 can be derived directly from the algebraic expres-
sion by listing the eight binary combinations under variables A, B, and C and inserting

TABLE 2-5
Truth Table for F = A + B'C

A g C F

0o

—_ e — S O S
—_—e— O = = O D
l—m o -0 - o — o
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I’s under ¥ for those combinations where A = 1, and BC = 01. From the truth table,
we can then read the five minterms of the function to be 1,4,5,6,and 7.

Product of Maxterms

Each of the 2% functions of » binary variables can be also expressed as a product of
maxterms. To express the Boolean function as a product of maxterms, it must first be
brought into a form of OR terms. This may be done by using the distributive law,
* + yz = (x + yNx + z). Then any missing variable x in each OR term is ORed with
xx'. This procedure is clarified by the following example.

Example
2-5

Express the Boolean function F = xy + x'zina product of maxterm form. First, con-
vert the function into OR terms using the distributive law:

F=xy+x'z=(xy+x)xy + z)
={x+xNWy+x)x+ 2y +2)
=& +yx+ )y +2)

The function has three variables: x, y, and z. Each OR term is missing one variable;
therefore:

ry=ary+ra' =@yt +y +z)
x+z=x+z+yy'=(x+y+z)(x+y’+z)
ytz=ytz+ax' =x+y+zx’ +y+2)

Combining all the terms and removing those that appear more than once, we finally ob-
tain:

F=b+y+2x+y +2)" +y+ 2" +y+z")
= MoM,M,M; [ |
A convenient way to express this function is as follows:
F(x,y, z) =110, 2, 4, 5)

The product symbol, IT, denotes the ANDing of maxterms; the numbers are the max-
terms of the function.

Conversion between Canonical Forms

The complement of a function expressed as the sum of minterms equals the sum of
minterms missing from the original function. This is because the original function is
expressed by those minterms that make the function equal to 1, whereas its comple-
ment is a 1 for those minterms that the function is a 0. As an example, consider the
function '
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F(A,B,C)=2(1,4,5,6,7)
This has a complement that can be expressed as
F'{A,B,C)=2(0,2,3)=m + m2 + m3

Now, if we take the complement of F’ by DeMorgan’s theorem, we obtain F in a dif-
ferent form:

F = (m() + n + m3)' = m{)mémé = MuM2M3 = H(O, 2, 3)

The last conversion follows from the definition of minterms and maxterms as shown in
Table 2-3. From the table, it is clear that the following relation holds true:

m; = M;

That is, the maxterm with subscript j is a complement of the minterm with the same
subscript j. and vice versa.

The last example demonstrates the conversion between a function expressed in sum
of minterms and its equivalent in product of maxterms. A similar argument will show
that the conversion between the product of maxterms and the sum of minterms is simi-
lar. We now state a general conversion procedure. To convert from one canonical form
to another, interchange the symbols = and I and list those numbers missing from the
original form. In order to find the missing terms, one must realize that the total number
of minterms or maxterms is 2", where n is the number of binary variables in the func-
tion.

A Boolean function can be converted from an algebraic expression to a product of
maxterms by using a truth table and the canonical conversion procedure. Consider, for
example, the Boolean expression

F=xy+x'z

First, we derive the truth table of the function, as shown in Table 2-6. The 1’s under F
in the table are determined from the combination of the variable where xy = 11 and

TABLE 2-6

Truth Fable for F = xy + x'z

X ¥ z - F
0 0 0 0
0 0 1 1
0 i 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1
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xz = Q1. The minterms of the function are read from the truth table to be 1, 3, 6, and
7. The function expressed in sum of minterms is

Flx,y,2) =2(1,3,6,7)

Since there are a total of eight minterms or maxterms in a fimction of three variable,
we determine the missing terms to be 0, 2, 4, and 5. The function expressed in product
of maxterm is

F(x,y,2) = 11(0, 2, 4, 5)

This is the same answer obtained in Example 2-5,

Standard Forms

The two canonical forms of Boolean algebra are basic forms that one obtains from
reading a function from the truth table. These forms are very seldom the ones with the
least number of literals, because each minterm or maxterm must contain, by definition,
all the variables either complemented or uncomplemented.

Another way to express Boolean functions is in standard form. In this configuration,
the terms that form the function may contain one, two, or any number of literals.
There are two types of standard forms: the sum of products and product of sums.

The sum of products is a Boolean expression containing AND terms, called product
terms, of one or more literals each. The sum denotes the ORing of these terms. An ex-
ample of a function expressed in sum of products is

=y +xy+ x'yz’

The expression has three product terms of one, two, and three literals each, respec-
tively. Their sum is in effect an OR operation.

A product of sums is a Boolean expression containing OR terms, called sum terms.
Each term may have any number of literals. The product denotes the ANDing of these
terms. An example of a function expressed in product of sums is

BE=x(y +2x' +y+z' +w

This expression has three sum terms of one, two, and four literals each, respectively.
The product is an AND operation. The use of the words product and sum stems from
the smiilarity of the AND operation to the arithmetic product (multiplication) and the
similarity of the OR operation to the arithmetic sum (addition).

A Boolean function may be expressed in a nonstandard form. For example, the func-
tion

F, = (AB + CD)YA'B' + C'D")

is neither in sum of products nor in product of sums. It can be changed to a standard
form by using the distributive law to remove the parentheses:

F,=A'B'CD + ABC'D’
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2-6 OTHER LOGIC OPERATIONS

When the binary operators AND and OR are placed between two variables, x and v,
they form two Boolean functions, x - y and x + y, respectively. It was stated previously
that there are 2% functions for n binary variables. For two variables, n = 2, and the
number of possible Boolean functions is 16. Therefore. the AND and OR functions are
only two of a total of 16 possible functions formed with two binary variables. It would
be instructive to find the other 14 functions and investigate their propertics.

The truth tables for the 16 functions formed with two binary variables, x and y, are
listed in Table 2-7. In this table, each of the 16 columns, F, to Fys, represents a truth
table of one possible function for the {wo given variables, x and y. Note that the func-
tions are determined from the 16 binary combinations that can be assigned to F. Some
of the functions are shown with an operator symbol. For example, F; represents the
truth table for AND and F> represents the truth table for OR. The operator symbols for
these functions are + and +. respectively.

TABLE 2-7
Truth Tables for the 16 Functions of Two Binary Variables

x ¥y R R R R Rk f B Fa Ry Fio A Fp Fia_ Fe Fs
o0 fo 0 0 0o 0 0 0 0 1 & 1 1 1 1 1 1
0 1 o 0 o0 o { t 1 1 0 0o 0o 0o 1 1 1 1
(o 'o o 1 1 o 0o 1 1 ¢ 0 1 1 o 0o 1 1
1 o 1t 0o 1 0 I 0O % © 1 0 1 0o i 0 1

Operator
symbol . ! e + | © 7 C ’ o7

The 16 functions listed in truth table form can be expressed algebraically by means
of Boolean expressions. This is shown in the first column of Table 2-8. The Boolean
expressions listed are simplified to their minimum number of literals.

Although each function can be expressed in terms of the Boolean operators AND,
OR, and NOT, there is no reason one canpot assign special operator symbols for ex-
pressing the other functions. Such operator symbols are listed in the second column of
Table 2-8. However, all the new symbols shown, except for the exclusive-OR sym-
bol, €, are not in common use by digital designers.

Each of the functions in Table 2-8 is listed with an accompanying name and a com-
ment that explains the function in some way. The 16 functions listed can be subdivided
into three categories:

1. Two functions that produce a constant O or I.
2. Four functions with unary operations: complement and transter.

3. ‘Ten functions with binary operators that define eight different operations: AND,
OR. NAND. NOR, exclusive-OR, equivalence, inhibition, and implication.
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TABLE 2-8

Boolean Expressions for the 16 Functions of Two Varlables

Boolean functions Operator Name Comments
symbol

Rh=0 Null Binary constant 0

F=uxy Xy AND xand y

Fo=xy’ x/y Inhibition x but not y

F=x Transfer x

Fo=x'y y/x Inhibition y but not x

=y Transfer y

Fo=xy +x'y @y Exclusive-OR X or y but not both

FF=x+y x+y OR xory

F=(x+y) xiy NOR Not-OR

Fs=xy + x'y’ xQy Equivalence X equals y

Fo =y’ ¥ Complement Not y

Fo=x+y’ xCy Implication If y then x

Fi,=x’ x! Complement Not x

Fa=x"+y xDy Implication If x then y

Fia = (xy) xty NAND Not-AND

Fis=1 Identity Binary constant |

Any function can be equal to a constant, but a binary function can be equal to only 1
or 0. The complement function produces the complement of each of the binary vari-
ables. A function that is equal to an input variable has been given the name transfer,
because the variable x or y is transferred through the gate that forms the function with-
out changing its value. Of the eight binary operators, two (inhibition and implication)
are used by logicians but are seldom used in computer logic. The AND and OR opera-
tors have been mentioned in conjunction with Boolean algebra. The other four func-
tions are extensively used in the design of digital systems.

The NOR function is the complement of the OR function and its name is an abbrevi-
ation of nor-OR. Similarly, NAND is the complement of AND and is an abbreviation
of not-AND. The exclusive-OR, abbreviated XOR or EOR, is similar to OR but ex-
cludes the combination of both x and y being equal to 1. The equivalence is a furction
that is 1 when the two binary variables arc equal, i.e., when both are 0 or both are 1.
The exclusive-OR and equivalence functions are the complements of each other. This
can be easily verified by inspecting Table 2-7. The truth table for the exclusive-OR is Fg
and for the equivalence is F;, and these two functions are the complements of each
other. For this reason, the equivalence function is often called exclusive-NOR, i.c.,
exclusive-OR-NOT. .

Boolean algebra, as defined in Section 2-2, has two binary operators, which we have
called AND and OR, and a unary operator, NOT (complement). From the definitions,
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we have deduced a number of properties of these operators and pow have defined other
binary operators in terms of them. There is nothing unique about this procedure. We
could have just as well started with the operator NOR (), for example, and later
defined AND, OR, and NOT in terms of it. There are, nevertheless, good reasons for
introducing Boolean algebra in the way it has been introduced. The concepts of “and,”
“or,” and “not” are familiar and are used by people to express everyday logical ideas.
Moreover, the Huntington postulates reflect the dual nature of the algebra, emphasizing
the symmetry of + and - with respect to each other.

Since Boolean functions are expressed in terms of AND, OR, and NOT operations, it is
easier to implement a Boolean function with these types of gates. The possibility of
constructing gates for the other logic oper tions is of practial interest. Factors to be
weighed when considering the construction of other types of logic gates are (1) the fea-
sibility and economy of producing the gate with physical components, (2) the possibil-
ity of extending the gate to more than two inputs, (3) the basic properties of the binary
operator such as commutativity and associativity, and (4) the ability of the gate to im-
plement Boolean functions alone or in conjunction with other gates.

Of the 16 functions defined in Table 2-8, two are equal to a constant and four others
are repeated twice. There are only ten functions left to be considered as candidates for
logic gates. Two, inhibition and implication, are not commutative or associative and
thus are impractical to use as standard logic gates. The other eight: complement, trans-
fer, AND, OR, NAND, NOR, exclusive-OR, and equivalence, are used as standard
gates in digital design.

The graphic symbols and truth tables of the ecight gates are shown in Fig. 2-5. Each
gate has one or two binary input variables designated by x and y and one binary output
variable designated by F. The AND, OR, and inverter circuits were defined in Fig.
1-6. The inverter circuit inverts the logic sense of a binary variable. It produces the
NOT, or complement, function. The small circle in the output of the graphic symbol of
an inverter designates the logic complement. The triangle symbol by itself designates a
buffer circuit. A buffer produces the transfer function but does not produce any particu-
lar logic operation, since the binary value of the output is equal to the binary value of
the input. This circuit is used merely for power amplification of the signal and is equiv-
alent to two inverters connected in cascade.

The NAND function is the complement of the AND function, as indicated by a
graphic symbol that consists of an AND graphic symbol followed by a small circle. The
NOR function is the complement of the OR function and uses an OR graphic symbol
followed by a small circle. The NAND and NOR gates are extensively used as standard
logic gates and are in fact far more popular than the AND and OR gates. This is be-
cause NAND and NOR gates are easily constructed with transistor circuits and because
Boolean functions can be easily implemented with them.
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Name Graphic Algebraic Truth
symbol function table
x y| F
X — 0 0 0
AND D—— F F=x 0 1|0
g 1 0|0
1 1] 1
x y| F
_ 0 0] 0
OR ; _D—F Fox4y 0 1|1
1 0|1
1 1]1
x| F
Inverter x —Do— F Fox 01
|0
x| F
Buffer x ~D— F F=x o0
1i1
x y|F
x 0 o1
NAND v F o F=(x»)y 0 1|1
' 1 0|1
I 110
x y| F
x 0 01
NOR y:DD_F F=(x+yy 0 1[0
1 0|0
1 1}{0
x y|F
Exclusive-OR > :):D_ g F=x"+xy g ? ?
(XOR) ¥ - = x @y 1 01
1 1]0
x y|F
Exclusive-NOR  x - yr 0 01
or :D°— P EomE sy 0 1|0
equivalence  * =*0y I 0|0
1 111
FIGURE 2-5

Digital logic gates
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The exclusive-OR gate has a graphic symbol similar to that ot the OR gate, except
for the additional curved line on the input side. The equivalence, or exclusive-NOR,
gate is the complement of the exclusive-OR, as indicated by the small circle on the out-
put side of the graphic symbol.

Extension to Multiple Inputs

The gates shown in Fig. 2-5, except for the inverter and buffer, can be extended to
have more than two inputs. A gate can be extended to have multiple inputs il the binary
operation it represents is commutative and associative. The AND and OR operations,
defined in Boolean algebra, possess these two properties. For the OR function, we have

x+y=y+x commutative
and
(x+y)tz=x+(y+z=x+ty+: associative

which indicates that the gate inputs can be interchanged and that the OR function can
be extended to three or more variables.

The NAND and NOR functions are commutative and their gates can be extended to
have more than two inputs, provided the definition of the operation is slightly modified.
The difficulty is that the NAND and NOR operators are not associative, 1L.¢.,
(x { v) { z# x| {y | z),as shown in Fig. 2-6 and below:

lydz=[x+y) +zI' =+ yiz’' = xz" + yz’

iyl =lx+t+a) =xy+zh=x'y+ux'z

(elyvilz tx—y¢

X
Ly o)=Y+ D)
N D

FIGURE 2-6
Demonstrating the nonassociativity of the NOR operator; (X IR bz uvin
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To overcome this difficulty, we define the multiple NOR (or NAND) gate as a comple-
mented OR {or AND) gate. Thus, by definition, we have

xlylz=@x+y+2)
xTyTz=(xyz)

The graphic symbols for the 3-input gates are shown in Fig. 2-7. In writing cascaded
NOR and NAND operations, one must use the correct parentheses to signify the proper
sequence of the gates. To demonstrate this, consider the circuit of Fig. 2-7(c). The
Boolean function for the circuit must be written as

F = [(ABC)'(DE)') = ABC + DE

The second expression is obtained from DeMorgan’s theorem. It also shows that an ex-
pression in sum of products can be implemented with NAND gates. Further discussion
of NAND and NOR gates can be found in Sections 3-6, 4-7, and 4-8.

The exclusive-OR and equivalence gates are both commutative and associative and
can be extended to more than two inputs. However, multiple-input exclusive-OR gates
are uncommon from the hardware standpoint. In fact, even a 2-input function is usually
constructed with other types of gates. Moreoever, the definition of the function must be
modified when extended to more than two variables. The exclusive-OR is an odd func-
tion, i.e., it is equal to 1 if the input variables have an odd number of 1’s. The con-
struction of a 3-input exclusive-OR function is shown in Fig. 2-8. It is normally imple-
mented by cascading 2-input gates, as shown in (a). Graphically, it can be represented
with a single 3-input gate, as shown in (b). The truth table in (c) clearly indicates that
the output F is equal to 1 if only one input is equal to 1 or if all three inputs are equal to
I, i.e., when the total number of 1’s in the input variables is odd. Further discussion of

exclusive-OR can be found in Section 4-9.
::1} Geyzy’

(a) Three-input NOR gate (b) Three-input NAND gate

D—F= [(ABCY - (DEY]'= ABC + DE
nD—-
E pe———

{c) Cascaded NAND gates

x+y+z)

LRI

L

111N

FIGURE 2-7
Muttiple-input and cascaded NOR and NAND gates
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¥ X ¥ - F
F=xmya®z 0 o 0 0
- f 0 0 1 1
4 1 0 1
(a) Using 2-input gates 0 1 1 0
1 0 [\ |
1 0 1 0
X
z | 1 1 1 1
(b) 3-input gate (¢) Truth table

FIGURE 2-8
3-input exclusive-OR gate

2-8 INTEGRATED CIRCUITS

Digital circuits are constructed with integrated circuits. An integrated circuit (abbrevi-
ated IC) is a small silicon semiconductor crystal, called a chip, containing the elec-
tronic components for the digital gates. The various gates are interconnected inside the
chip to form the required circuit. The chip is mounted in a ceramic or plastic container,
and connections are welded to external pins to form the integrated circuit. The number
of pins may range from 14 in a small IC package to 64 or more in a larger package.
The size of the IC package is very small. For example, four AND gates are enclosed
inside a 14-pin IC package with dimensions of 20 X 8 X 3 millimeters. An entire mi-
croprocessor is enclosed within a 64-pin IC package with dimensions of 50 X 15 X 4
millimeters. Each IC has a numeric designation printed on the surface of the package
for identification. Vendors publish data books that contain descriptions and all other in-
formation about the 1Cs that they manufacture,

Levels of integration

Digital ICs are often categorized according to their circuit complexity as measured by
the number of logic gates in a single package. The differentiation between those chips
that have a few internal gates and those having hundreds or thousands of gates is made
by a customary reference to a package as being either a small-, medium-, large-, or
very large-scale integration device.

Small-scale integration (SSI) devices contain several independent gates in a single
package. The inputs and outputs of the gates are connected directly to the pins in the
package. The number of gates is usually fewer than 10 and is limited by the number of
pins available in the IC.

Medium-sale integration (MSI) devices have a complexity of approximately 10 to
100 gates in a single package. They usually perform specific elementary digital opera-
tions such as decoders, adders, or multiplexers. MSI digital components are introduced
in Chapters 5 and 7.
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Large-scale integration (LSI) devices contain between 100 and a few thousand gates
in a single package. They include digital systems such as processors, memory chips,
and programmable logic devices. Some LSI components are presented in Chapters 5
and 7.

Very large-scale integration (VLSI) devices contain thousands of gates within a sin-
gle package. Examples are large memory arrays and complex microcomputer chips.
Because of their small size and low cost, VLSI devices have revelutionized the com-
puter system design technology, giving the designer the capabilitics to create structures
that previously were uneconomical.

Digital Logic Families

Digital integrated circuits are classified not only by their complexity or logical opera-
tion, but also by the specific circuit technology to which they belong. The circuit tech-
nology is referred to as a digital logic family. Each logic family has its own basic elec-
tronic circuit upon which more complex digital circuits and components are developed.
The basic circuit in each technology is a NAND, NOR, or an inverter gate. The elec-
tronic components used in the construction of the basic circuit are usually used as the
name of the technology. Many different logic families of digital integrated circuits have
been introduced commercially. The following are the most popular:

TTL  transistor-transistor logic

ECL  emiter-coupled logic

MOS metal-oxide semiconductor

CMOS complementary metal-oxide semiconductor

TTL is a widespread logic family that has been in operation for some time and is con-
sidered as standard. ECL. has an advantage in systems requiring high-speed operation.
MOS is suitable for circuits that need high component density, and CMOS is preferable
in systems requiring low power consumption.

The analysis of the basic electronic digital gate circuit in each logic family is pre-
sented in Chapter 10. The reader familiar with basic electronics can refer to Chapter 10
at this time to become acquainted with these electronic circuits. Here we restrict the
discussion to the general properties of the various IC gates available commercially.

The transistor-transistor logic family evolved from a previous technology that used
diodes and transistors for the basic NAND gate. This technology was called DTL for
diode-transistor logic. Later the diodes were replaced by transistors to improve the cir-
cuit operation and the name of the logic family was changed to TTL.

Emitter-coupled logic {ECL.) circuits provide the highest speed among the integrated
digital logic families. ECL is used in systems such as supercomputers and signal pro-
cessors, where high speed is essential. The transistors in ECL gates operate in a nonsat-
urated state, a condition that allows the achievement of propagation delays of 1 to 2
nanoseconds.



64 Chapter 2 Boolean Algebra and Logic Gates

The metal-oxide semiconductor (MOS) is a unipolar transistor that depends upon the
flow of only one type of carrier, which may be electrons {n-channel) or holes
(p-channel). This is in contrast to the bipolar transistor used in TTL and ECL gates,
where both carriers exist during normal operation. A p-channel MOS is referred to as
PMOS and an n-channel as NMOS. NMOS is the one that is commonly used in circuits
with only one type of MOS transistor. Complementary MOS (CMOS) technology uses
one PMOS and one NMOS transistor connected in a complementary fashion in all cir-
cuits. The most important advantages of MOS over bipolar transistors arc the high
packing density of circuits, a simpler procesing technique during fabrication, and a
more economical operation because of the low power consumption.

The characteristics of digital logic families are usually compared by analyzing the
circuit of the basic gate in each family. The most important parameters that are evalu-
ated and compared are discussed in Section 10-2. They are listed here for reference.

Fan-out specifies the number of standard loads that the output of a typical gate can
drive without impairing its normal operation. A standard load is usually defined as the
amaount of current needed by an input of another similar gate of the same family.

Power dissipation is the power consumed by the gate that must be available from the
power supply.

Propagation delay is the average transition delay time for the signal to propagate
from input to output. The operating speed is inversely proportional to the propagation
delay.

Noise margin is the minimum external noise voltage that causes an undesirable
change in the circuit output.

Integrated-Circuit Gates

Some typical SSI circuits are shown in Fig. 2-9. Each IC is enclosed within a 14- or
16-pin package. A notch placed on the left side of the package is used to reference the
pin numbers. The pins are numbered along the two sides starting from the notch and
continuing counterclockwise. The inputs and outputs of the gates are connected to the
package pins, as indicated in each diagram.

TTL IC’s are usually distinguished by their numerical designation as the 5400 and
7400 series. The former has a wide operating temperature range, suitable for military
use, and the latter has a narrower temperature range, suitable for commercial use. The
numeric designation of 7400 series means that IC packages arc numbered as 7400,
7401, 7402, etc. Fig. 2-9(a) shows two TTL SSI circuits. The 7404 provides six {hex)
inverters in a package. The 7400 provides four (quadruple} 2-input NAND gates. The
terminals marked Ve and GRD (ground) are the power-supply pins that require a
voltage of 5 volts for proper operation. The two logic levels for TTL are 0 and 3.5
volts.

The TTL logic family actually consists of several subfamilies or series. Table 2-9
lists the name of each series and the prefix designation that identifies the IC as being
part of that series. As mentioned before, ICs that are part of the standard TTL have an
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(a) TTL gates.
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4002—Dual 4-input NOR gates. 4050—Hex buffers.

(c) CMOS gates.
FIGURE 2-9

Some typical integrated-circuit gates
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TABLE 2-9

Various Series of the TTL Logic Family

TTL Series Prefix Example
Standard TTL T4 7486
High-speed TTL 74H T4HE6
Low-power TTL 74L 741.86
Schottky TTL 748 74586
Low-power Schottky TTL 74LS8 741586
Advanced Schottky TTL T4AS T4AS886
Advanced Low-power Schottky TTL T4ALS T4ALS86

identification number that starts with 74. Likewise, ICs that are part of the high-speed
TTL series have an identification number that starts with 74H, ICs in the Schottky TTL
series start with 74S, and similarly for the other series. The different characteristics of
the various TTL series are listed in Table 10-2 in Chapter 10. The differences between
the various TTL series are in their electrical characteristics, such as power dissipation,
propagation delay, and switching speed. They do not differ in the pin assignment or
logic operation performed by the internal circuits. For example, all the ICs listed in
Table 2-9 with an 86 number, no matter what the prefix, contain four exclusive-OR
gates with the same pin assignment in each package.

The most common ECL ICs are designated as the 10000 series. Figure 2-9(b} shows
two ECL circuits. The 10102 provides four 2-input NOR gates. Note that an ECL gate
may have two outputs, one for the NOR function and another for the OR function. The
10107 IC provides three exclusive-OR gates. Here again there are two outputs from
each gate; the other output provides the exclusive-NOR function. ECL gates have three
terminals for power supply. Veer and Vecy are usually connected to ground, and Vee 10 a
—5.2-volt supply. The two logic levels for ECL are —0.8 and —1.8 volts.

CMOS circuits of the 4000 series are shown in Fig. 2-9(c). Only two 4-input NOR
gates can be accommeodated in the 4002 because of pin limitation. The 4050 IC pro-
vides six buffer gates. Both ICs have unused terminals marked NC {no connection).
The terminal marked Vop requires a power-supply voltage from 3 to 15 volts, whereas
Vis is usually connected to ground. The two logic levels are 0 and Vp,» volts.

The original 4000 series of CMOS circuits was designed independently from the
TTL series. Since TTL became a standard in the industry, vendors started to supply
other CMOS circuits that are pin compatible with similar TTL ICs. For example, the
74C04 is a CMOS circuit that is pin compatible with TTL 7404. This means that it has
six inverters connected to the pins of the package, as shown in Fig. 2-9(a). The CMOS
series available commercially are listed in Table 2-10. The 74HC series operates at
higher speeds than the 74C series. The 74HCT series is both electrically and pin com-
patible with TTL devices. This means that 74HCT JCs can be connected directly to
TTL ICs without the need of interfacing circuits.
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TABLE 2-10

Various Serles of the CMOS Logic Family

CMOS series Prefix Example
Original CMOS 40 4009

Pin compatible with TTL 74C 74C04
High-speed and pin compatible with TTL 74HC T4HCO4
High-speed and electrically compatible with TTL 74HCT 74HCTO04

Positive and Negative Logic

The binary signal at the inputs and outputs of any gate has one of two values, except
during transition. One signal value represents logic-1 and the other logic-0. Since two
signal values are assighed to two logic values, there exist two different assignments of
signal level to logic value, as shown in Fig. 2-10. The higher signal level is designated
by H and the lower signal level by L. Choosing the high-level H to represent logic-1
defines a positive logic system. Choosing the low-level L to represent logic-1 defines a
negative logic system. The terms positive and negative are somewhat misleading since
both signals may be positive or both may be negative. It is not the actual signal values
that determine the type of logic, but rather the assignment of logic values to the relative
amplitudes of the two signal levels.

Integrated-circuit data sheets define digital gates not in terms of logic values, but
rather in terms of signal values such as H and L. It is up to the user to decide on a pos-
itive or negative logic polarity. Consider, for example, the TTL gate shown in Fig.
2-11(b). The truth table for this gate as given in a data book is listed in Fig. 2-11(a).
This specifies the physical behavior of the gate when  is 3.5 volts and L is O volt. The
truth table of Fig. 2-11(c) assumes positive logic assignment with # = 1 and L = 0.
This truth table is the same as the one for the AND operation. The graphic symbol for
a positive logic AND gate is shown in Fig. 2-11{(d).

Now consider the negative logic assignment for the same physical gate with L = 1
and H = 0. The result is the truth table of Fig. 2-11(e). This table represents the OR
operation even though the entries are reversed. The graphic symbol for the negative
logic OR gate is shown in Fig. 2-11(f). The small triangles in the inputs and output

Logic Signal Logic Signal
value value value value
1 —— 0 — H
0 L 1 L
(a) Positive logic {b) Negative logic

FIGURE 2-10

Signal assignment and logic polarity
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X z
oL L X TTL .
L H L gate -
H L L V=
H H H
(a) Truth table (h Gate block diagram
with H and L
X by z
0 0 0 X — ) R
0 1 0 ¥ ——
I 0 0
1 ] 1
(c)y Truth table for (dy Positive logic AND gate

positive logic

x ¥ z
1 I 1 X
1 0 1 3 -
G 1 1
0o 0 0
(e} Truth table for (f) Negative logic OR gate
negative logic
FIGURE 2-11

Demonstration of positive and negative iogic

designate a polarity indicator. The presence of this polarity indicator along a terminal
signifies that negative logic is assumed for the signal. Thus, the same physical gate can
operate either as a positive logic AND gate or as a negative logic OR gate.

The conversion from positive logic to negative logic, and vice versa, is essentially
an operation that changes 1’s to 0’s and 0’s to 1’s in both the inputs and the output of a
gate. Since this operation produces the dual of a function, the change of all terminals
from one polarity to the other results in taking the dual of the function. The result of
this conversion is that all AND operations are converted to OR operations (or graphic
symbols) and vice versa. In addition, one must not forget to include the polarity-
indicator triangle in the graphic symbols when negative logic is assumed. In this book,
we will not use negative logic gates and assume that all gates operate with a positive
logic assignment.



Problems 69

REFERENCES
1. BooLk, G., An Investigation of the Laws of Thought. New York: Dover, 1954.
2. SHANNON, C. E., “A Symbolic Analysis of Relay and Switching Circuits.” Trans. AIEE, 57
{1938), 713723,
3. HunringTon, E. V., “Sets of Independent Postulates for the Algebra of Logic.” Trans. Am.
Math. Soc., 5 {1904). 288-309,
4. BIRKHOFF, G., and T. C. Bartee, Modern A pplied Algebra. New York: McGraw-Hill, 1970.
5. Houn, F. E., Applied Boolean Algebra, 2nd Ed. New York: Macmillan, 1966.
6. Whitesirt, J. E., Boolean Algebra and Its Application. Reading, MA: Addison-Wesley,
1961.
7. FrIEDMAN, A. D., and P, R. MEnoN, Theory and Design of Switching Circuits, Rockville,
MD: Computer Science Press, 1975.
8. The TTL Data Book. Dallas: Texas Instruments, 1988.
9. Toccl, R. J., Digital Systems Principles and A pplications, 4th Ed. Englewood Cliffs, NJ;
Prentice-Hall, 1988,
PROBLEMS
2-1 Demonstrate by means of truth tables the validity of the following identities:
{a} DeMorgan’s theorem for three variables: (xyz2) =x"+ y' + 2.
(b) The second distributive law: x + vz ={x + y}x + z).
(c) The consensus theorem: xy + x'z + yz = xy + x’z. (This is done algebraically in
Example 2-1, part 4.)
2-2  Simplify the following Boolean expressions to 2 minimum number of literals.
(@ x'y" +xy+x'y
b)) (@ + y)x +y7)
(€) x'y +xy' + xy + x'y’
() x" + xy + xz' + xy'z’
(&) xy' + y'z' + x'z’ [use the consensus theorem, Problem 2-1(c)].
2-3  Simplify the following Boolean expressions to a minimum number of literals:
(a) ABC + A'B + ABC’
(b) x'yz + xz
© (x+ ' +y)
(d) xy + x(wz + wz")
(&) (BC' + A'DYAB’ + CD )
2-4  Reduce the following Boolean expressions to the indicated number of literals;
(a) A'C’" + ABC + AC' to three literals
) (x'y' +2) +z4 xy+ wz to three literals
{c) A’'B(D" + C'D) + B(A + A'CD) to one literal
(d) (A" + CHA'+ C'A+ B + C'D) to four literals
2-5 Find the complement of F = x + yz; then show that - F' = 0and F + F' = 1.
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2-6

2-7

2-9

2-10

2-11

Find the complement of the following expressions:
() xy’ +x'y

(by (AB' + C}D' + E

(c) AB(C'D + CD'} + A'B'C + DNC + D)
(d) (x +y' + 2" +z2)x +y)

Using DeMorgan’s theorem, convert the following Boolean expressions to equivalent ex-
pressions that have only OR and complement operations. Show that the functions can be
implemented with logic diagrams that have only OR gates and inverters.

{a) F=x'y' +x'z+y'z

(o) F=(+z2)x+y +2

Using DeMorgan’s theorem, convert the two Boolean expressions listed in Problem 2-7 to
equivalent expressions that have only AND and complement operations. Show that the
functions can be implemented with only AND gates and inverters.

Obtain the truth table of the following functions and express each function in sum of
minterms and product of maxterms:

(a) ey + 2}y + x2)

(b) (A" +B)B' + O

(€) y'z + wxy' + wxz’ + w'x'z

For the Boolean function F given in the truth table, find the following:

(a) List the minterms of the function.

(b} List the minterms of F'.

{c) Express F in sum of minterms in algebraic form.

(d) Simplify the function to an expression with a minimum number of literals.

X ¥ z F
0 0 0 0
0 0 i 0
0 1 0 1
0 ] 1 1
1 0 0 0
I 0 1 0
1 1 0 |
1 1 1 1

Given the following Boolean function:
F=xy'z+ x'y'z+way+ wx'y +wxy

{a) Obtain the truth table of the function.

(b) Draw the logic diagram using the original Boolean expression.

{c) Simplify the function to a minimum number of literals using Boolean algebra.

(d) Obtain the truth table of the function from the simplified expression and show that it
is the same as the one in part (a).
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(e) Draw the logic diagram from the simplified expression and compare the total number
of gates with the diagram of part (b).

2-12 Express the following functions in sum of minterms and product of maxterms:
(a) F(A,B,C,D)=B'D+ A'D + BD
(b) Flx,y,z} = (xy + 2)(xz + y)

2-13 Express the complement of the following functions in sum of minterms:
(a) F(A, B, C, D) = Z{0, 2, 6, 11, 13, 14)
(b) F(x,y, 2 =11(0,3,6,7)

2-14 Convert the following to the other canonical form:
(@) Flx,y,2) =2(1,3,7)
(b) F(A,B,C,D) =110, 1,2,3,4,6, 12)

2-15 The sum of all the minterms of a Boolean function of » variables is equal to 1.
(a) Prove the above statement for n = 3.
(b) Suggest a procedure for a general proof.

2-16 Convert the following expressions into sum of products and product of sums:
(a) (AB + C)B + C'D)
b) x' + x(x + y My + z9

2-17 Draw the logic diagram corresponding to the following Boolean expressions without sim-
plifying them:
{a) BC' + AB + ACD
(b) (A+ B(C+D)YA" + B+ D)
(¢} (AB+ A'B'YCD’' + C'D)

2-18 Show that the dual of the exclusive-OR is equal to its complement.

2-19 By substituting the Boolean expression equivalent of the binary operations as defined in
Table 2-8, show the following;
{a) The inhibition operation is neither commutative nor associative.
{b) The exclusive-OR operation is commutative and associative.

2-20 Verify the truth table for the three-variable exclusive-OR function listed in Fig. 2-8(c}). Do
that by listing all eight combinations of x, y, and z; then evaluate A = x @ y; and then
evaluate F = AD:=x Dy D 2.

2-21 TTL SSI come mostly in 14-pin packages. Two pins are reserved for power and the other
12 pins are used for input and output terminals. Determine the number of gates that can be
enclosed in one package if it contains the folowing type of gates:

{a) Two-input exclusive-OR gates
(b) Three-input AND gates

{(c) Four-input NAND gates

(d) Five-input NOR gates

(e) Eight-input NAND gates

2-22 Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.

2-23 An integrated-circuit logic family has NAND gates with fan-out of 5 and buffer gates with
fan-out of 10. Show how the output signal of a single NAND gate can be applied to 50

other NAND-gate inputs without overloading the output gate. Use buffers to satisfy the
fan-out requirements.
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THE MAP METHOD

Simplification of Boolean
Functions

72

The complexity of the digital logic gates that implement a Boolean function is directly
related to the complexity of the algebraic expression from which the function is imple-
mented. Although the truth table representation of a function is unique, expressed alge-
braically, it can appear in many different forms. Boolean functions may be simplified
by algebraic means as discussed in Section 2-4. However, this procedure of minimiza-
tion is awkward because it lacks specific rules to predict each succeeding step in the ma-
nipulative process. The map method provides a simple straightforward procedure for
minimizing Boolean functions. This method may be regarded either as a pictorial form
of a truth table or as an extension of the Venn diagram. The map method, first pro-
posed by Veitch and modified by Karnaugh, is also known as the “Veitch diagram” or
the “Karnaugh map.”

The map is a diagram made up of squares. Each square represents one minterm.
Since any Boolean function can be expressed as a sum of minterms, it follows that a
Boolean function is recognized graphically in the map from the area enclosed by those
squares whose minterms are included in the function. In fact, the map presents a visual
diagram of all possible ways a function may be expressed in a standard form. By recog-
nizing various patterns, the user can derive alternative algebraic expressions for the
same function, from which he can select the simplest one. We shall assume that the
simplest algebraic expression is any one in a sum of products or product of sums that
has a minimum number of literals. (This expression is not necessarily unique.)
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3-2 TWO- AND THREE-VARIABLE MAPS

A two-variable map is shown in Fig. 3-1(a). There are four minterms for two variables;
hence, the map consists of four squares, one for each minterm. The map is redrawn in
(b) to show the relationship between the squares and the two variables. The 0’s and 1’s
marked for each row and each column designate the values of variables x and ¥, respec-
tively. Notice that x appears primed in row 0 and unprimed in row 1. Similarly, y ap-
pears primed in column ¢ and unprimed in column 1.

If we mark the squares whose minterms belong to a given function, the two-variabie
map becomes another useful way to represent any one of the 16 Boolean functions of
two variables. As an example, the function xy is shown in Fig. 3-2(a). Since xy is
equal to m, a 1 is placed inside the square that belongs to m; . Similarly, the function
x + yis represented in the map of Fig. 3-2(b) by three squares marked with 1’s. These
squares arc found from the minterms of the function:

x+y=x’y+xy'+xy=m1+mz+m3

The three squares could have also been determined from the intersection of variable x
in the second row and variable y in the second column, which encloses the area belong-
ing to x or y,

A three-variable map is shown in Fig. 3-3. There are eight minterms for three bi-
nary variables. Therefore, a map consists of eight squares. Note that the minterms are
not arranged in a binary sequence, but in a sequence similar to the Gray code listed in
Table 1-4. The characteristic of this sequence is that only one bit changes from t to 0

y ¥
x 0 1
mg | m, Of xy | xy
m., my el | x xy
(a) (b)
FIGURE 31
Two-variable map
¥y ¥y
¥y A ¥y .
x 0 | x\ 0 1
0 0 1
x { 1 1 x { ! 1 i
(a) xy (b) x+y

FIGURE 3-2
Representation of functions i the map
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Yz y
———r———,
x 00 01 11 10
Mo P | ™| ™2 Ol wyz| xyz| xyz | 2y
my | omo | omy | omy x{] D oxys | oxvz | oxve

— ———

(a) (b)
FIGURE 3-2

Three-variable map

or from O to | in the listing sequence. The map drawn in part (b) is marked with pum-
bers in each row and each column to show the relationship between the squares and the
three variables. For example, the square assigned to ms corresponds to row 1 and
column 01. When these two numbers are concatenated, they give the binary number
101, whose decimal equivalent is 5. Another way of looking at square ms = xy 'z is to
consider it to be in the row marked x and the column belonging to y'z (column 01).
Note that there are four squares where each variable is equal to 1 and four where each is
equal to 0. The variable appears unprimed in those four squares where it is equal to 1
and primed in those squares where it is equal to 0. For convenience, we write the vari-

able with its letter symbol under the four squares where it i unprimed.
To understand the usefulness of the map for simplifying Boolean functions, we must

recognize the basic property possessed by adjacent squares. Any two adjacent squares
in the map differ by only one variable, which is primed in one square and unprimed in
the other. For example, ms and m lie in two adjacent squares. Variable y is primed in
ms and unprimed in -, whereas the other two variables are the same in both squares.
From the postulates of Boolean algebra, it follows that the sum of two minterms in ad-
jacent squares can be simplified to a single AND term consisting of only two literals.
To clarify this, consider the sum of two adjacent squares such as ms and my:

ms+ m = xy'z + xyz = xz(y' + y) = xz

Here the two squares differ by the variable y, which can be removed when the sum of
the two minterms is formed. Thus, any two minterms in adjacent squares that are
ORed together will cause a removal of the different variable. The following example
explains the procedure for minimizing a Boolean function with a map.

Example
3-1

Simplify the Boolean function
Fix,v,2) = 2(2,3,4,3)

First, a 1 is marked in each minterm that represents the function. This is shown in Fig.
3-4, where the squares for minterms 010, 011, 100, and 101 are marked with 1's. The
next step is to find possible adjacent squares. These are indicated in the map by two
rectangles, each enclosing two 1's. The upper right rectangle represents the arca en-
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* 00 01 11 10

0 oY
x{l O]

_—

<

FIGURE 3-4
Map for Example 3-1; Fix, y, 2) =
22345 =xy+x

closed by x'y. This is determined by observing that the two-square area is in row 0,
corresponding to x ', and the last two colurnns, corresponding to y. Similarly, the lower
left rectangle represents the product term xy'. (The second row represents x and the
two left columns represent y’.) The logical sum of these two product terms gives the
simplified expression

F=x'y +xy' u

There are cases where two squares in the map are considered to be adjacent even
though they do not touch each other. In Fig, 3-3, mq is adjacent to m; and m, is adja-
cent to ms because the minterms differ by one variable. This can be readily verified al-
gebraically,

r L r

m0+m2=xyz +xryza=xrzr(y.l+y)=xrzf
mstms=xy'z' +xyz’ =xz' + (y + y) = xz’
Consequently, we must modify the definition of adjacent squares to include this and

other similar cases. This is done by considering the map as being drawn on a surface
where the right and left edges touch each other to form adjacent squares.

Example
3-2

Simplify the Boolean function
F(x,y,2)=32(3,4,6,7)

The map for this function is shown in Fig. 3-5. There are four squares marked with
1’s, one for each minterm of the function. Two adjacent squares are combined in the
third column to give a two-literal term yz. The remaining two squares with 1°s are also
adjacent by the new definition and are shown in the diagram with their values enclosed
in half rectangles. These two squares when combined, give the two-literal term xz'.
The simplified function becomes

F=yz+ xz' [ ]

Consider now any combination of four adjacent squares in the three-variable map.
Any such combination represents the logical sum of four minterms and results in an ex-
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v

) S SR,
x 00 01 11 10
—
0 ‘ 1
—_ T —
41 [ 1
= -
FIGURE 3-5

Map for Examplie 3-2; Fix, y. 2}
Y346 71yt R

pression of only one literal. As an example, the logical sum of the four adjacent
minterms 0, 2, 4, and 6 reduces to a single literal term z '

r Pt

Mg+ my + ome ome = x'y'z + x'vz' 4 oxy'zt xyz'

x'z'y v v+ oY)

=x'z 4+xz =z (x Fx)=2

The number of adjacent squares that may be combined must always represent a num-
ber that is a power of two such as 1, 2, 4, and 8. As a larger number of adjacent
squares are combined, we obtain a product term with fewer literals.

One square represents one minterm, giving a term of three literals.

Two adjacent squares represent a term of two fiterals.

Four adjacent squares rcpresent a term of one literal.

Eight adjacent squares encompass the entire map and produce a function that is
always equal to 1.

Exampie
3-3

Simplify the Boolean function
Flx,y,2) = 2(0,2, 4,5, 6}

The map for F is shown in Fig. 3-6. First, we combine the four adjacent squares in the
first and last columns to give the single literal term z’. The remaining single square
representing minterm 5 is combined with an adjacent square that has already been used
once. This is not only permissible, but rather desirable since the two adjacent squares
give the two-literal term xy ' and the single square represents the three-literal minterm
xy’z. The simplified function is

F=z +xy' u
If a function is not expressed in sum of minterms, it is possible to use the map to

obtain the minterms of the function and then simplify the function to an expression
with a minimum number of terms. It is necessary to make sure that the algebraic ex-
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x{l L} 1] ‘_1

\ﬁ___.__a’

b4

FIGURE 3-6
Map for Example 3-3; F(x, y, 2) =
2(0.2,4,56) =2z + xy'

pression is in sum of products form. Each product term can be plotted in the map in
one, two, or more squarcs. The minterms of the function are then read directly from
the map.

Example Given the following Boolean function:
34 F=AC+A'B+AB'C + BC

(a) Express it in sum of minterms.
(b) Find the minimal sum of products expression.

Three product terms in the expression have two literals and are represented in a three-
variable map by two squares each. The two squares corresponding to the first term A 'C
are found in Fig. 3-7 from the coincidence of A’ (first row) and C (two middle
columns) to give squares 001 and 011. Note that when marking 1’s in the squares, it is
possible to find a 1 already placed there from a preceding term. This happens with the
second term A'B, which has 1’s in squares 011 and 010, but square 011 is common
with the first term A’C, so only one 1 is marked in it. Continuing in this fashion, we
determine that the term AB'C belongs in square 101, corresponding to minterm 5, and
the term BC has two 1’s in squares 011 and 111. The function has a total of five
minterms, as indicated by the five 1’s in the map of Fig. 3-7. The minterms are read

BC B
A_00 01 T 10

0
A{l 1 !
FIGURE 3-7
Map for Example 3-4, AC+ AR+ AB'C+ BC=C+ A'B
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directly from the map to be 1, 2,3, 5, and 7. The function can be expressed in sum of
minterms form:

F(A,B,C)=2(1,2,3,5,7)

The sum of products expression as originally given has too many terms. It can be sim-
plified, as shown in the map, to an expression with only two terms:

F=C+A'B m

3-3 FOUR-VARIABLE MAP

The map for Boolean functions of four binary variables is shown in Fig. 3-8. In (a) are
listed the 16 minterms and the squares assigned to each. In (b) the map is redrawn to
show the relationship with the four variables. The rows and columns arc numbered in a
reflected-code sequence, with only one digit changing value between two adjacent rows
or columns. The minterm corresponding to each square can be obtained from the con-
catenation of the row number with the column number. For example, the numbers of
the third row (11) and the second column (01), when concatenated, give the binary
number 1101, the binary equivalent of decimal 13. Thus, the square in the third row
and second column represents minterm mz .

The map minimization of four-variable Boolean functions is similar to the method
used to minimize three-variable functions. Adjacent squares are defined to be squares
next to each other. In addition, the map is considered to lie on a surface with the top
and bottom edges, as well as the right and left edges, touching each other to form adja-
cent squares. For example, mo and m; form adjacent squares, as do my and my; . The
combination of adjacent squares that is useful during the simplification process is easily
determined from inspection of the four-variable map:

¥y ,___,}-l_*_\
wae\_00 0t 11 i0
LA P oo LRI L b
my 1 m my | my 00|wx'y? wx'y'z|w'x' yz|w'x'yz
my |l mg | my | o mg o1lwxy z|w xy'zp wiryz | wixyd
x
mn ml3 mag | My 11wy’ | way'z] wxyz ] wxyz
w
mg | mg j omy | g 10X’y 2 lwx'y' z{ wx'yz | waiy?’
————
(a) (b) z
FIGURE 3-8

Fotr-variable map
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One square represents one minterm, giving a term of four literals.
Two adjacent squares represent a term of three literals,

Four adjacent squares represent a term of two literals.

Eight adjacent squares represent a term of one literal.

Sixteen adjacent squares represent the function equal to 1.

No other combination of squares can simplify the function. The following two exam-
ples show the procedure used to simplify four-variable Boolean functions.

Example
3-5

Simplify the Boolean function
Flw,x,y,2) =2(0,1,2,4,5,6,8,9, 12, 13, 14)

Since the function has four variables, a four-variable map must be used. The minterms
histed in the sum are marked by 1's in the map of Fig. 3-9. Fight adjacent squares
marked with 1’s can be combined to form the one literal term y ‘. The remaining three
1’s on the right cannot be combined to give a simplified term. They must be combined
as two or four adjacent squares. The larger the number of squares combined, the
smaller the number of literals in the term. In this example, the top two 1’s on the right
are combined with the top two 1’s on the left to give the term w'z’. Note that it is per-
missible to use the same square more than once. We are now left with a square marked
by 1 in the third row and fourth column (square 1110). Instead of taking this square
alone (which will give a term of four literals), we combine it with squares already used
to form an area of four adjacent squares. These squares comprise the two middle rows
and the two end columns, giving the term xz'. The simplified function is

F=y" +wiz + xz' u

01 Lt 10

- [l =i
s

[ —
Z

FIGURE 3-9

Map for Example 3-5; Flw, x, v, z) =
201,245, 6,8,9,12,13,14) =
Yy +wz' + xz’
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Example
3-6

Simplify the Boolean function
F=A'B'C'+ B'CD' + A'BCD' + AB'C’

The area in the map covered by this function consists of the squares marked with 1's in
Fig. 3-10. This function has four variables and, as expressed, consists of three terms,
each with three literals, and one term of four literals. Each term of threc literals is rep-
resented in the map by two squares. For example, A’B’C" is represented in squares
0000 and 0001. The function can be simplified in the map by taking the 1’s in the four
corners to give the term B'D . This is possible because these four squares are adjacent
when the map is drawn in a surface with top and bottom or left and right edges touching
one another. The two left-hand 1’s in the top row are combined with the two I's in the
bottom row to give the term B'C’. The remaining 1 may be combined in a two-square
area to give the term A'CD’. The simplified function is

F=B'D +B'C"+A'CD' n

Prime Implicants

When choosing adjacent squares in a map, we must ensure that all the minterms of the
function are covered when combining the squares. At the same time, it is necessary to
minimize the number of terms in the expression and avoid any redundant terms whose
minterms are already covered by other terms. Sometimes there may be two or more ex-
pressions that satisfy the simplification criteria. The procedure for combining squares in
the map may be made more systematic if we understand the meaning of the terms re-
ferred to as prime implicant and essential prime implicant. A prime implicant is a
product term obtained by combining the maximum possible number of adjacent squares
in the map. [f 2 minterm in a square is covered by only onc prime implicant, that prime
implicant is said to be essential. A more satisfactory definition of prime implicant is
given in Section 3-10. Here we will use it to help us find all possible simplified expres-
sions of a Boolean function by means of a map.
D ¢
AB_ 00 0L 1L 10

\ ' N

o TET T
|

‘\ |

]

. ¥

) |
“"lj.[ . Dl

D

FIGURE 3-10
Map tor Example 3-6; A'B'C" + B'CO" 4 ABCD 1 AB'C -
B BCT AT
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The prime implicants of a function can be obtained from the map by combining all
possible maximum numbers of squares. This means that a single 1 on a map represents
a prime implicant if it is not adjacent to any other 1’s. Two adjacent 1's form a prime
implicant provided they are not within a group of four adjacent squares. Four adjacent
1’s form a prime implicant if they are not within a group of eight adjacent squares, and
so on. The essential prime implicants are found by looking at each square marked with
a 1 and checking the number of prime implicants that cover it. The prime implicant is
essential if it is the only prime implicant that covers the minterm.

Consider the following four-variable Boolean function:

F(A,B,C,D)=2(0,2,3,5,7,8,9,10, 11, 13, 15)

The minterms of the function are marked with 1's in the maps of Fig. 3-11. Part (a) of
the figure shows two essential prime implicants, One term is essential because there is
only one way to include minterms m, within four adjacent squares. These four squares
define the term B'D’. Similarly, there is only one way that minterm ms can be com-
bined with four adjacent squares and this gives the second term BD. The two essential
prime implicants cover eight minterms. The remaining three minterms, ms, mo, and
mi , must be considered next.

Figure 3-11(b) shows all possible ways that the three minterms can be covered with
prime implicants. Minterm m; can be covered with either prime implicant CD or B'C.
Minterm ms can be covered with either AD or AB’. Minterm m,, is covered with any
one of the four prime implicants. The simplified expression is obtained from the logical
sum of the two essential prime implicants and any two prime implicants that cover
minterms m; , my, and my; . There are four possible ways that the function can be ex-
pressed with four product terms of two literals each:

cD —_— ch —

00 01 11 10 00 01 11 10
AB AB

oo| 1 1 I oo | 1 DEE

01 1 1 01 1 1

B B
il 1 1 11 1 1
A A ,
10 1 1 1 1 10 IJ 1 [ \ 1 l—”
\‘ﬁ_’ %__J
D D
(a) Essential prime implicants (b) Prime implicants CD, B'C,
BD and B'D' AD, and AB'
FIGURE 3-11

Simplification using prime implicants
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il

BD + B'D' + CD + AD
BD + B'D' + CD + AB'
=BD+ B'D'"+ B'C+ AD
=BD + B'D' + B'C + AB’

F

fi

The above example has demonstrated that the identification of the prime implicants in
the map helps in determining the alternatives that are available for obtaining a sim-
plified expression.

The procedure for finding the simplified expression from the map requires that we
first determine all the essentia] prime implicants. The simplified expression is obtained
from the logical sum of all the essential prime implicants plus other prime implicants
that may be needed to cover any remaining minterms not covered by the essential
prime implicanis. Occasionally, there may be more than one way of combining squares
and each combination may produce an equally simplified expression.

3-4 FIVE-VARIABLE MAP

Maps for more than four variables are not as simple to use. A five-variable map needs
32 squares and a six-variable map needs 64 squares. When the number of variables be-
comes large, the number of squares becomes excessively large and the geometry for
combining adjacent squares becomes more involved.

The five-variable map is shown in Fig. 3-12. It consists of 2 four-variable maps with
variables A, B, C, D, and E. Variable A distingunishes between the two maps, as indi-
cated on the top of the diagram. The left-hand four-variable map represents the 16

A=0 A=1
D D
DE — A DE ——
00 01 11 10 00 01 1t 10
BC BC
0ol o 1 3 2 00| 1o 17 19 18
01 4 5 7 6 011 20 21 23 22
C C
1] 12 13 15 14 1] 28 29 31 30
B B
10 8 9 11 10 10 | 24 25 27 26
— —
E E
FIGURE 3-12

Five-variable map
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squares where A = 0, and the other four-variable map represents the squares where
A = 1. Minterms O through 15 belong with A = 0 and minterms 16 through 31 with
A = 1. Each four-variable map retains the previously defined adjacency when taken
separately. In addition, each square in the A = 0 map is adjacent to the corresponding
square in the A = 1 map. For example, minterm 4 is adjacent to minterm 20 and
minterm 15 to 31. The best way to visualize this new rule for adjacent squares is to
consider the two half maps as being one on top of the other. Any two squares that fall
one over the other are considered adjacent.

By following the procedure used for the five-variable map, it is possible to construct
a six-variable map with 4 four-variable maps to obtain the required 64 squares. Maps
with six or more variables need too many squares and are impractical to use. The alter-
native is to employ computer programs specifically written to facilitate the sim-
plification of Boolean functions with a large number of variables.

From inspection, and taking into account the new definition of adjacent squares, it is
possible to show that any 2* adjacent squares, fork = 0, 1, 2, . . . , h, in an n-variable
map, will represent an area that gives a term of n — k literals. For the above state-
ment to have any meaning, » must be larger than k. When n = k, the entire area of the
map is combined to give the identity function. Table 3-1 shows the relationship be-
tween the number of adjacent squares and the number of literals in the term. For exam-
ple, eight adjacent squares combine an area in the five-variable map to give a term of
two literals.

TABLE 3-1
The Reilationshlp Between the Number of Adjacent Squares and the Number
of Literals In the Term

Number
of

adjacent

sguares Number of literals in a term in an n-variable map
k 2% n=2 n=73 n=4 n=5 n=é n=7
0 1 2 3 4 5 6 7
1 2 1 2 3 4 5 6
2 4 0 1 2 3 4 5
3 8 0 1 2 3 4
4 16 0 1 2 3
5 32 0 1 2
6 64 0 1

Example
3.7

Simplify the Boolean function
F(A,B,C,D,E) =(0,2,4,6,9, 13, 21, 23, 25, 29, 31)
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4=0 A=)
Lo - hl ~ hl
D D
DE | DE ———h———
00 01 1l 10 00 oL 11 10
BC —— BC
00| i ‘ 1 00
| N
0l I |l 1 01 Pl i
- C ; : ¢
i 1[
i B 1 i 1
B : B
10 1 e B
L__ﬂ"_) L'"—q(—-'—-)
E F
FIGURE 3-13

Map for Example 3-7.F ~ A'BF -« BDF o ALE

The five-variable map for this function is shown in Fig. 3-13. There arc six minterms
from O to 15 that belong to the part of the map with A = 0. The other five minterms
belong with A = 1. Four adjacent squares in the A = 0 map are combined to give the
three-literal term A B’ £’. Note that it is necessary to include A’ with the term because
all the squares are associated with A = 0. The two squares in column Ol and the last
two rows are common to both parts of the map. Therefore, they constitute four adja-
cent squares and give the three-literal term BD'E. Variable A is not included here be-
cause the adjacent squares belong to both A = O and A = 1. The term ACE is obtained
from the four adjacent squares that are entirely within the A = 1 map. The simplified
function is the logical sum of the three terms:

F=A'B'E’"+ BD'E + ACE N

The minimized Boolean functions derived from the map in all previous examples were
expressed in the sum of products form. With a minor modification, the product of sums
form can be obtained.

The procedure for obtaining a minimized function in product of sums follows trom
the basic properties of Boolean functions. The 1's placed in the squares of the map rep-
resent the minterms of the function. The minterms not included in the function denote
the complement of the function. From this we see that the complement of a function 1s
represented in the map by the squares not marked by 1’s. If we mark the empty
squares by (s and combine them into valid adjacent squares, we obtain a simplified ex-
pression of the complement of the function, i.e., of F'. The complement of F ' gives us
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back the function ¥. Because of the generalized DeMorgan’s theorem, the function so
obtained is automatically in the product of sums form. The best way to show this is by
example.

Example
3-8

Simplify the following Boolean function in (a} sum of products and (b) product of
sums.
F(A,B,C,D)=32(0,1,2,5,8,9, 10)

The 1's marked in the map of Fig. 3-14 répresent all the minterms of the function. The
squares marked with 0’s represent the minterms not included in F and, therefore, de-
note the complement of F. Combining the squares with 1’s gives the simplified func-
tion in sum of products:
(a) F=B'D'+B'C'+A'C'D
If the squares marked with 0’s are combined, as shown in the diagram, we obtain the
simplified complemented function:

F’' = AB + CD + BD'

Applying DeMorgan’s theorem (by taking the dual and complementing each literal as
described in Section 2-4), we obtain the simplified function in product of sums:

(b) F=(A"+B")C"+D')B'+ D) |
cb c
4 0001 711 10
00 1 1 T ‘il

o1 of| 1 [[o]{jo

FIGURE 3-14
Map for Example 3-8; F(A, B. C, D' =2 (0, 1,2.5,8 9, 10) =
B'D'+ B'C' + AACD={A"+ BNC + D'KE' + D)

The implementation of the simplified expressions obtained in Example 3-8 is shown
in Fig. 3-15. The sum of products expression is implemented in (a) with a group of
AND gates, one for each AND term. The outputs of the AND gates are connected to
the inputs of a single OR gate. The same function is implemented in (b) in its product
of sums form with a group of OR gates, one for cach OR term. The outputs of the OR
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B A’
D; B’—-
C'—
F
D= 57 -
Af
D | D

() F=8D+BC+ACD {(b) F={A"—B)(C+D)B +D)
FIGURE 3-15
Gate implementation of the function of Example 3-8

gates are connected to the inputs of a single AND gate. In each case, it is assumed that
the input variables are directly available in their complement, so inverters are not
needed. The configuration pattern established in Fig. 3-15 is the general form by which
any Boolean function is implemented when expressed in one of the standard forms.
AND gates are connected to a single OR gate when in sum of products; OR gates are
connected to a single AND gate when in product of sums. Either configuration forms
two levels of gates. Thus, the implementation of a function in a standard form is said to
be a two-level implementation.

Example 3-8 showed the procedure for obtaining the product of sums simplification
when the function is originally expressed in the sum of minterms canonical form. The
procedure is also valid when the function is originally expressed in the product of max-
terms canonical form. Consider, for example, the truth table that defines the function F
in Table 3-2. In sum of minterms, this function is expressed as

Fix,y,2)=2(1,3,4.6)
In product of maxterms, it is expressed as
F(X, }’1 Z) = H(O’ 2, 5; 7)

TABLE 3-2

Truth Table of Function F

X Y z L F
0 0 0 0
0 0 1 1
0 1 0 0
0 I i 1
1 0 0 |
1 0 1 0
1 ] 0] 1
1 1 1 ‘ 0
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In other words, the 1’s of the function represent the minterms, and the 0's represent
the maxterms. The map for this function is shown in Fig. 3-16. One can start simplify-
ing this function by first marking the 1’s for each minterm that the function is a 1. The
remaining squares are marked by 0’s. If, on the other hand, the product of maxterms is
initially given, one can start marking 0’s in those squares listed in the function; the re-
maining squares are then marked by 1’s. Once the 1’s and 0’s are marked, the function
can be simplified in either one of the standard forms. For the sum of products, we com-
bine the 1's to obtain

F=x"z+ xz'

For the product of sums, we combine the 0’s to obtain the simplified complemented
function:

F'=xz+ x'z’
which shows that the exclusive-OR function is the complement of the equivalence func-
tion (Section 2-6). Taking the complement of F', we obtain the simplified function in
product of sums:
F=(x"+z0x+ 2
To enter a function expressed in product of sums in the map, take the complement of
the function and from it find the squares to be marked by O’s. For example, the func-
tion
F=(A'"+B' +C)B+D)
can be entered in the map by first taking its complement:

F' = ABC + B'D'

and then marking 0’s in the squares representing the minterms of F'. The remaining
squares are marked with 1’s.

¥z ¥
—_—
60 01 11 10

[=]
o
o

xil 1 0 0 1
-
z
FIGURE 3-16

Map for the function of Table 3-2
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3-6NAND AND NOR IMPLEMENTATIO!

Digital circuits are more frequently constructed with NAND or NOR gates than with
AND and OR gates. NAND and NOR gates are easier to fabricate with electronic com-
ponents and are the basic gates used in all IC digital logic families. Because of the
prominence of NAND and NOR gates in the design of digital circuits, rules and proce-
dures have been developed for the conversion from Boolean functions given in terms of
AND, OR, and NOT into equivalent NAND and NOR logic diagrams. The procedure
for two-level implementation is presented in this section. Multilevel implementation is
discussed in Section 4-7.

To facilitate the conversion to NAND and NOR logic, it is convenient to define two
other graphic symbols for these gates. Twa equivalent symbols for the NAND gate are
shown in Fig. 3-17(a). The AND-invert symbol has been defined previously and con-
sists of an AND graphic symbol followed by a small circle. Instead, it is possible to
represent a NAND gate by an OR graphic symbol preceded by small circles in all the
inputs. The invert-OR symbol for the NAND gate follows from DeMorgan’s theorem
and from the convention that small circles denote complementation.

Similarly, there are two graphic symbols for the NOR gate, as shown in Fig. 3-
17(b). The OR-invert is the conventional symbol. The invert-:AND is a convenient al-
ternative that utilizes DeMorgan’s theorem and the convention that small circles in the
inputs denote complementation.

A one-input NAND or NOR gate behaves like an inverter. As a consequence, an in-
verter gate can be drawn in three different ways. as shown in Fig. 3-17(c). The small
circles in all inverter symbols can be transferred to the input terminal without changing
the logic of the gate.

X —4
}:.; }Fz teyz) 5 > Fex' 4y w2 =)

AND-invert Invert-OR

Fa

(a) Two graphic symbols for NAND gate.

X x —
y F=Gx+y+2) Y—=9 Fexys = +y+z)
z z ——Q

OR-invert Invert-AND

{b) Two graphic symbols for NOR gate.

x—-D>——x' xﬂ}x’ .x—D>—~x’

Buffer-invert AND-invert OR-invert

(¢) Three graphic symbols for inverter.
FIGURE 3-17
Graphic symbois for NAND ant! NOR gates
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It should be pointed out that the alternate symbols for the NAND and NOR gates
could be drawn with small triangles in all input terminals instead of the circles. A small
triangle is a negative-logic polarity indicator (see Section 2-8 and Fig. 2-11). With
small triangles in the input terminals, the graphic symbol denotes a negative-logic po-
larity for the inputs, but the output of the gate (not having a triangle) would have a pos-
itive-logic assignment. In this book, we prefer to stay with positive logic throughout
and employ small circles when necessary to denote complementation.

NAND Implementation

The implementation of a Boolean function with NAND gates requires that the function
be simplified in the sum of products form. To see the relationship between a sum of
products expression and its equivalent NAND implementation, consider the logic dia-
grams of Fig. 3-18. All three diagrams are equivalent and implement the function:

F=AB+CD+ E

The function is implemented in Fig. 3-18(a) in sum of products form with AND and
OR gates. In (b) the AND gates are replaced by NAND gates and the OR gate is re-
placed by a NAND gate with an invert-OR symbol. The single variable E is comple-
mented and applied to the second-level invert-OR gate. Remember that a small circle
denotes complementation. Therefore, two circles on the same line represent double
complementation and both can be removed. The complement of E goes through a small

(a) AND-OR

A

(b) NAND-NAND (¢} NAND-NAND

FIGURE 3-18
Three ways to implement £ = AB + CD + £
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circle that complements the variable again to produce the normal value of £. Removing
the small circles in the gates of Fig. 3-18(b) produces the circuit in {a). Therefore, the
two diagrams implement the same function and are equivalent.

In Fig. 3-18(c), the output NAND gate is redrawn with the conventional symbol.
The one-input NAND gate complements variable E. 1t is possible to remove this in-
verter and apply E' directly to the input of the second-level NAND gate. The diagram
in (c) is equivalent to the one in (b}, which in turn is equivalent to the diagram in (a).
Note the similarity between the diagrams in {a) and (c). The AND and OR gates have
been changed to NAND gates, but an additional NAND gate has been included with the
single variable £. When drawing NAND logic diagrams, the circuit shown in either (b}
or {c) is acceptable. The one in (b), however, represents a more direct relationship to
the Boolean expression it implements.

The NAND implementation in Fig. 3-18(c) can be verified algebraically. The
NAND function it implements can be easily converted to a sum of products form by us-
ing DeMorgan’s theorem:

F=[AB)-(CD)-E'l =AB+(CD + E

From the transformation shown in Fig. 3-18, we conclude that a Boolean function
can be implemented with two levels of NAND gates. The rule for obtaining the NAND
logic diagram from a Boolean function is as follows:

1. Simplify the function and express it in sum of products.

2. Draw a NAND gate for each product term of the function that has at least two lit-
erals. The inputs to each NAND gate are the literals of the term. This constitutes
a group of first-level gates.

3. Draw a single NAND gate (using the AND-invert or invert-OR graphic symbol) in
the second level, with inputs coming from outputs of first-level gates.

4. A term with a single literal requires an inverter in the first level or may be com-
plemented and applied as an input to the second-level NAND gate.

Before applying these rules to a specific example, it should be mentioned that there 1s a
second way to implement a Boolean function with NAND gates. Remember that if we
combine the 0’s in a map, we obtain the simplified expression of the complement of the
function in sum of products. The complement of the function can then be implemented
with two levels of NAND gates using the rules stated above. If the normal output is de-
sired, it would be necessary to insert a one-input NAND or inverter gate to generate the
true value of the output variable. There are occasions where the designer may want to
generate the complement of the function; so this second method may be preferable.

Example
3-9

Implement the following function with NAND gates:
F(x,y,2) = 2(0, 6)

The first step is to simplify the function in sum of products form. This is attempted
with the map shown in Fig. 3-19(a). There are only two 1’s in the map, and they can-
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x 00 01 11 10
o] 1 0 0 4] F=x'y'z"+ xyz’
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{(a) Map simplification in sum of products.
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MF=x"y'z" +xpz’ @F =x"y+xy" +z
FIGURE 3-19
Implementation of the function of Example 3-9 with NAND gates

Y

not be combined. The simplified function in sum of products for this example is
F=x'y'z" + xyz'

The two-level NAND implementation is shown in Fig. 3-19(b). Next we try to simplify
the complement of the function in sum of products. This is done by combining the 0’s
in the map:

F'=x'yv+xy +:

The two-level NAND gate for generating F' is shown in Fig. 3-19(c). If output F is re-
quired, it is necessary to add a one-input NAND gate to invert the function. This gives
a three-level implementation. In each case, it is assumed that the input variables are
available in both the normal and complement forms. If they were available in only one
form, it would be necessary to insert inverters in the inputs, which would add another
level to the circuits. The one-input NAND gate associated with the single variable z can
be removed provided the input is changed to z'. |

NOR Implementation

The NOR function is the dual of the NAND function. For this reason, all procedures
and rules for NOR logic are the duals of the corresponding procedures and rules devel-
oped for NAND logic.
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Example
3-10

The implementation of a Boolean function with NOR gates requires that the function
be simplified in product of sums form. A product of sums expression specifies a group
of OR gates for the sum terms, followed by an AND gate to produce the product. The
transformation from the OR-AND to the NOR-NOR diagram is depicted in Fig. 3-20. It
is similar to the NAND transformation discussed previously, except that now we use
the product of sums expression

F=(A+ BIC+ DE

The rule for obtaining the NOR logic diagram from a Boolean tunction can be
derived from this transformation. It is similar to the three-step NAND rule, except that
the simplified expression must be in the product of sums and the terms for the first-level
NOR gates are the sum terms. A term with a singte literal requires a one-input NOR or
inverter gate or may be complemented and applicd directly to the second-level NOR
gate.

A second way to implement a function with NOR gates would be o use the expres-
sion for the complement of the function in product of sums. This will give a two-level
implementation for F' and a three-level implementation if the normal output F is re-
quired.

To obtain the simplified product of sums from a map, it is necessary to combine the
0’s in the map and then complement the function. To obtain the simplified product of
sums expression for the complement of the function, it is necessary to combine the 1's
in the map and then complement the function. The following example demonstrates the
procedure for NOR implementation.

Implement the function of Example 3-9 with NOR gates.
The map of this function is drawn in Fig. 3-19{a). First, combine the 0’s in the map
to obtain

F'=x'v+xy +z

This is the complement of the function in sum of products. Complement £’ to obtain
the simplitied function in product of sums as required for NOR implementation:

A4
B

(_
By :
D

}—F
D "—‘ D
F £
(a} OR-AND (by NOR-NOR {c) NOR-NOR

FIGURE 3-20
Three ways o implement £ 1A - AnC - InE

._'lQl



Section 3-6 NAND and NOR Implementation 93

F=0+yX) +y)2

The two-level implementation with NOR gates is shown in Fig. 3-21(a). The term with
a single literal z’ requires a one-input NOR or inverter gate. This gate can be removed
and input z applied directly to the input of the second-level NOR gate.

A second implementation is possible from the complement of the function in product
of sums. For this case, first combine the 1’s in the map to obtain

F=x"y'z" + xyz’

This is the simplified expression in sum of products. Complement this function to ob-
tain the complement of the function in product of sums as required for NOR implemen-
tation:

Fi=x+y+2)x +y +2)
The two-level implementation for F'is shown in Fig. 3-21(b). If output F is desired, it
can be generated with an inverter in the third level. ]

X
X

id

= >
VO D= >
— >

r

r

z

(@F=(+y)( +y) ®F =x+y+n'+y +2)

FIGURE 3-21
Implementation with NOR gates

Table 3-3 summarizes the procedures for NAND or NOR implementation. One
should not forget to aiways simplify the function in order to reduce the number of gates
in the impiementation. The standard forms obtained from the map-simplification pro-
cedures apply directly and are very useful when dealing with NAND or NOR logic.

TABLE 3-3
Rules for NAND and NOR Implementation
Number
of

Function to Standard form How to implement levels
Case simplify to use derive with to F
(a) F Sum of products Combine 1’s in map NAND 2
(b) F' Sum of products Combine 0’s in map NAND 3
{©) F Prodict of sums Complement F' in (b) NOR 2
(d) F’ Product of sums Complement F in (a) NOR 3
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3-7 OTHER TWO-LEVEL IMPLEMENTATIONS

The types of gates most often found in integrated circuits are NAND and NOR. For this
reason, NAND and NOR logic implementations are the most important from a practical
point of view. Some NAND or NOR gates {but not all) allow the possibility of a wire
connection between the outputs of two gates to provide a specific logic function. This
type of logic is called wired logic. For example, open-collector TTL NAND gates,
when tied together, perform the wired-AND logic. (The open-collector TTL gate is
shown in Chapter 10, Fig. 10-11.) The wired-AND logic performed with two NAND
gates is depicted in Fig. 3-22(a). The AND gate is drawn with the lines going through
the center of the gate to distinguish it from a conventional gate. The wired-AND gate is
not a physical gate, but only a symbol to designate the function obtained from the indi-
cated wired connection. The logic function implemented by the circuit of Fig, 3-22(a)
is

F = (AB)' - (CD)' = (AB + CD)'

and is called an AND-OR-INVERT function.
Similarly, the NOR output of ECL gates can be tied together to perform a wired-OR
function. The logic function implemented by the circuit of Fig. 3-22(b) is

F=A+B' +(C+D)=1{A+BI(C+D]

and is called an OR-AND-INVERT function.

A wired-logic gates does nat produce a physical second-level gate since it is just a
wire connection. Nevertheless, for discussion purposes, we will consider the circuits of
Fig. 3-22 as two-level implementations. The first level consists of NAND (or NOR)
gates and the second level has a single AND (or OR} gate. The wired connection in the
graphic symbol will be omitted in subsequent discussions.

Nondegenerate Forms

It will be instructive from a theoretical point of view to find out how many two-level
combinations of gates are possible. We consider four types of gates: AND, OR, NAND,
and NOR. If we assign one type of gate for the first level and one type for the second

A — A
B— B
--9—F=(AB+CD)’ E}——F= [(A+BY(C+D)]
C— C
D— D
{a) Wired-AND in open-collector (b)Y Wired-OR in ECL pates
TTL NAND gates.
(AND-OR-INVERT} (OR-AND-INVERT)

FIGURE 3-22

Wired logic
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level, we find that there are 16 possible combinations of two-level forms. (The same
type of gate can be in the first and second levels, as in NAND-NAND implementation. )
Eight of these combinations are said to be degenerate forms because they degenerate to
a single operation. This can be seen from a circuit with AND gates in the first level and
an AND gate in the second level. The output of the circuit is merely the AND function
of all input variables. The other eight nondegenerate forms produce an implementation
in sum of products or p?uct of sums. The eight nondegenerate forms are

#’AND-OR OR-AND

»~ NAND-NAND 0/NOR-NOR

o~ NOR-OR 'NAND-AND

@’OR-NAND  -AND-NOR
The first gate listed in each of the forms constitutes a first level in the implementation,
The second gate listed is a single gate placed in the second level. Note that any two
forms listed in the same line are the duals of each other.

The AND-OR and OR-AND forms are the basic two-level forms discussed in Sec-

tion 3-5. The NAND-NAND and NOR-NOR were introduced in Section 3-6. The re-
maining four forms are investigated in this section.

AND-OR-INVERT implementation

The two forms NAND-AND and AND-NOR are equivalent forms and can be treated
together. Both perform the AND-OR-INVERT function, as shown in Fig. 3-23. The
AND-NOR form resembles the AND-OR form with an inversion done by the small cir-
cle in the output of the NOR gate. It implements the function

F = (AB + CD + EY

By using the alternate graphic symbol for the NOR gate, we obtain the diagram of
Fig. 3-23(b). Note that the singlc variable £ is not complemented because the only
change made is in the graphic symbol of the NOR gate. Now we move the circles from

D Dy o
B 83— 88—
D DD DD
| F F F

D F—i D — — D—‘ ’—-
: : )

{a} AND-NOR (b) AND-NOR, (c) NAND-AND
FIGURE 3-23

AND-OR-INVERT circuits; £ = (AB + CD + £)°
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the input terminal of the second-level gate to the output terminals of the first-level
gates. An inverter is needed for the single variable to maintain the circle. Alternatively,
the inverter can be removed provided input £ is complemented. The circuit of Fig.
3-23(c) is a NAND-AND form and was shown in Fig. 3-22 to implement the AND-
OR-INVERT function.

An AND-OR implementation requires an expression in sum of products. The AND-
OR-INVERT implementation is similar except for the inversion. Therefore, if the com-
plement of the function is simplified in sum of products (by combining the 0’s in the
map), it will be possible to implement F' with the AND-OR part of the function.
When F ' passes through the always present output inversion (the INVERT part), it will
generate the ouput F of the function. An example for the AND-OR-INVERT imple-
mentation will be shown subsequently.

OR-AND-INVERT implementation

B

(a) OR-NAND

FIGURE 3-24

OR-AND-INVERT dircuits; £ = [1A -

The OR-NAND and NOR-OR forms perform the OR-AND-INVERT function. This is
shown in Fig. 3-24. The OR-NAND form resembles the OR-AND form, except for the
inversion done by the circle in the NAND gate. [t implements the function

F=[(A+ BXC + D)E]

By using the alternate graphic symbol for the NAND gate, we obtain the diagram of
Fig. 3-24(b). The circuit in (c) is obtained by moving the small circles from the inputs
of the second-level gate to the outputs of the first-level gates. The circuit of Fig. 3-24(c)
is 2 NOR-OR form and was shown in Fig. 3-22 to implement the OR-AND-INVERT
function.

The OR-AND-INVERT implementation requires an expression in product of sums. 1f
the complement of the function is simplified in product of sums, we can implement F’
with the OR-AND part of the function. When F ' passes through the INVERT part, we
obtain the complement of F', or F, in the output.

>
DD DA D D

(b) OR-NAND (c) NOR-OR

BNC | DEY
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Tabular Summary and Example

Table 3-4 summarizes the procedures for implementing a Boolean function in any one
of the four two-level forms. Because of the INVERT part in each case, it is convenient
to use the simplification of F' (the complement) of the function. When F’ is imple-
mented in one of these forms, we obtain the complement of the function in the AND-
OR or OR-AND form. The four two-level forms invert this function, giving an output
that is the complement of F'. This is the normal output F.

TABLE 3.4
Impiementation with Other Two-Level Forms
Equivalent Implements Simplify To get
nondegenerate the F' an output
form function in of
{a) b

AND-NOR NAND-AND AND-OR-INVERT Sum of products F
by combining 0’s
in the map

OR-NAND NOR-OR OR-AND-INVERT Product of sums by F

combining 1's in
the map and then
complementing

*Form (b) requires a one-input NAND or NOR (inverter) gate for a single literal term,

Example
3-11

Implement the function of Fig. 3-19(a) with the four two-level forms listed in Table 3-
4. The complement of the function is simplified in sum of products by combining the
(’s in the map:

FI = xry + xyl + 7

The normal output for this function can be expressed as
F=@y+xy +2)

which is in the AND-OR-INVERT form. The AND-NOR and NAND-AND implemen-
tations are shown in Fig. 3-25(a). Note that a one-input NAND or inverter gate is
needed in the NAND-AND implementation, but not in the AND-NOR case. The in-
verter can be removed if we apply the input variable z' instead of z.

The OR-AND-INVERT forms require a simplified expression of the complement of
the function in product of sums. To obtain this expression, we must first combine the
1’s in the map

F=x"yz" + xyz’
Then we take the complement of the function
Fl=x+y+20x"+y +2)
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x— x' —
Jrp— y —
DL DD

, F ) £
v — ¥ — —

AND-NOR NAND-AND
(@ F=x'y+x +2)

x x
¥ v

OR-NAND NOR-OR

M F=[x+y+w +3y +21
FIGURE 3-25
Other two-level implementations

The normal output F can now be expressed in the form
F=[x+y+x"+y +21

which is in the OR-AND-INVERT form. From this expression, we can implement the
function in the OR-NAND and NOR-OR forms, as shown in Fig. 3-25(b). m

3-8 DON'T-CARE CONDITIONS

The logical sum of the minterms associated with a Boolean function specifies the con-
ditions under which the function is equal to 1. The function is equal to O for the rest of
the minterms. This assumes that all the combinations of the values for the variables of
the function are valid. In practice, there are some applications where the function is not
specified for certain combinations of the variables. As an example, the four-bit binary
code for the decimal digits has six combinations that are not used and consequently are
considered as unspecified. Functions that have unspecified outputs for some input com-
binations are called incompletely specified functions. In most applications, we simply
don’t care what value is assumed by the function for the unspecified minterms. For this
reason, it is customary to call the unspecified minterms of a function don’t-care condi-
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tions. These don’t-care conditions can be used on a map to provide further sim-
plification of the Boolean expression.

It should be realized that a don’t-care minterm is a combination of variables whose
logical value is not specified. It cannot be marked with a 1 in the map because it would
require that the function always be a 1 for such combination. Likewise, putting a 0 on
the square requires the function to be 0. To distinguish the don’t-care condition from
1’s and 0’s, an X is used. Thus, an X inside a square in the map indicates that we don’t
care whether the value of 0 or 1 is assigned to F for the particular minterm.

When choosing adjacent squares to simplify the function in a map, the don’t-care
minterms may be assumed to be cither O or 1. When simplifying the function, we can
choose to include each don’t-care minterm with either the 1's or the 0’s, depending on
which combination gives the simplest expression.

Exampie
312

Simplify the Boolean function
Flw,x,y,2) =2(1,3,7, 11, 15)
that has the don’t-care conditions
dw,x,y,2) =2(0,2,9)

The minterms of F are the variable combinations that make the function equal to 1.
The minterms of d are the don’t-care minterms that may be assigned either 0 or 1. The
map simplification is shown in Fig. 3-26. The minterms of F are marked by 1’s, those
of d are marked by X’s, and the remaining squares are filled with 0's. To get the sim-
plified expression in sum of products, we must include all the five 1’s in the map, but

Y Y
yz ——H———— yz ——t——
00 01 11 10 [s14] 01 11 10
WX wx
00 P( 1 |77 X—l ool x [t [l «
01 0 X 1 0 01 0 X [ 0
x x
11 0 4} 1 0 11 0 0 1 0
w w
10 0 0 1 0 10 0 0 1 0
- |
z z
(a)y F=yz+w'x' (b F=yz + ws

FIGURE 3-26
Example with don’t-care conditions
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we may or may not include any of the X’s, depending on the way the function is sim-
plified. The term yz covers the four minterms in the third column. The remaining
minterm 1, can be combined with minterm m; to give the three-literal term w'x'z.
However, by including one or two adjacent X's we can combine four adjacent squares
to give a two-literal term. In part (a) of the diagram, don’t-care minterms O and 2 are
included with the 1’s, which results in the simplified function

F=yz+wkx

In part (b), don’t-care minterm 5 is included with the 1's and the simplified function
now 1s

F=yz+ w'z

Either one of the above expressions satisfies the conditions stated for this example. W

The above example has shown that the don’t-care minterms in the map are initially
marked with X’s and are considered as being either O or 1. The choice between Oand !
is made depending on the way the incompletely specified function is simplified. Once
the choice is made, the simplified function so obtained will consist of a sum of
minterms that includes those minterms that were initially unspecified and have been
chosen to be included with the 1°s. Consider the two simplified expressions obtained in
Example 3-12:

Flw, x,y,2) =yz +w'x' =2(0,1,2,3,7, 11, 15
Flw,x,y, 2y =yz + w'z=52(1,3,5 7,11, 15)

Both expressions include minterms 1, 3,7, 11, and 15 that make the function F equal
to 1. The don't-care minterms 0, 2, and 5 are treated differently in each expression.
The first expression includes minterms 0 and 2 with the I’s and leaves minterm 5 with
the 0’s. The second expression includes minterm 5 with the 17s and leaves minterms 0
and 2 with the 0s. The two expressions represent two functions that are algebraically
unequal. Both cover the specified minterms of the function, but each covers different
don’t-care minterms. As far as the incompletely specified function is concerned, either
expression is acceptable since the only difference is in the value of F for the don’t-care
minterms.

It is also possible to obtain a simplified product of sums expression for the function
of Fig. 3-26. In this case, the only way to combine the (s is to include don’t-care
minterms 0 and 2 with the 0’s to give a simplified complemented function:

F'l=z + wy'
Taking the complement of F' gives the simplified expression in product of sums:
Flw, x,y,2) = z(w' + ¥) = 2(1,3,5,7, 11, 15)

For this case, we include minterms 0 and 2 with the 0’s and minterm 5 with the 1's.
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3-9 THE TABULATION METHOD

The map method of simplification is convenient as long as the number of variables does
not exceed five or six. As the number of variables increases, the excessive number of
squares prevents a reasonable selection of adjacent squares. The obvious disadvantage
of the map is that it is essentially a trial-and-error procedure that relies on the ability of
the human user to recognize certain patterns. For functions of six or more variables, it
is difficult to be sure that the best selection has been made.

The tabulation method overcomes this difficulty. It is a specific step-by-step proce-
dure that is guaranteed to produce a simplified standard-form expression for a function.
It can be applied to problems with many variables and has the advantage of being suit-
able for machine computation. However, it is quite tedious for human use and is prone
to mistakes because of its routine, monotonous process. The tabulation method was
first formulated by Quine and later improved by McCluskey. It is also known as the
Quine—McCluskey method.

The tabular method of simplification consists of two parts. The first is to find by an
exhaustive search all the terms that are candidates for inclusion in the simplified func-
tion. These terms are called prime implicants. The second operation is to choose
among the prime implicants those that give an expression with the least number of lit-
erals.

3-10 DETERMINATION OF PRIME IMPLICANTS

The starting point of the tabulation method is the list of minterms that specify the func-
tion. The first tabular operation is to find the prime implicants by using a matching
process. This process compares each minterm with every other minterm. If two
minterms differ in only one variable, that variable is removed and a term with one less
literal is found. This process is repeated for every minterm until the exhaustive search
is completed. The matching-process cycle is repeated for those new terms just found.
Third and further cycles are continued until a single pass through a cycle yields no fur-
ther elimination of literals. The remaining terms and all the terms that did not match
during the process comprise the prime implicants. This tabulation method is illustrated
by the following example.

Example
313

Simplify the following Boolean function by using the tabulation method:
F=2x(0,1,2,8,10, 11, 14, 15)

Step 1: Group binary representation of the minterms according to the number of 1’s
contained, as shown in Table 3-5, column (a). This is done by grouping the minterms
into five sections separated by horizontal lines. The first section contains the number
with no 1’s in it. The second section contains those numbers that have only one 1. The
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TABLE 3-5
Determination of Prime Implicants for Example 3-13

T @ ) ' ©

wx y Z ¥z wx y z
"0 0000 J 0.1 00 0 - 0,2, 8, 10 —0 -0
0.2 00 —0 / 0,8, 2,10 ~0 -0
I 0001 J 0.8 000 10, 11, 14,15 | — |
2 0010 10, 14, 11,15 1 — 1 —
8 1000 o 210 -0 10 /
.10 10 -0
0 1010
10,11 10 1-
moroti .14 11—
4 1110
1,45 1 — 11
5 1111y 4,15 11 1—

third, fourth, and fifth sections contain those binary numbers with two, three, and four
I’s, respectively. The decimal equivalents of the minterms are also carried along for
identification.

Step 2: Any two minterms that differ from each other by only one variable can be
combined, and the unmatched variable removed. Two minterm numbers fit into this
category if they both have the same bit value in all positions except one. The minterms
in one section are compared with those of the next section down only, because two
terms differing by more than one bit cannot match. The minterm in the first section is
compared with each of the three minterms in the second section. If any two numbers
are the same in every position but one, a check is placed to the right of both minterms
to show that they have been used. The resulting term, together with the decimal equiv-
alents, is listed in column (b} of the table. The variable eliminated during the matching
is denoted by a dash in its original position. In this case, (0000} combines with m,
(0001) to form (000—). This combination is equivalent to the algebraic operation

mo +om o= wix'y'z Hwix'y'z=wx'y
Minterm #1, also combines with m; to form (00—0) and with ms to form (-000). The
result of this comparison is entered into the first section of column (b). The minterms
of sections two and three of column (a} are next compared to produce the terms listed
in the second section of column (b). All other sections of (a) are similarly compared
and subsequent sections formed in (b). This exhaustive comparing process results in the
four sections of (b).

Step 3: The terms of column (b) have only three variables. A 1 under the variable
means it is unprimed, a O means it is primed, and a dash means the variable is not in-
cluded in the term. The searching and comparing process is repeated for the terms in
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column (b) to form the two-variable terms of column (c). Again, terms in each section
need to be compared only if they have dashes in the same position. Note that the term
(000-) does not match with any other term. Therefore, it has no check mark at its
right. The decimal equivalents are written on the left-hand side of each entry for
identification purposes. The comparing process should be carried out again in column
(c) and in subsequent columns as long as proper matching is encountered. In the
present example, the operation stops at the third column.

Step 4: The unchecked terms in the table form the prime implicants. In this exam-
ple, we have the term w'x’y’ (000-) in column (b), and the terms x 'z’ (=0-0) and wy
(1—1~) in column (c). Note that each term in column (c) appears twice in the table, and
as long as the term forms a prime implicant, it is unnecessary to use the same term
twice. The sum of the prime implicants gives a simplified expression for the function.
This is because each checked term in the table has been taken into account by an entry
of a simpler term in a subsequent column. Therefore, the unchecked entries (prime im-
plicants) are the terms left to formulate the function. For the present example, the sum
of prime implicants gives the minimized function in sum of products:

F=wkx'y" +x'z' + wy |

It is worth comparing this answer with that obtained by the map method. Figure
3-27 shows the map simplification of this function. The combinations of adjacent
squares give the three prime implicants of the function. The sum of these three terms is
the simplified expression in sum of products.

It is important to point out that Example 3-13 was purposely chosen to give the sim-
plified function from the sum of prime implicants. In most other cases, the sum of
prime implicants does not necessarily form the expression with the minimum number
of terms. This is demonstrated in Example 3- 14.

The tedious manipulation that one must undergo when using the tabulation method is
reduced if the comparing is done with decimal numbers instead of binary. A method
will now be shown that uses subtraction of decimal numbers instead of the comparing
and matching of binary numbers. We note that each 1 in a binary number represents the

¥ ¥
——— e
w00 01 11 10

L] T

01 Lr

10f 1] T

—
4

FIGURE 3-27

Map for the function of Example 3-13;
F=wxy + xz' + wy
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coefficient multiplied by a power of 2. When two minterms are the same in every posi-
tion except one, the minterm with the extra 1 must be larger than the number of the
other minterm by a power of 2. Therefore, two minterms can be combined if the num-
ber of the first minterm differs by a power of 2 from a second larger number in the next
section down the table. We shall illustrate this procedure by repeating Example
3-13.

As shown in Table 3-6, column (a), the minterms are arranged in sections as before,
except that now only the decimal equivalents of the minterms are listed. The process of
comparing minterms is as follows: Inspect every two decimal numbers in adjacent sec-
tions of the table. If the number in the section below is greater than the number in the
section above by a power of 2 (i.e., 1,2, 4,8, 16, etc.), check both numbers to show
that they have been used, and write them down in column (b). The pair of numbers
transferred to column (b) includes a third number in parentheses that designates the
power of 2 by which the numbers differ. The number in parentheses tells us the posi-
tion of the dash in the binary notation. The results of all comparisons of column (a) are
shown in column (b).

The comparison between adjacent sections in column (b) is carried out in a similar
fashion, except that only those terms with the same number in parentheses are com-
pared. The pair of numbers in onc section must differ by a power of 2 from the pair of
numbers in the next section. And the numbers in the next section below must be
greater for the combination to take place. In column (c), write all four decimal num-
bers with the two numbers in parentheses designating the positions of the dashes. A
comparison of Tables 3-5 and 3-6 may be helpful in understanding the derivations in
Table 3-6.

TABLE 3-6
Determination of Prime Implicants of Example 3-13 with Decimal Notation
fa o T
0 \/7 o _0,_1 Wﬁ(l) o o 0 2,8, 10 (2, 8)
o 0,2 @ 0,2,810 (2,8
1/ 0,8 &
2/ 10, 11, 14, 15(1. 4)
8§ / 2,10 8 10, 11, 14, 153, 4
T 8,10 (2 /
10 J
T 10,11 (1)
1/ 10, 14 4/
14/
T 5@

15 / 14,15(1y  /
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The prime implicants are those terms not checked in the table. These are the same
as before, except that they are given in decimal notation. To convert from decimal no-
tation to binary, convert all decimal numbers in the term to binary and then insert a
dash in those positions designated by the numbers in parentheses. Thus 0, 1 (1) is con-
verted to binary as 0000, 0001; a dash in the first position of either number results in
(000-). Similarly, 0, 2, 8, 10 (2, 8) is converted to the binary notation from 0000,
0010, 1000, and 1010, and a dash inserted in positions 2 and 8, to result in (—~0—0).

Example
3-14

Determine the prime implicants of the function
Flw,x,y,2) =2(1,4,6,7,8, 9, 10, 11, 15)

The minterm numbers are grouped in sections, as shown in Table 3-7, column {a). The
binary equivalent of the minterm is included for the purpose of counting the number of

TABLE 3-7
Determination of Prime Implicants for Example 3-14
faj b} i<

0001 1 v 1,9 (8) 8.9,10,1141, 2
0100 4 4,6 (2) 8,9,10,11 (1, 2)
1000 8 8,9 n v

8, 10 @ /
0110 6 /
1001 9 J 6,7 (0
1010 10 J 9,11 2 J/

10, 11 Iy /
0111 7/
1011 11/ 7,15 8

11, 15 @)
11 15/

Prime implicants
Binary
Decimal w o X oy z Term

1,9(8) - 0 0 1 x'y'z
4,6(2) 0 1 - 0 w'xz'
6, 7(1) o1 1 - w'xy
7, 15 (8) -1 1 1 xyz
11, 15 (4) I — 1 1 wyz
3,9,10,11 (1,2 1 0 - - wx !
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1’s. The binary numbers in the first section have only one 1; in the second section, two
1’s; etc. The minterm numbers are compared by the decimal method and a match is
found if the number in the section below is greater than that in the section above. If the
number in the section below is smaller than the one above, a match is not recorded
even if the two numbers differ by a power of 2. The exhaustive search in column (a)
results in the terms of column (b), with all minterms in column (a) being checked.
There are only two matches of terms in column (b). Each gives the same two-literal
term recorded in column {(c). The prime implicants consist of all the unchecked terms
in the table. The conversion from the decimal to the binary notation is shown at the
bottom of the table. The prime implicants are found to be x'y'z, wixz', wixy, xyz,
wyz, and wx . |

The sum of the prime implicants gives a valid algebraic expression for the function.
However, this expression is not necessarily the one with the minimum number of
terms. This can be demonstrated from inspection of the map for the function of Exam-
ple 3-14. As shown in Fig. 3-28, the minimized function is recognized to be

F=x'y'z+ wxz' + xyz + wx’

which consists of the sum of four of the six prime implicants derived in Example 3-14.
The tabular procedure for selecting the prime implicants that give the minimized func-
tion is the subject of the next section.

Wy

60 1]

I NiEs
CimniEnE

FIGURE 3-28

Map for the function of Example 3-14;
Foox'yz #wxz b oxyz oo

3-11

The selection of prime implicants that form the minimized function is made from a
prime implicant table. In this table, each prime implicant is represented in a row and
each minterm in a column. X's are placed in each row to show the composition of
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minterms that make the prime implicants. A minimum set of prime implicants is then
chosen that covers all the minterms in the function. This procedure is illustrated in Ex-
ample 3-15.

Example
3-15

Minimize the function of Example 3-14. The prime-implicant table for this example is
shown in Table 3-8. There are six rows, one for each prime implicant (derived in Ex-
ample 3-14), and nine columns, each representing one minterm of the function. X’s are
placed in each row to indicate the minterms contained in the prime implicant of that
row. For example, the two X’s in the first row indicate that minterms 1 and 9 are con-
tained in the prime implicant x’yz. It is advisable to include the decimal equivaient of
the prime implicant in each row, as it conveniently gives the minterms contained in it.
After all the X’s have been marked, we proceed to select a minimum number of prime
implicants,

The completed prime-implicant table is inspected for columns containing only a sin-
gle X. In this example, there are four minterms whose columns have a single X: 1, 4, 8,
and 10. Minterm 1 is covered by prime implicant x'y’z, i.e., the selection of prime
implicant x'y’z guarantees that minterm 1 is included in the function. Similarly,
minterm 4 is covered by prime implicant w 'xz’, and minterms § and 10, by prime im-
plicant wx'. Prime implicants that cover minterms with a single X in their column are
called essential prime implicants. To enable the final simplified expression to contain
all the minterms, we have no alternative but to include essential prime implicants. A
check mark is placed in the table next to the essential prime implicants to indicate that
they have been selected.

Next we check each column whose minterm is covered by the selected essential
prime implicants. For example, the selected prime implicant x'y 'z covers minterms 1
and 9. A check is inserted in the bottom of the columns. Similarly, prime implicant
w'xz' covers minterms 4 and 6, and wx covers minterms 8, 9, 10, and 11, Inspection
of the prime-implicant table shows that the selection of the essential prime implicants

TABLE 3-8
Prime Implicant Table for Example 3-15
I 4 6 7 8 ? 10 1 15

S x'y'z 1,9 X X
J wixz! 4,6 X X

w'xy 6,7 X X

xyz 7,15 X X

wyz i1, 15 ) X X
J owx’ 8,9, 10, 11 X X X X




Chapter 3 Simplification of Boolean Functions

covers all the minterms of the function except 7 and 15. These two minterms must be
included by the selection of one or more prime implicants. In this example, it is clear
that prime implicant xyz covers both minterms and is therefore the one to be selected.
We have thus found the minimum set of prime implicants whose sum gives the required
minimized function:

F=x'yz+whxz +wx' +xyz |

The simplified expressions derived in the preceding examples were all in the sum of
products form. The tabulation method can be adapted to give a simplified expression in
product of sums. As in the map method, we have to start with the complement of the
function by taking the 0’s as the initial list of minterms. This list contains those
minterms not included in the original function that are numerically equal to the max-
terms of the function. The tabulation process is carried out with the 0’s of the function
and terminates with a simplified expression in sum of products of the complement of
the function. By taking the complement again, we obtain the simplified product of
sums expression.

A function with don’t-care conditions can be simplified by the tabulation method af-
ter a slight modification. The don’t-care terms are included in the list of minterms when
the prime implicants are determined. This allows the derivation of prime imphcants
with the least number of literals. The don’t-care terms are not included in the list of
minterms when the prime implicant table is set up. because don’t-care terms do not
have to be covered by the selected prime implicants.

3-12 CONCLUDING REMARKS

Two methods of Boolean-function simplification were introduced in this chapter. The
criterion for simplification was taken to be the minimization of the number of literals in
sum of product or products of sums expressions. Both the map and the tabulation meth-
ods are restricted in their capabilities since they are useful for simplifying only Boolean
functions expressed in the standard forms. Although this is a disadvantage of the meth-
ods, it is not very critical. Most applications prefer the standard forms over any other
form. We have seen from Fig. 3-15 that the gate implementation of expressions in stan-
dard form consists of no more than two levels of gates. Expressions not in the standard
form are implemented with more than two levels.

One should recognize that the Gray-code sequence chosen for the maps is not
unique. Tt is possible to draw a map and assign a Gray-code sequence to the rows and
columns different from the sequence employed here. As long as the binary sequence
chosen produces a change in only one bit between adjacent squares, it will produce a
valid and useful map.

Two alternate versions of the three-variable maps that are often found in the digital
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logic literature are shown in Fig. 3-29. The minterm numbers are written in each
square for reference. In (a), the assignment of the variables to the rows and columns is
different from the one used in this book. In (b), the map has been rotated in a vertical
position. The minterm number assignment in all maps remains in the order xyz. For ex-
ample, the square for minterm 6 is found by assigning to the ordered variables the bi-
nary number xyz = 110. The square for this minterm is found in (a) from the column
marked xy = 11 and the row with z = 0. The corresponding square in (b) belongs in
the column marked with x = 1 and the row with yz = 10. The simplification proce-
dure with these maps is exactly the same as described in this chapter except, of course,
for the variations in minterm and variable assignment,

Two other versions of the four-variable map are shown in Fig. 3-30. The map in (a)
is very popular and is used quite often in the literature. Here again, the difference is
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FIGURE 3-29
Variations of the three-variable map
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Variations of the four-variable map
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slight and is manifested by a mere interchange of variable assignment from rows to
columns and vice versa. The map in (b) is the original Veitch diagram that Karnaugh
modified to the one shown in (a). Again, the simplification procedures do not change
when these maps are used instead of the one employed in this book. There are also
variations of the five-variable map. In any case, any map that looks different from the
one used in this book, or is called by a different name, should be recognized merely as
a variation of minterm assignment to the squares in the map.

As is evident from Examples 3-13 and 3-14, the tabulation method has the drawback
that errors inevitably occur in trying to compare numbers over long lists. The map
method would seem to be preferable, but for more than five variables, we cannot be
certain that the best simplified expression has been found. The real advantage of the
tabulation method lies in the fact that it consists of specific step-by-step procedures that
guarantee an answer. Moreover, this formal procedure is suitable for computer mecha-
nization.

In this chapter, we have considered the simplification of functions with many input
variables and a single output variable. However, some digital circuits have more than
one output. Such circuits are described by a set of Boolean functions, one for each out-
put variable. A circuit with multiple outputs may sometimes have common terms
among the various functions that can be utilized to form common gates during the im-
plementation. This results in further simplification not taken into consideration when
each function is simplified separately. There exists an extension of the tabulation
method for multiple-output circuits. However, this method is too specialized and very
tedious for human manipulation. It is of practical importance only if a computer pro-
gram based on this method is available to the user.
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31

3-2

3-3

35

3-6

3-7

3-8

39

Simplify the following Boolean functions using three-variable maps:
(@) Flx,y,2) =20, 1,57

by Flx,y,2) =2(1,2,3,6,7)

(c) Fix,y,2) = 2(3,5,6, 7

(d) F(A,B,C) = 2(0,2,3,4,6)

Simplify the following Boolean expressions using three-variable maps:
@) xy + x'y'z' + x'yz’

b) x'y" + yz + x'yz'

{c) A'B+ BC' + B'C’

Simplify the following Boolean functions using four-variable maps:
(a) F(A,B,C,D)=%(4,6,7,15)

(b Flw,x,y,2) = 2(2, 3, 12, 13, 14, 15)

(¢} F(A,B,C.D)=2(3,17,11, 13, 14, 15)

Simplify the following Boolean functions using four-variable maps:
(a) Fiw,x,y,2) = 2(1,4,5, 6,12, 14, 15)

(b) FIA,B,C, D) =2(0,1,2,4,5,7, 11, 15)

(c) Fw,x,y,2) = 2(2, 3, 10, 11, 12, 13, 14, 15)

(d) F(A,B,C,D) =2(0,2,4,5,6,7, 8, 10, 13, 15)

Simplify the following Boolean expressions using four-variable maps:

(@) wz+oxz+x'y +wx'z

(b) B'D + A'BC’' + AB'C + ABC'

(c) AB'C + B'C'D' + BCD + ACD' + A'B'C + A'BC'D

d) way +yz+xy'z+x'y

Find the minterms of the following Boolean expressions by first plotting each function in a
map:

(@ xy +yz+ xy'z

(b) C'D + ABC’ + ABD' + A'B'D

{c) wey + x'2' + wixz

Simplify the following Boolean functions by first finding the essential prime implicants:
(@ Flw,x,y,2) =2(0,2,4,5,6,7, 8, 10, 13, 15)

(b) F(A,B,C.D)=2(0,2,3,5,7,8,10, 11, 14, 15)

{¢) F(A,B,C,D) = 2(1, 3,4, 5,10, 11, 12, 13, 14, 15)

Simplify the following Boolean functions using five-variable maps:

(a) F(A,B,C,D,E) =2(0, 1, 4, 5, 16, 17, 21, 25, 29)

(b) F(A,B,C.D,E) = 2(0,2,3,4,5,6,7, 11, 15, 16, 18, 19, 23, 27, 31)
{c) F=A'B'CE'+ A’'B'C'D' + B'D'E' + B'CD' + CDE' + BDE'
Simpilify the following Boolean functions in product of sums:

(a) F{w, x,y,2) =2(0,2,5,6,7, 8, 10)

{b) F(A, B, C, D) = 11(1, 3, 5, 7, 13, 15)

{c} Flx,y,2) =2(2,3,6,7)

(d) F(A,B,C,D) =11(0, 1, 2, 3, 4, 10, 11)
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310

3-12

2-14

3-19

3-20

321

3-22

Simplify the following expressions in (i} sum of products and (ii) products of sums:
(@) x'z" + 'z’ + yz’ + xy

() AC' + B'D + A'CD + ABCD

© (A" +B +DWA+B +CHA'+B+DHB+C' + D

Draw the AND-OR gate implementation of the following function after simplitying it in
{a) sum of products and (b} product of sums:

F=I(AB8,C,D)=2(0,2.567.8,10)

Simplify the following expressions and implement them with two-level NAND gate cir-
cuits:

(a) AB' + ABD + ABD' + A'C'D’ + A'BC’

(b} BD + BCD' + AB'C'D’

Draw a NAND logic diagram that implements the complement of the following function:

F(A,B,C.D)=2(0,1,2,3.4,8,9.12)
Draw a logic diagram using only two-input NAND gates to implement the following ex-
pression:

(AB + A'B)(CD’ + C'D)

Simplify the following functions and implement them with two-level NOR gate circuits:
{a) F=wx' +y'z" + w'yz
(b) Fiw, x,y,2z) = 2(5,6,9,10)

Implement the functions of Problem 3-15 with three-level NOR gate circuits [similar to
Fig. 3-21(b)].

Implement the expressions of Problem 3-12 with three-level NAND circuits [similar to
Fig. 3-19(c)].

Give three possible ways to express the function F with eight or fewer literals.
F(A, B, C.D)=2(0,2,5,7, 10, 13)
Find eight different two-level gate circuits to implement
F=x'z+xyz+w

Implement the function F with the following two-level forms: NAND-AND, AND-NOR,
OR-NAND, and NOR-OR.

F(A,B,.C.D) =2(0,1.2,3,4,8,9,12)

List the eight degenerate two-level forms and show that they reduce to a single operation.
Explain how the degenerate two-level forms can be used to extend the number of inputs to
a gate.

Simplify the following Boolean function £ together with the don’t-care conditions d; then
express the simplified function in sum of minterms.
(a) Flx,y,2) = 2(0,1,2,4,35)

dix,y.2) = Z2(3,6,7)
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(b) F(A,B,C, D)= 2(0, 6, 8, 13, 14)
d{A,B,C,D) = 2(2, 4, 10)
(c) F(A,B,C, D) = £(1,3,5,7,9, 15)

d(A,B,C,D) =X2(4,6,12,13)
Simplify the Boolean function F together with the don’t-care conditions d in (1) sum of
products and (ii} product of sums.
(8) Flw,x,y,2) = 2(0,1,2,3,7, 8, 10)

dw,x,y,z) = Z(5, 6,11, 15)
(b) F(A,B, C,D) = Z(3, 4, 13, 15)

d(A,B,C,D) = 2(1,2,5,6, 8, 10, 12, 14)
A logic circuit implements the following Boolean function:

F=A'C+ AC'D’

It is found that the circuit input combination A = C = 1 can never occur. Find a simpler
expression for F using the proper don’t-care conditions.

Implement the following Boolean function F together with the don’t-care conditions d us-
ing no more than two NOR gates. Assume that both the normal and complement inputs
are available,

F(A,B,C,D)=3(0,1,2,9, 11
d(A, B, C, D) = (8, 10, 14, 15)
Simplify the following Boolean function using the map presented in Fig. 3-30(a). Repeat
using the map of Fig. 3-30(b).
F(A,B.C,D)=2%(1,2,3,5,7,9, 10, 11, 13, 15}
Simplify the following Boolean functions by means of the tabulation method:
{a) P(A,B,C,D,E,F,G) = 2(20, 28, 52, 60)

(b} P(A,B,C,D,E, F,G) = 2(20, 28, 38, 39, 52, 60, 102, 103, 127)
{c) P(A,B,C,D,E,F) = (6, 9, 13, 18, 19, 25, 27, 29, 41, 45, 57, 61)
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Logic circuits for digital systems may be combinational or sequential. A combinational
circuit consists of logic gates whose outputs at any time are determined directly from
the present combination of inputs without regard to previous inputs. A combinational
circuit performs a specific information-processing operation fully specified logically by
a set of Boolean functions. Sequential circuits employ memory elements (binary cells)
in addition to logic gates. Their outputs are a function of the inputs and the state of the
memory elements. The state of memory elements, in turn, is a function of previous in-
puts. As a consequence, the outputs of a sequential circuit depend not only on present
inputs, but also on past inputs, and the circuit behavior must be specified by a time se-
quence of inputs and internal states. Sequential circuits are discussed in Chapter 6.

In Chapter 1, we learned (o recognize binary numbers and binary codes that repre-
sent discrete quantities of information. These binary variables are represented by elec-
tric voltages or by some other signal. The signals can be manipulated in digital logic
gates to perform required functions. In Chapter 2, we introduced Boolean algebra as a
way to express logic functions algebraically. In Chapter 3, we learned how to simplify
Boolean functions to achieve economical gate implementations. The purpose of this
chapter is to use the knowledge acquired in previous chapters and formulate various
systematic design and analysis procedures of combinational circuits. The solution of
some typical examples will provide a useful catalog of elementary functions important
for the understanding of digital computers and systems.
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A combinational circuit consists of input variables, logic gates, and output variables.
The logic gates accept signals from the inputs and generate signals to the outputs. This
process transforms binary information from the given input data to the required output
data. Obviously, both input and output data are represented by binary signals, i.e.,
they exist in two possible values, one representing logic-1 and the other logic-0. A
block diagram of a combinational circuit is shown in Fig. 4-1. The » input binary vari-
ables come from an external source; the m output variables go to an external destina-
tion. In many applications, the source and/or destination are storage registers (Section
1-7) located either in the vicinity of the combinational circuit or in a remote external
device. By definition, an external register does not influence the behavior of the combi-
national circuit because, if it does, the total system becomes a sequential circuit,

For n input variables, there are 2" possible combinations of binary input values. For
each possible input combination, there is one and only one possible output combination.
A combinational circuit can be described by m Boolean functions, one for each output
variable. Each output function is expressed in terms of the # input variables.

Each input variable to a combinational circuit may have one or two wires. When
only one wire is available, it may represent the variable either in the normal form (un-
primed) or in the complement form (primed). Since a variable in a Boolean expression
may appear primed and/or unprimed, it is necessary to provide an inverter for each lit-
eral not available in the input wire. On the other hand, an input variable may appear in
two wires, supplying both the normal and complement forms to the input of the circuit.
If so, it is unnecessary to include inverters for the inputs. The type of binary cells used
in most digital systems are flip-flop circuits (Chapter 6) that have outputs for both the
normal and complement values of the stored binary variable. In our subsequent work,
we shall assume that each input variable appears in two wires, supplying both the nor-
mal and complement valoes simultaneously. We must also realize that an inverter cir-
cuit can always supply the complement of the variable if only one wire is available.

—] o .
ninput ——r Combmgnonaf —— m output
variables ! Logic : variables

. Circuit ] .
FIGURE 4-1

Bfock diagram of a combinational circuit

4-2 DESIGN PROCEDURE

The design of combinational circuits starts from the verbal outline of the problem and
ends in a logic circuit diagram or a set of Boolean functions from which the logic dia-
gram can be easily obtained. The procedure involves the following steps:

1. The problem is stated.

2. The number of available input variables and required output variables is deter-
mined.
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3. The input and output variables are assigned letter symbols.

4. The truth table that defines the required relationships between inputs and outputs
is derived.

5. The simplified Boolean function for each output is obtained.
6. The logic diagram is drawn.

A truth table for a combinational circuit consists of input columns and output
columns. The 1’s and O’s in the input columns are obtained from the 2" binary combi-
nations available for » input variables. The binary values for the outputs are determined
from examination of the stated problem. An output can be equal to either 0 or | for ev-
ery valid input combination. However, the specifications may indicate that some input
combinations will not occur. These combinations become don’t-care conditions.

The output functions specified in the truth table give the exact definition of the com-
binational circuit. It is important that the verbal specifications be interpreted correctly
into a truth table. Sometimes the designer must use intuition and experience to arrive at
the cotrect interpretation. Word specifications are very seldom complete and exact.
Any wrong interpretation that results in an incorrect truth table produces a combina-
tional circuit that will not fulfill the stated requirements,

The output Boolean functions from the truth table are simplified by any available
method, such as algebraic manipulation, the map method, or the tabulation procedure.
Usually, there will be a variety of simplified expressions from which to choose. How-
ever, in any particular application, certain restrictions, limitations, and criteria will
serve as a guide in the process of choosing a particular algebraic expression. A practi-
cal design method would have to consider such constraints as (1) minimum number of
gates, (2) minimum number of inputs to a gate, (3) minimum propagation time of the
signal through the circuit, (4) minimum number of interconnections, and (3) Limitations
of the driving capabilities of each gate. Since all these criteria cannot be satistied simul-
taneously, and since the importance of each constraint is dictated by the particular ap-
plication, it is difficult to make a general statement as to what constitutes an acceptable
simplification. In most cases, the simplification begins by satisfying an elementary ob-
jective, such as producing a simplified Boolean function in a standard form, and from
that proceeds to meet any other performance criteria.

In practice, designers tend to go from the Boolean functions to a wiring list that
shows the interconnections among various standard logic gates. In that case, the design
need not go any further than the required simplified output Boolean functions. How-
ever, a logic diagram is helpful for visualizing the gate implementation of the expres-
51008,

Digital computers perform a variety of information-processing tasks. Among the basic
functions cncountered are the various arithmetic operations. The most basic arithmetic
operation, no doubt, is the addition of two binary digits. This simple addition COnsists
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of four possible clementary operations, namely, 0+ 0=0,0+1=1,1+4+0 = 1,
and 1 + 1 = 10. The first three operations produce a sum whose length is one digit,
but when both augend and addend bits are equal to 1, the binary sum consists of two
digits. The higher significant bit of this result is called a carry. When the augend and
addend numbers contain more significant digits, the carry obtained from the addition
of two bits is added to the next higher-order pair of significant bits. A combinational
circuit that performs the addition of two bits is called a half-adder. One that performs
the addition of three bits (two significant bits and a previous carry) is a full-adder. The
name of the former stems from the fact that two half-adders can be employed to imple-
ment a full-adder. The two adder circuits are the first combinational circuits we shall
design.

From the verbal explanation of a half-adder, we find that this circuit needs two binary
inputs and two binary outputs. The input variables designate the augend and addend
bits; the output variables produce the sum and carry. It is necessary to specify two out-
put variables because the result may consist of two binary digits. We arbitrarily assign
symbols x and y to the two inputs and S (for sum) and C (for carry) to the outputs.

Now that we have established the number and names of the input and output vari-
ables, we are ready to formulate a truth table to identify exactly the function of the
half-adder. This truth table is '

x

— Y

—_—0 = <
—o Do (N
[ (7.

The carry output is O unless both inputs are 1. The $ output represents the least
significant bit of the sum.

The simplified Boolean functions for the two outputs can be obtained directly from
the truth table. The simplified sum of products expressions are

S=x'y + xy’
C=uxy

The logic diagram for this implementation is shown in Fig. 4-2(a), as are four other
implementations for a half-adder. They all achieve the same result as far as the
input-output behavior is concerned. They illustrate the flexibility available to the de-
signer when implementing even a simple combinational logic function such as this.
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FIGURE 3-2

Various implementations of a half-adder

Figure 4-2(a), as mentioned before, is the implementation of the half-adder in sum
of products. Figure 4-2(b) shows the implementation in product of sums:

S=(x+ k" +y)
C = xy

To obtain the implementation of Fig. 4-2(c), we note that S is the exclusive-OR of x
and y. The complement of S is the equivalence of x and y (Section 2-6.):

Sf —_ xy + x.'yf
but C = xy, and, therefore, we have

S=(C+x'y
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In Fig. 4-2(d), we use the product of sums implementation with C derived as follows:
C=xy=('+yY
The half-adder can be implemented with an exclusive-OR and an AND gate, as shown

in Fig. 4-2(e). This form is used later to show that two half-adder circuits are needed to
construct a full-adder circuit.

A full-adder is a combinational circuit that forms the arithmetic sum of three input bits.
It consists of three inputs and two outputs. Two of the input variables, denoted by x and
Y, represent the two significant bits to be added. The third input, z, represents the carry
from the previous lower significant position. Two outputs are necessary because the
arithmetic sum of three binary digits ranges in value from 0 to 3, and binary 2 or 3
needs two digits. The two outputs are designated by the symbols § for sum and C for
carry. The binary variable § gives the value of the least significant bit of the sum. The
binary variable C' gives the output carry. The truth table of the full-adder is

Xy z c §
o 0 0O 0 0
0 ¢ 1 0 1
0O 1 0 0 1
o 1 1 1 0
1 0 ¢ 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

The eight rows under the input variables designate all possible combinations of 1’s and
0’s that these variables may have. The 1's and 0’s for the output variables are deter-
mined from the arithmetic sum of the input bits. When all input bits are 0’s, the output
is 0. The S output is equal to 1 when only one input is equal to 1 or when ail three in-
puts are equal to 1. The C output has a carry of 1 if two or three inputs are equal to 1.

The input and output bits of the combinational circuit have different interpretations
at various stages of the problem. Physically, the binary signals of the input wires are
considered binary digits added arithmetically to form a two-digit sum at the output
wires. On the other hand, the same binary values are considered variables of Boolean
functions when expressed in the truth table or when the circuit is implemented with
logic gates. It is important to realize that two different interpretations are given to the
values of the bits encountered in this circuit.

The input-output logical relationship of the full-adder circuit may be expressed in
two Boolean functions, one for each output variable. Each output Boolean function re-
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FIGURE 4-3
Maps for a full-adder

quires a unique map for its simplification. Each map must have eight squares, since each
output is a function of three input variables. The maps of Fig. 4-3 are used for simplify-
ing the two output functions. The 1’s in the squares for the maps of S and C are deter-
mined directly from the truth table. The squares with 1’s for the § output do not com-
bine in adjacent squares to give a simplified expression in sum of products. The C
output can be simplified to a six-literal expression. The logic diagram for the full-adder
implemented in sum of products is shown in Fig. 4-4. This implementation uses the
following Boolean exptessions:

S=x"yz+xyz' +xy'z’ + xyz
C=xy+xz+ yz

Other configurations for a full-adder may be developed. The product of sums imple-
mentation requires the same number of gates as in Fig. 4-4, with the number of AND
and OR gates interchanged. A full-adder can be implemented with two half-adders and
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FIGURE 4-4
Implementation of a full-adder in surm of products
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Imptementation of a full-adder with two half-adders ard an OR gate

one OR gate, as shown in Fig. 4-5. The S output from the second half-adder is the
exclusive-OR of z and the output of the first half-adder, giving

S=zHxDy)
z'(xy" + x'y) + z(xy" + x'y)

2y +Fx'y) +zlxy + x'y")

xy'z" + x'yz’ +xyz + x'y'z
and the carry output is

C=zixy'+x'y)+xy=xy'z+ x"yz + xy

4-4 SUBTRACTORS

The subtraction of two binary numbers may be accomplished by taking the comple-
ment of the subtrahend and adding it to the minuend (Section 1-5). By this method, the
subtraction operation becomes an addition operation requiring full-adders for its ma-
chine implementation. It is possible to implement subtraction with logic circuits in a di-
rect manner, as done with paper and pencil. By this method, each subtrahend bit of the
number is subtracted from its corresponding significant minuend bit to form a differ-
ence bit. If the minuend bit is smaller than the subtrahend bit, a 1 is borrowed from the
next significant position. The fact that a 1 has been borrowed must be conveyed to the
next higher pair of bits by means of 2 binary signal coming out (output) of a given stage
and going into (input) the next higher stage. Just as there are half- and full-adders,
there are half- and full-subtractors.

Half-Subtractor

A half-subtractor is a combinational circuit that subtracts two bits and produces their
difference. It also has an output to specify if a 1 has been borrowed. Designate the min-
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uend bit by x and the subtrahend bit by y. To perform x — y, we have to check the rel-
ative magnitudes of x and y. If x =y, we have three possibilities: 0 — 0 = 0,
1—0=1,and 1 — 1 = 0. The result is called the difference bit. If x < y, we have
0 — 1, and it is necessary to borrow a | from the next higher stage. The 1 borrowed
from the next higher stage adds 2 to the minuend bit, just as in the decimal system a
borrow adds 10 to a minuend digit. With the minuend equal to 2, the difference be-
comes 2 — 1 = 1. The half-subtractor needs two outputs. One output generates the dif-
ference and will be designated by the symbol D. The second output, designated B for
borrow, generates the binary signal that informs the next stage that a 1 has been bor-
rowed. The truth table for the input—output relationships of a half-subtractor can now
be derived as follows:

x vy 8P
0 0 0 0
0 1 11
10 01
Lo 0 0

The output borrow B isa0Oaslongasx = y. Itisalforx = Oandy = 1. The D out-
put is the result of the arithmetic operation 2B + x — y.
The Boolean functions for the two outputs of the half-subtractor are derived directly

from the truth table:

D=x'y +xy’
B

x'y

It is interesting to note that the logic for D is exactly the same as the logic for output §
in the half-adder.

Full-Subtractor

A full-subtractor is a combinational circuit that performs a subtraction between two
bits, taking into account that a 1 may have been borrowed by a lower significant stage.
This circuit has three inputs and two outputs. The three inputs, x, ¥, and z, denote the
minuend, subtrahend, and previous borrow, respectively. The two outputs, I? and B,
represent the difference and output borrow, respectively. The truth table for the circuit is
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The eight rows under the input variables designate all possible combinations of 1’s and
0’s that the binary variables may take. The 1's and 0’s for the output variables are de-
termined from the subtraction of x — y — z. The combinations having input borrow
z = 0 reduce to the same four conditions of the half-adder. For x = 0, y = 0, and
z = 1, we have to borrow a 1 from the next stage, which makes B = 1 and adds 2 to x.
Since 2 -0~ 1=1,D =1, For x = 0 and yz = 11, we need to borrow again,
making B = landx = 2. Since2 — 1~ 1=0,D =0.Forx = | and yz = 01, we
have x — y — z = 0, which makes B =0 and D = 0. Finally, for x =1, y = 1,
z = 1, we have to borrow 1, making B = land x = 3,and 3 — 1 — 1 = 1, making
D=1.

The simplified Boolean functions for the two outputs of the full-subtractor are
derived in the maps of Fig. 4-6. The simplified sum of products output functions are

D=x'yz+ x'yz' + xy'z’ + xyz
B=x"y+x'z+ yz

¥z Y v
p——r e,
x 00 01 11 10 x 00 01 11 10
0 1 1 (1 U 1]
x4l 1 1 x4l 1
A ——————
z z
D=xyz+x'yz+ xy'z + xyz B=x'y +x'z+yz
FIGURE 4-6

Maps for a full-subtractor
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The availability of a large variety of codes for the same discrete elements of informa-
tion results in the use of different codes by different digital systems. It is sometimes
necessary to use the output of one system as the input to another. A conversion circuit
must be inserted between the two systems if each uses different codes for the same in-
formation. Thus, a code converter is a circuit that makes the two systems compatible
even though each uses a different binary code.

To convert from binary code A to binary code B, the input lines must supply the bit
combination of elements as specified by code A and the cutput lines must generate the
corresponding bit combination of code B. A combinational circuit performs this trans-
formation by means of logic gates. The design procedure of code converters will be il-
lustrated by means of a specific example of conversion from the BCD to the excess-3
code.

The bit combinations for the BCD and excess-3 codes are listed in Table 1-2 (Sec-
tion 1-7). Since each code uses four bits to represent a decimal digit, there must be four
input variables and four output variables. Let us designate the four input binary vari-
ables by the symbols A, 8, C, and D, and the four output variables by w, x, v, and z.
The truth table relating the input and output variables is shown in Table 4-1. The bit
combinations for the inputs and their corresponding outputs are obtained directly from
Table 1-2. We note that four binary variables may have 16 bit combinations, only 10 of
which are listed in the truth table, The six bit combinations not listed for the inpur vari-
ables are don’t-care combinations. Since they will never occur, we are at liberty to as-
sign to the output variables either a 1 or a 0, whichever gives a simpler circuit.

The maps in Fig. 4-7 are drawn to obtain a simplified Boolean function for each out-
put. Each of the four maps of Fig. 4-7 represents one of the four outputs of this circuit
as a function of the four input variables. The 1’s marked inside the squares are obtained

TABLE 4-1
Truth Table for Code-Conversion Example
Input BCD Qutput Excess-3 Code

A B c D w X ¥ z
O 0 0 0 0 0 1 1
0 0 0 1 0 i 0 0
0 0 1 0 0 1 0 1
0 0 ! 1 0 1 1 0
0 1 0 0 0 l 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 G 0 |
0 1 1 1 1 0 1 0
1 0 0 ¢] 1 0 1 |
1 0 0 ] 1 l 0 0




Section 4-5 Code Conversion 125

cp ¢ ¢D S
48 00 01 1110 4B _00 01 "Il 10
00 1 T OOl—l ’_1—
o1 1 1 o] 1 1
B B
1 x x | x X jrx|l o x {|x|| x
A A
10 1 X X iof| 1 x|| x
| SO . [
N D D
¢=D y=CD+CD
€D _ cp PR
AB_00 01 T 1110 AB_00 01 T11_ 10

00 1 |:L1 1] 00)
o111 01 l 1 1
B

mpy x X X X 14| X X X X

A - y
10 1 [—Xjr*—}x w 1|1 | x| x
[ —_
b )
x=8C+ BD+ BCD w=A-+ BC+ BD
FIGURE 4-7

Maps for a BCD-to-excess-3-code converter

from the minterms that make the output equal to 1. The 1’s are obtained from the truth
table by going over the output columns one at a time. For example, the column under
output z has five 1’s; therefore, the map for z must have five 1's, cach being in a square
corresponding to the minterm that makes z equal to 1. The six don’t-care combinations
are marked by X’s. One possible way to simplify the functions in sum of products is
listed under the map of each variable.

A two-level logic diagram may be obtained directly from the Boolean expressions
derived by the maps. There are various other possibilities for a logic diagram that im-
plements this circuit. The expressions obtained in Fig. 4-7 may be manipulated alge-
braically for the purpose of using common gates for two or more outputs. This manipu-
lation, shown below, illustrates the flexibility obtained with multiple-output systems
when implemented with three or more levels of gates.
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z =D’

y=CD+C'D'=CD+ (C+ DY

x=B'C+B'D+BC'D'=B'(C+ D)+ BC'D'
— BYC + D) + B(C + DY

w=A+BC+ BD=A+ B(C+D)

The logic diagram that implements these expressions is shown in Fig. 4-8. In it we see
that the OR gate whose output is C + D has been used to implement partially each of
three outputs.

Not counting input inverters, the implementation in sum of products requires seven
AND gates and three OR gates. The implementation of Fig. 4-8 requires four AND
gates, four OR gates, and one inverter. If only the normal inputs are available, the first
implementation will require inverters for variables B, C, and D, whereas the second
implementation requires inverters for variables B and D.

—D‘ i
O F4
D N\ __cD T N y
c L/ e
__D—-—DD—— (C + Dy
C+D
B
X
A W
FIGURE 4-8

Logic diagram for a BCD-to-excess-3-code converter

4-6 ANALYSIS PROCEDURE

The design of a combinational circuit starts from the verbal specifications of a required
function and culminates with a set of output Boolean functions or a logic diagram. The
analysis of a combinational circuit is somewhat the reverse process. It starts with a



Section 4-6 Analysis Procedure 127

given logic diagram and culminates with a set of Boolean functions, a truth table, or a
verbal explanation of the circuit operation. If the logic diagram to be analyzed is ac-
companied by a function name or an explanation of what it is assumed to accomplish,
then the analysis problem reduces to a verification of the stated function.

The first step in the analysis is to make sure that the given circuit is combinational
and not sequential. The diagram of a combinational circuit has logic gates with no feed-
back paths or memory elements. A feedback path is a connection from the output of
one gate to the input of a second gate that forms part of the input o the first  gate. Feed-
back paths or memory elements in & digital-eireuit define a sequential circuit and must
‘be analyzed according to procedures outlined in Chapter 6 or Chapter 9. o

Once the logic diagram is verified as a combinational circuit, one can proceed to ob-
tain the output Boolean functions and/or the truth table. If the circuit is accompanied
by a verbal explanation of its function, then the Boolean functions or the truth table is
sufficient for verification. If the function of the circuit is under investigation, then it is
necessary to interpret the operation of the circuit from the derived truth table. The suc-
cess of such investigation is enhanced if one has previous experience and familiarity
with a wide variety of digital circuits. The ability to correlate a truth table with an in-
formation-processing task is an art one acquires with experience.

To obtain the output Boolean functions from a logic diagram, proceed as follows:

1. Label with arbitrary symbols all gate outputs that are a function of the input vari-
ables. Obtain the Boolean functions for each gate.

2. Label with other arbitrary symbols those gates that are a function of input vari-
ables and/or previously labeled gates. Find the Boolean functions for these gates.

3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.

4. By repeated substitution of previously defined functions, obtain the output
Boolean functions in terms of input variables only.

Analysis of the combinational circuit in Fig. 4-9 illustrates the proposed procedure.
We note that the circuit has three binary inputs, A, B, and C, and two binary outputs,
F, and F>. The outputs of various gates are labeled with intermediate symbols. The out-
puts of gates that are a function of input variables only are F3, Ti, and Tz. The Boolean
functions for these three outputs are

F, = AB + AC + BC
Tnh=A+B+C

T, = ABC
Next we consider outputs of gates that are a function of already defined symbols:
T: = FiTh
A=T:+T

The output Boolean function F; just expressed is already given as a function of the in-
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FIGURE 4-9
Logic diagram for analysis example

puts only. To obtain F, as a function of A, B, and C, form a series of substitutions as
follows:

Fi=T,+T,=FiT\ + ABC = (AB + AC + BCY(A+ B+ C) + ABC
={A"+ B')JA'"+C)B' +C')A + B+ C) + ARC
=(A"+ B'C'MAB' + AC' + BC' + B'C) + ABC
= A'BC’' + A'B'C + AB'C' + ABC

If we want to pursue the investigation and determine the information-transformation
task achieved by this circuit, we can derive the truth table directly from the Boolean
functions and try to recognize a familiar operation. For this example, we note that the
circuit is a full-adder, with F; being the sum output and F, the carry output. A, B, and C
are the three inputs added arithmetically.

The derivation of the truth table for the circuit is a straightforward process once the
output Boolean functions are known. To obtain the truth table directly from the logic
diagram without going through the derivations of the Boolean functions, proceed as
follows:

1. Determine the number of input variables to the circuit. For n inputs, form the 2*
possible input combinations of 1's and 0’s by listing the binary numbers from 0 to
2" — 1.
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2. Label the outputs of selected gates with arbitrary symbols.

3. Obtain the truth table for the outputs of those gates that are a function of the input
variables only.

4. Proceed to obtain the truth table for the outputs of those gates that are a function
of previously defined values until the columns for all outputs are determined.

This process can be illustrated using the circuit of Fig. 4-9. In Table 4-2, we form
the eight possible combinations for the three input variables. The truth table for F; is
determined directly from the values of A, B, and C, with F; equal to 1 for any combi-
nation that has two or three inputs equal to 1. The truth table for F; is the complement
of F;. The truth tables for T, and T are the OR and AND functions of the input vari-
ables, respectively. The values for 75 are derived from 7\ and F;: T is equal to 1 when
both T\ and F3 are equal to 1, and to 0 otherwise. Finally, £, is equal to 1 for those
combinations in which either 75 or T3 or both are equal to 1. Inspection of the truth
table combinations for A, B, C, F., and F; of Table 4-2 shows that it is identical to the
truth table of the full-adder given in Section 4-3 for x, y, z, §, and C, respectively.

TABLE 4-2

Truth Table for the Logic Diagram of Fig. 4-9

A B8 C F F5 T T2 T3 F
0 0 0 0 1 0 0 0 0
0 0 1 0 1 1 0 1 1
0 1 0 0 1 1 0 1 1
0 1 1 1 0 1 0 0 0
1 0 0 0 1 1 0 1 1
1 0 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0 0
1 1 1 1 0 1 1 g 1

Consider now a combinational circuit that has don’t-care input combinations. When
such a circuit is designed, the don’t-care combinations are marked by X’s in the map
and assigned an output of either 1 or 0, whichever is more convenient for the sim-
plification of the output Boolean function. When a circuit with don’t-care combinations
is being analyzed, the situation is entirely different. Even though we assume that the
don’t-care input combinations will never occur, if any one of these combinations is ap-
plied to the inputs (intentionally or in error), a binary output will be present. The value
of the output will depend on the choice for the X’s taken during the design. Part of the
analysis of such a circuit may involve the determination of the output values for the
don’t-care input combinations. As an example, consider the BCD-to-excess-3-code
converter designed in Section 4-5. The outputs obtained when the six unused combina-
tions of the BCD code are applied to the inputs are
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Unused BCD Inputs Qutputs
A B c D w x 3% z
1 0 1 0 1 1 0 1
1 0 1 I 1 1 1 0]
1 1 0 0 1 1 1 1
1 1 0 1 1 0 0 0
1 1 1 0 1 0 0 1
1 1 1 1 1 0 1 ]

These outputs may be derived by means of the truth table analysis method as outlined
in this section. In this particular case, the outputs may be obtained directly from the
maps of Fig. 4-7. From inspection of the maps, we determine whether the X’s in the
corrgsponding minterm squares for each output have been included with the 1°s or the
0’s. For example, the square for minterm m,o {1010} has been included with the 1’s for
outputs w, x, and z, but not for y. Therefore, the outputs for mi, are wxyz = 1101, as
listed in the previous table. We also note that the first three outputs in the table have no
meaning in the excess-3 code, and the last three outputs correspond to decimal 5, 6,
and 7, respectively. This coincidence is entirely a function of the choice for the X’s
taken during the design.

4-7 MULTILEVEL NAND CIRCUITS

Combinational circuits are more frequently constructed with NAND or NOR gates
rather than AND and OR gates. NAND and NOR gates are more common from the
hardware point of view because they are readily available in integrated-circuit form.
Because of the prominence of NAND and NOR gates in the design of combinational
circuits, it is important to be able to recognize the relationships that exist between cir-
cuits constructed with AND-OR gates and their equivalent NAND or NOR diagrams.

The implementation of two-level NAND and NOR logic diagrams was presented in
Section 3-6. Here we consider the more general case of multilevel circuits. The proce-
dure for obtaining NAND circuits is presented in this section, and for NOR circuits in
the next section.

Universal Gate

The NAND gate is said to be a universal gate because any digital system can be imple-
mented with it. Combinational circuits and sequential circuits as well can be con-
structed with this gate because the flip-flop circuit (the memory element most fre-
quently used in sequential circuits) can be constructed from two NAND gates
connected back to back, as shown in Section 6-2.

To show that any Boolean function can be implemented with NAND gates, we need
only show that the logical operations AND, OR, and NOT can be implemented with
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Impiementation of NOT, AND, and OR by NAND gates

NAND gates. The implementation of the AND, OR, and NOT operations with NAND
gates is shown in Fig. 4-10. The NOT operation is obtained from a one-input NAND
gate, actually another symbol for an inverter circuit. The AND operation requires two
NAND gates. The first produces the inverted AND and the second acts as an inverter to
produce the normal output. The OR operation is achieved through a NAND gate with
additional inverters in each input.

Boolean-Function Implementation

One possible way to implement a Boolean function with NAND gates is to obtain the
simplified Boolean function in terms of Boolean operators and then convert the func-
tion to NAND logic. The conversion of an algebraic expression from AND, OR, and
complement to NAND can be done by simple circuit-manipulation techniques that
change AND-OR diagrams to NAND diagrams.

To facilitate the conversion to NAND logic, it is convenient to use the two alternate
graphic symbols shown in Fig. 4-11. (These two graphic symbols for the NAND gate
were introduced in Fig. 3-17(a) and are repeated here for convenience.) The AND-
invert graphic symbol consists of an AND graphic symbol followed by a small circle.
The invert-OR graphic symbol consists of an OR graphic symbol that is preceded by
small circles in all the inputs. Either symbol can be used to represent a NAND gate.

A s A

B (ABC) B A"+ B 4+

¢ ¢ = (ABCY
(a) AND-invert (b) invert-OR

FIGURE 4-11

Two graphic symbols for a NAND gate
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To obtain a multilevel NAND diagram from a Boolean expression, proceed as fol-

lows:
1.

2.
3.
4.

From the given Boolean expression, draw the logic diagram with AND, OR, and
inverter gates. Assume that both the normal and complement inputs are available.
Convert all AND gates to NAND gates with AND-invert graphic symbols.
Convert all OR gates to NAND gates with invert-OR graphic symbols.

Check all small circles in the diagram. For every small circle that is not compen-
sated by another small circle along the same line, insert an inverter (one-input
NAND gate) or complement the input variable.

This procedure will be demonstrated with two examples. First, consider the Boolean
function

F=A+ (B +C¥D' + BE"

Although it is possible to remove the parentheses and convert the expression into a
standard sum of products form, we choose to implement it as a multilevel circuit for il-
lustration. The AND-OR implementation is shown in Fig. 4-12(a). There are four lev-
els of gating in the circuit. The first level has an AND and an OR gate. The second
level has an OR gate followed by an AND gate in the third level and an OR gate in the
fourth level. A logic diagram with a pattern of alternate levels of AND and OR gates

(a) AND-OR diagram

=

U O o

Ol

(b) NAND diagram using two graphic symbols
FIGURE 4-12
Implementing + - A + (B + O + BE'} with NAND gates {cantinued on next page}
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(c) NAND diagram using one graphic symbol
FIGURE 4-12 (continued)

can be easily converted into a NAND circuit. This is shown in Fig. 4-12(b). The pro-
cedure requires that we change every AND gate to an AND-invert graphic symbol and
every OR gate to an invert-OR graphic symbol. The NAND circuit performs the same
logic as the AND-OR circuit as long as the complementing small circles do not change
the value of the function. Any connection between an output of a gate that has a com-
plementing circle and the input of another gdte that also has a complementing circle
represents double complementation and does not change the logic of the circuit. How-
ever, the small circles associated with inputs A, B’, C, and D’ cause extra complemen-
tations that are not compensated with other small circles along the same line. We can
insert inverters after each of these inputs or, as shown in the figure, complement the
literals to obtain A’, B, C', and D.

Because it does not matter whether we use the AND-invert or the invert-OR graphic
symbol to represent a NAND gate, the diagram of Fig. 4-12(c) is identical to the
NAND diagram of part (b). In fact, the diagram of Fig. 4-12(b) is preferable because it
represents a clearer picture of the Boolean expression it implements.

As another example, consider the multilevel Boolean expression

F=(CD+ E)A + B')

The AND-OR implementation is shown in Fig. 4-13(a) with three levels of gating. The
conversion into a NAND circuit is presented in part (b) of the diagram. The three addi-
tional small circles associated with inputs E, A, and B’ cause these three literals to be
complemented to E’, A', and B. The small circle in the last NAND gate complements
the output, so we need to insert an inverter gate at the output in order to complement
the signal again and obtain the original value.

The number of NAND gates required to implement the expression of the first exam-
ple is the same as the number of AND and OR gates in the AND-OR diagram. The
number of NAND gates in the second example is equal to the number of AND-OR
gates plus an additional inverter in the output. In general, the number of NAND gates
required to implement a Boolean expression is equal to the number of AND-OR gates
except for an occasional inverter. This is true provided both the normal and comple-
ment inputs arc available, because the conversion forces certain input variables to be
compiemented.
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(a) AND-OR diagram

(b)Y NAND diagram
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(c) Alternate NAND diagram

FIGURE 4-13
Implementing 7 — {CD + EJA + &’ with NAND gates

Analysis Procedure

The foregoing procedure considered the problem of deriving a NAND logic diagram
from a given Boolean function. The reverse process is the analysis problem that starts
with a given NAND logic diagram and culminates with a Boolean expression or a truth
table. The analysis of NAND logic diagrams follows the same procedures presented in
Section 4-6 for the analysis of combinational circuits. The only difference is that
NAND logic requires a repeated application of DeMorgan’s theorem. We shall now
demonstrate the derivation of the Boolean function from a logic diagram. Then we will
show the derivation of the truth table directly from the NAND logic diagram. Finally,
a method will be presented for converting a NAND logic diagram to AND-OR logic
diagram.
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Derivation of the Boolean Function by Algebraic Manipulation

The procedure for deriving the Boolean function from a logic diagram is outlined in
Section 4-6. This procedure is demonstrated for the NAND logic diagram shown in
Fig. 4-14. First, all gate outputs arc labeled with arbitrary symbols. Second, the
Boolean functions for the outputs of gates that receive only external inputs are derived:

nh={(Dy=cC"+D'
L=(BC)Y=B"+C

The second form follows directly from DeMorgan’s theorem and may, at times, be
more convenient to use. Third, Boolean functions of gates that have inputs from previ-
ously derived functions are determined in consecutive order until the output is ex-
pressed in terms of input variables:

T, = (B'T) =(B'C'+ B'D")
=B+ CYB+D)=8+CD

T = (ATs)’ = [A(B + CD)]’

F = (T:T)’ = {(BC')'|A(B + CD)}'}
= BC' + A(B + CD)

C— T
D—

LE]
B.’

Ty

A
— D
(s
FIGURE 4-14

Analysis example

Derivation of the Truth Table

The procedure for obtaining the truth table directly from a logic diagram is also out-
lined in Section 4-6. This procedure is demonstrated for the NAND logic diagram of
Fig. 4-14. First, the four input variables, together with their 16 combinations of 1’s
and 0’s, are listed as in Table 4-3. Second, the outputs of all gates are labeled with ar-
bitrary symbols as in Fig. 4-14. Third, we obtain the truth table for the outputs of those
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TABLE 4-3

Truth Table for the Circuit of Figure 4-13

A B C D ‘t T Tz T3 Ts F
0 0 0 0 I 1 0 1 0
0 0 0 1 [ 1 0 1 0
0 0 1 ¢ 1 1 0 | 0
0 0 1 1 0 1 1 1 0
0 1 0 0 1 0 1 1 1
0 1 0 1 1 0 1 1 1
0 1 1 0 1 1 1 i 0
0 1 1 1 0 1 1 1 0
] 0 0 0 1 i 0 1 0
1 0 0 1 1 1 0 | 0
| 0 1 0 1 1 0 1 0
1 0 1 1 0 1 1 0 1
1 1 0 0 1 0 1 0 1
1 1 0 1 1 0 1 0 1
1 1 1 0 1 1 1 0 1
1 1 1 1 0 1 1 0 1

gates that are a function of the input variables only. These are T\ and 2. T\ = (CD)’;
so we mark 0’s in those rows where both C and D are equal to 1 and fill the rest of the
rows of 71 with 1’s. Also, T> = (BC')'; so we mark 0’s in those rows wher¢ B = 1 and
C = 0, and fill the rest of the rows of T5 with 1’s. We then proceed to obtain the truth
table for the outputs of those gates that are a function of previously defined outputs until
the column for the output F is determined. It is now possible to obtain an algebraic ex-
pression for the output from the derived truth table. The map shown in Fig. 4-15 is ob-

cb ¢
4p,00__ 0! 11 10
00
o] ; | 1 \
——t— T ‘B
i 1 IR !
IR EinBN
A |
10 ‘ 11
NI

F=AB + BC" { ACD
FIGURE 4-15
Dersivation of F from Table 4-3
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tained directly from Table 4-3 and has 1’s in the squares of those minterms for which F
is equal to 1. The simplified expression obtained from the map is
F = AB + ACD + BC' = A(B + CD) + BC'

Transformation to AND-OR Diagram

It is sometimes convenient to convert a NAND logic diagram to its equivalent AND-
OR logic diagram to facilitate the analysis procedure. By doing so, the Boolean expres-
sion can be derived more casily from the diagram without employing DeMorgan’s the-

Dol
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D —

Bal

(a) NAND logic diagram

T

Dk

A
B — F
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(b) Substitution of invert-OR symbols in alternate levels

o

— -
-/

(¢) AND-OR logic diagram
FIGURE 4-16
Conversion of NAND logic diagram to AND-OR
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orem. The conversion is achieved through a change in graphic symbols from
AND-invert to invert-OR in alternate levels in the gate structure. The first level to be
changed to an invert-OR symbol should be the last level. These changes produce pairs
of small circles along the same line, which are then removed since they represent dou-
ble complementation. Any small circle associated with an input can be removed pro-
vided the input variable is complemented. A one-input AND or OR gate with a small
circle in the input or output represents an inverter circuit.

The procedure is demonstrated in Fig. 4-16. The NAND logic diagram of Fig. 4-
16(a) is to be converted to an equivalent AND-OR diagram. The graphic symbol of the
NAND gate i the last level is changed to an invert-OR symbol. Looking for alternate
levels, we find one more gate requiring a change of symbol, as shown in Fig. 4-16(b).
Any two small circles along the same line are removed. The small circle connected to
input 8° is removed and the input variable is complemented. The required AND-OR
logic diagram is shown in Fig. 4-16(c). The Boolean expression for F can be easily de-
termined from the AND-OR diagram to be

F=B8C' + A(B + CD)

4-8 MULTILEVEL NOR CIRCUITS

The NOR function is the dual of the NAND function. For this reason, all procedures
and rules for NOR logic form a dual of the corresponding procedures and rules devel-
oped for NAND logic. This section enumerates various methods for NOR logic imple-
mentation and analysis by following the same list of topics used for NAND logic. How-
ever, less detailed explanation is included so as to avoid excessive repetition of the
material in Section 4-7.

A } pe A NOT ({inverter)
A+ BY

(A'+ B'Y=AB AND

B
Br
FIGURE 4-17
Implementation of NOT, OR, and AND by NOR gates
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Universal Gate

The NOR gate is universal because any Boolean function can be implemented with it,
including a flip-flop circuit, as shown in Section 6-2. The conversion of AND, OR, and
NOT to NOR is shown in Fig. 4-17. The NOT operation is obtained from a one-input
NOR gate, yet another symbol for an inverter circuit. The OR operation requires two
NOR gates. The first produces the inverted-OR and the second acts as an inverter to
obtain the normal output. The AND operation is achieved through a NOR gate with ad-
ditional inverters at each input.

Boolean-Function Implementation

The two graphic symbols for the NOR gate are shown in Fig. 4-18. The OR-invert sym-
bol defines the NOR operation as an OR foliowed by a complement. The invert-AND
symbol complements each input and then performs an AND operation. The two sym-
bols designate the same NOR operation and are logically identical because of DeMor-
gan’s theorem.

The procedure for implementing a Boolean function with NOR gates is similar to the
procedure outlined in the previous section for NAND gates.

1. Draw the AND-OR logic diagram from the given algebraic expression. Assume
that both the normal and complement inputs are available.

2. Convert all OR gates to NOR gates with OR-invert graphic symbols.
3. Convert all AND gates to NOR gates with invert-AND graphic symbols.

4. Any small circle that is not compensated by another small circle along the same
line needs an inverter or the complementation of the input variable.

The procedure is illustrated in Fig. 4-19 for the Boolean function
F = (AB + E)(C + D)

The AND-OR implementation of the expression is shown in the logic diagram of Fig.
4-19(a). For each OR gate, we substitute a NOR gate with the OR-invert graphic sym-
bol. For each AND gate, we substitute a NOR gate with the invert-AND graphic sym-
bol. The two small circles associated with inputs A and B cause these two variables to
be complemented to A’ and B', respectively. The NOR diagram is shown in Fig. 4-
19(b). The diagram of Fig. 4-19(c) is an alternate way of drawing the diagram using
oniy one type of graphic symbol for the NOR gate.

S '_‘}(A +B+CY gjﬂ A'BC'=(4+B+C)
¢ ——1 C |/

(a) OR-invert (b) invert-AND
FIGURE 4-18

Twao graphic symbols for a NOR gate
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A—1
B PR
: T
C
D
(a) AND-OR diagram

A'—Q
8—0

—) > s
T

(b) NOR diagram

A
B'
E F

C
D

(c) Alternate NOR diagram
FIGURE 4-19
Implementing F = [AB + EJIC + D] with NOR gates

In general, the number of NOR gates required to implement a Boolean function will
be the same as the number of gates in the AND-OR diagram. This is true provided both
the normal and complement inputs are available, because the conversion may require
that certain input variables be complemented.

Analysis Procedure

The analysis of NOR logic diagrams follows the same procedure presented in Section
4-6 for the analysis of combinational circuits. To derive the Boolean expression from a
logic diagram, we mark the outputs of various gates with arbitrary symbols. By repeti-
tive substitutions, we obtain the output variable as a function of the input variables.
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[ B

(a} NOR logic diagram

ey
— >

{ —

(b) Sustituting invert-AND in alternate levels

-

) >O—

(c) AND-OR logic diagram

FIGURE 4-20
Conversion of NOR diagram to AND-OR
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To obtain the truth table from a logic diagram without first deriving the Boolean ex-
pression, we form a table with the » variables by listing the 2" binary combinations.
The truth table of selected NOR gate outputs is derived in succession until the output
truth table is obtained. The output expression of a typical NOR gate is of the form
T = (A + B’ + C). By using DeMorgan’s theorem, this can be expressed as
T = A'BC’. The truth table for 7 is marked with 1’s for those combinations where
ABC = 010 and the rest of the rows are filled with 0’s.

The conversion of a NOR logic diagram to an AND-OR diagram is achieved through
a change of graphic symbols from OR-invert to invert-AND starting from the last logic
level and in alternate levels. Pairs of small circles along the same line are removed. A
one-input AND or OR gate is removed, but if it has a small circle at the input or output,
it is converted to an inverter. Any small circle associated with an input is removed and
the input variable is complemented.

This procedure is demonstrated in Fig. 4-20, where the NOR logic diagram in part
(a) is converted to an AND-OR diagram. The graphic symbol of the gate in the last
(fourth) logic level is changed to an invertAND. Looking for alternate levels, we find
a gate in level two that needs to undergo a symbol change, as shown in part (b). Any
two circles along the same line are removed. The circle associated with external input
B is removed and the input variable is changed to B'. The required AND-OR logic dia-
gram is drawn in part (c). The Boolean expression for the circuit can be obtained by in-
spection and then manipulated into a product of sums form:

F=[(C+ DB’ + Al(B + C’)
=(A+C+ DA+ BYWB +C")

4-9 EXCLUSIVE-OR FUNCTION

The exclusive-OR (XOR) denoted by the symbol €@ is a logical operation that per-
forms the following Boolean operation:

xBy=xy +x'y

It is equal to 1 if only x is equal to 1 or if only y is equal to 1 but not when both are
equal to 1. The exclusive-NOR, also known as equivalence, performs the following
Boolean operation:

(@) = xy +xy

It is equal to 1 if both x and y are equal to 1 or if both are equal to 0. The exclusive-
NOR can be shown to be the complement of the exclusive-OR by means of a truth table
or by algebraic manipulation.

xDy) =y +xy) =&+ yHx+y)=axy+aly’
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The following identities apply to the exclusive-OR operation:

xP0=1x xP1=x'
xBx=0 xPx' =1
@y =xByy xBy=@xdy)

Any of these identities can be proven by using a truth table or by replacing the @ oper-
ation by its equivalent Boolean expression. It can be shown also that the exclusive-OR
aperation is both commutative and associative.

ADGB=BdA
ADBRC=ADPBDPC)=ADBDBC

This means that the two inputs to an exclusive-OR gate can be interchanged without af-
fecting the operation. It also means that we can evaluate a three-variable exclusive-OR
operation in any order and for this reason, three or more variables can be expressed
without parentheses. This would imply the possibility of using exclusive-OR gates with
three or more inputs. However, multiple-input exclusive-OR gates are difficult to fabri-
cate with hardware. In fact even a two-input function is vsually constructed with other
types of gates. A two-input exclusive-OR function is constructed with conventional
gates using two inverters, two AND gates, and an OR gate, as shown in Fig. 4-21(a).
Figure 4-21(b) shows the implementation of the exclusive-OR with four NAND gates.

X

o
o

v Y

(a) With AND-OR-NOT gates

.

(b) With NAND gates

T Y

FIGURE 4-21
Exclusive-OR implementations
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The first NAND gate performs the operation (xy)’ = (x' + y'). The other two-level
NAND circuit produces the sum of products of its inputs:

(x" +yx+x" +yly=xy " +x'y=xDy

Only a limited number of Boolean functions can be expressed in terms of exclusive-
OR operations. Nevertheless, this function emerges quite often during the design of
digital systems. It is particularly useful in arithmetic operations and error-detection and
correction circuits.

Odd Function

The exclusive-OR operation with three or more variables can be converted into an ordi-
nary Boolean function by replacing the & symbol with its equivalent Boolean expres-
sion. In particular, the three-variable case can be converted to a Boolean expression as
follows:

ADBEHC=(AB" + A'B)C' + (AB + A'B')C

= AB'C’' + A'BC’ + ABC + A'B'C
=2(1,2.4,7)

The Boolean expression clearly indicates that the three-variable exclusive-OR function
is equal to 1 if only one variable is equal to 1 or if all three variables are equal to 1.
Contrary to the two-variable case, where only one variable must be equal to 1, in the
three or more variable case, the requirement is that an odd number of variables be
equal to 1. As a consequence, the multiple-variable exclusive-OR operation is defined
as an odd function.

The Boolean function derived from the three-variable exclusive-OR operation is ex-
pressed as the logical sum of four minterms whose binary numerical values are 001,
010, 100, and 111. Each of these binary numbers has an odd number of 1’s. The other
four minterms not included in the function are 000, 011, 101, and 110, and they have
an even number of 1’s in their binary numerical values. In general, an n-variable exclu-
sive-OR function is an odd function defined as the logical sum of the 2°/2 minterms
whose binary numerical values have an odd number of 1’s.

The definition of an odd function can be clarified by plotting it in a map. Figure 4-
22(a) shows the map for the three-variable exclusive-OR function. The four minterms
of the function are a unit distance apart from each other. The odd function is identified
from the four minterms whose binary values have an odd number of 1’s. The comple-
ment of an odd function is an even function. As shown in Fig. 4-22(b), the three-vari-
able even function is equal to 1 when an even number of variables is equal to 1 (includ-
ing the condition that none of the variables is equal to 1).

The 3-input odd function is implemented by means of 2-input exclusive-OR gates, as
shown in Fig. 4-23(a). The complement of an odd function is obtained by replacing the
output gate with an exclusive-NOR gate, as shown in Fig. 4-23(b).
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BC ¥ BC B
00 0l 11 10 P 00 01 11 10
0 1 1 ] 1 1
A { 1| 1 1 A{ 1 1 1
—_— —
C C
(a) Qdd function (b) Even function
F=AoBe(C F=(AeBeC)
FIGURE 4-22 .

Map for a three-variable exclusive-OR function

Consider now the the four-variable exclusive-OR operation. By algebraic manipula-
tion, we can obtain the sum of minterms for this function:

ADBDBCDD=(AB'+ A'B)®B (CD' + C'D)
=(AB' + A'B)(CD + C'D’') + (AB + A'B')(CD’ + C'D)
=3(1,2,4,7,8, 11, 13, 14)

There are 16 minterms for a four-variable Boolean function. Half of the minterms
have binary numerical values with an odd number of 1°s; the other half of the minterms
have binary numerical values with an even number of 1's. When plotting the function
in the map, the binary numerical value for a minterm is determined from the row and
column numbers of the square that represents the minterm. The map of Fig. 4-24(a) is
a plot of the four-variable exclusive-OR function. This is an odd function because the
binary values of all the minterms have an odd number of 1’s. The complement of an
odd function is an even function. As shown in Fig. 4-24(b), the four-variable even
function is equal to 1 when an even number of variables is equal to 1.

=L D

Co—— c

{a) 3-input odd function (b) 3-input even function
FIGURE 4-23
Logic diagram of odd and even functions
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C C
cD e —, ch —
00 01 11 10 00 01 11 10
AB AR
00 1 1 00 1 1
01 1 1 01 1 1
B B
11 1 1 11 1 1
A A
10 1 1 10 1 1
— bro—
D D
(a) Odd function (b} Even function
F=A®oBeCoD F=(A®BsCeD)

FIGURE 4-24
Map for a four-variable exclusive-OR function

Parity Generation and Checking

Exclusive-OR functions are very useful in systems requiring error-detection and
correction codes. As discussed in Section 1-7, a parity bit is used for the purpose of
detecting errors during transmission of binary information. A parity bit is an extra bit
included with a binary message to make the number of I's either odd or even. The
message, including the parity bit, is transmitted and then checked at the receiving end
for errors. An error is detected if the checked parity does not correspond with the one
transmitted. The circuit that generates the parity bit in the transmitter is called a parity
generator. The circuit that checks the parity in the receiver is called a parity checker.

As an example, consider a 3-bit message to be transmitted together with an even
parity bit. Table 4-4 shows the truth table for the parity generator. The three bits, x, y,
and z, constitute the message and are the inputs to the circuit. The parity bit P is the
output. For even parity, the bit P must be generated to make the total number of 1°s
even (including P). From the truth table, we see that P constitutes an odd function be-
cause it is equal to 1 for those minterms whose numerical values have an odd number of
1’s. Therefore, P can be expressed as a three-variable exclusive-OR function:

P=xPdyd:
The logic diagram for the parity generator is shown in Fig. 4-25(a).
The three bits in the message together with the parity bit are transmitted to their

destination, where they are applied to a parity-checker circuit to check for possiblé‘ er-
rors in the transmission. Since the information was transmitted with even parity, the
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TABLE 4-4
Even-Parity-Generator Truth Table
Three-Bit Message Parity Bit
X ¥y z £
0 0 0 0
0 0 1 1
01 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

four bits received must have an even number of 1’s. An error occurs during the trans-
mission if the four bits received have an odd number of 1’s, indicating that one bit has
changed in value during transmission. The output of the parity checker, denoted by C,
will be equal to 1 if an error occurs, that is, if the four bits received have an odd num-
ber of 1’s. Table 4-5 is the truth table for the even-parity checker. From it we see that
the function C consists of the eight minterms with binary numerical values having an
odd number of 1’s. This corresponds to the map of Fig. 4-24(a), which represents an
odd function. The parity checker can be implemented with exclusive-OR gates:

C=xDyd:z®Pr
The logic diagram of the parity checker is shown in Fig. 4-25(b).
It is worth noting that the parity generator can be implemented with the circuit of
Fig. 4-25(b) if the input P is connected to logic-0 and the output is marked with P.

This is because z € 0 = z, causing the value of z to pass through the gate unchanged.
The advantage of this is that the same circuit can be used for both parity generation and

checking.

x
¥ P C

F4

]

N

{a) 3-bit even parity generator (b} 4-bit even parity checker

FIGURE 4-25
Logic diagram of a parity generator and checker
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TABLE 4-5
Even-Parity-Checker Truth Table
Four Bits Received Parity Error Check
x ¥y z F C
- 0000 0
0001 1
0010 1
0011 0]
0100 1
.1 01 0
01 1 0 0
o 1 1 1 l
1 ¢ 00 1
1 00 | 0
1 0610 0]
1 011 1
1 1 00 0
1 1 01 1
I 110 1
I 1 11 0

It is obviouns from the foregoing example that parity-generation and checking circuits
always have an output function that includes halt' of the minterms whose numerical
values have either an odd or even number of 1’s. As a consequence, they can be imple-
mented with exclusive-OR gates. A function with an even number of 1°s is the comple-
ment of an odd function. [t is implemented with exclusive-OR gates except that the gate
associated with the output must be an exclusive-NOR to provide the required comple-
mentation.
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Design a combinational circuit with three inputs and one output. The output is equal to
logic-1 when the binary value of the input is less than 3. The output is logic-0 otherwise.

Design a combinational circuit with three inputs, x, y, and z, and three outputs, 4, B, and
C. When the binary input is 0, 1, 2, or 3, the binary output is one greater than the input.
When the binary input is 4, 5, 6, or 7, the binary output is one less than the input.

A majority function is generated in a combinational circuit when the output is equal to 1 if
the input variables have more 1°s than 0’s. The output is O otherwise. Design a 3-input
majority function.

Design a combinational circuit that adds one to a 4-bit binary number, As A, A; Ay. For ex-
ample, if the input of the circuit is A3 A; A, Ay = 1101, the output is 1110, The circuit can
be designed using four half-adders.

A combinational circuit produces the binary sum of two 2-bit numbers, x;xo and y, yo. The
outputs are C, 5, and So. Provide a truth table of the combinational circuit.

Design the circunit of Problem 4-5 using two full-adders.

Design a combinational circuit that multiplies two 2-bit numbers, a,ao and b, by, to pro-
duce a 4-bit product, csez61c0. Use AND gates and half-adders.

Show that a full-subtractor can be constructed with two half-subtractors and an OR gate.

Design a combinational circuit with three inputs and six outputs. The output binary num-
ber should be the square of the input binary number.

Design a combinational circuit with four inputs that represent a decimal digit in BCD and
four outputs that produce the 9’s complement of the input digit. The six unused combina-
tions can be treated as don’t-care conditions.

Design a combinational circuit with four inputs and four outputs. The output generates the
2’s complement of the input binary number.

Design a combinational circuit that detects an error in the representation of a decimal digit
in BCD. The output of the circuit must be equal to logic-1 when the inputs contain any
one of the six unvsed bit combinations in the BCD code.

Design a code converter that converts a decimal digit from the 8 4 —2 —1 code to BCD
(see Table 1-2.)
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4-14

4-15

4-16

Design a combinational circuit that converts a decimal digit from the 2 4 2 1 code to the
8 4 —2 —1 code (see Table 1-2.}

Design a combinational circuit that converts a binary number of four bits to a decimal
number in BCD. Note that the BCD number is the same as the binary number as long as
the input is less than or equal to 9. The binary number from 1010 to 1111 converts into
BCD numbers from 1 0000 to 1 0101.

A BCD-to-seven-segment decoder is a combinational circuit that converts a decimal digit
in BCD to an appropriate code for the selection of segments in a display indicator used for
displaying the decimal digit in a familiar form. The seven outputs of the decoder (a, b, c,
d, e, f, g) select the corresponding segments in the display, as shown in Fig. P4-16(a).
The numeric designation chosen to represent the decimal digit is shown in Fig. P4-16(b).
Design the BCD-to-seven-segment decoder using a minimum number of NAND gates.
The six invalid combinations should result in a blank display.

O oo

— I I T I B A I

|, | B e e
(a} Segment designation (b} Numerical designation for display

FIGURE P4-16

4-17

Analyze the two-output combinational circuit shown in Fig. P4-17. Find the Boolean
functions for the two outputs as a function of the three inputs and explain the circuit oper-
ation.

4-18 Derive the truth table of the circuit shown in Fig. P4-17.

A

)
B . }

Y

st

FIGURE P4-17
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4-19 Draw the NAND logic diagram for each of the following expressions using multiple-level
NAND gate circuits:
(a) (AB' + CD’)E + BC(A + B)
by wix + vy +2) + xyz

4-20 Convert the logic diagram of the code converter shown in Fig. 4-8 to a multiple-level
NAND circuit,

4-21 Determine the Boolean functions for outputs F and G as a function of four inputs, A, B, C,

and D, in Fig. P4-21.
D

A

1 >

[~

» [ -

FIGURE P4-21
4-22 Verify that the circuit of Fig. P4-22 generates the exclusive-NOR function.

x =p
T =D
y SPs

FIGURE P4-22

T
Y

G

4-23 Convert the logic diagram of the code converter shown in Fig. 4-8 to a multiple-level
NOR circuit.

4-24 Derive the truth table for the output of each NOR gate in Fig. 4-20(a).
4-25 Prove that x @y =x @B y' = (x B y)' = xy + x'y".

4-26 Provethatx D | = x" and x P 0 = x.

4-27 Show thatif xy = 0, thenx @ y = x + y.

- 4-28 Design a combinational circuit that converts a 4-bit Gray code number (Table 1-4) to a 4-
bit straight binary number. Implement the circuit with exclusive-OR gates.

=, 429 Design the circuit of a 3-bit parity generator and the circuit of a 4-bit parity checker using
an odd parity bit.

4-30 Manipulate the following Boolean expression in such a way 50 that it can be implemented
using exclusive-OR and AND gates only.

AB'CD' + A'BCD' + AB'C'D + A'BC'D
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The purposc of Boolean-algebra simplification is to obtain an algebraic expression that,
when implemented, results in a low-cost circuit. However, the criteria that determine a
low-cost circuit must be defined if we are to evaluate the success of the achieved sim-
plification. The design procedure for combinational circuits presented in Section 4-2
minimizes the number of gates required to implement a given function. This procedure
assumes that given two circuits that perform the same function, the one that requires
fewer gates is preferable because it will cost less. This is not necessarily true when inte-
grated circuits are used.

The circuit complexity of integrated circuits (ICs) has been classified in Section 2-8
as having four levels of integration: small- (SST), medium- (MSI), large- (LSI), and
very large- (VLST) scale integration. A combinational circuit designed with individual
gates can be implemented with SSI circuits that contain several independent gates. The
number of gates in an SSI circuit is limited by the number of pins in the package, typi-
cally 14 or 16. Since several gates are included in a single IC package, it becomes eco-
nomical to use as many of the gates from an alrcady used package even if, by doing so,
we increase the total mumber of gates. Moreover, some interconnections among the
gates in many [Cs are internal to the chip and it is more economical to use as many in-
ternal interconnections as possible in order to minimize the number of wires between
package pins. With integrated circuits, it is not the count of gates that determines the
cost, but the number and types of ICs employed and the number of interconnections
needed to implement the given digital circuit.
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There are several combinational circuits that are employed extensively in the design
of digital systems. These circuits are available in integrated circuits and are classified as
MSI components. MSI components perform specific digital functions commonly
needed in the design of digital systems. In this chapter we introduce the most important
combinational circuit-type MSI components that are readily available in IC packages.
These are adders, subtractors, comparators, decoders, encoders, and multiplexers.
These components are also used as standard modules within more complex L.SI and
VLSI circuits. The MSI components presented here provide a catalog of elementary
digital modules used extensively as basic building blocks in the design of digital com-
puters and systems.

The components of a digital system can be classified as being specific to an applica-
tion or as being standard circuits. Standard components are taken from a set that has
been used in other systems. MSI components are standard circuits and their use results
in a significant reduction in the total cost as compared to the cost of using SSI circuits.
In contrast, specific components are particular to the system being implemented and
are not commonly found among the standard components. The implementation of
specific circuits with LSI chips can be done by means of ICs that can be programmed to
provide the required logic.

A programmable logic device (PLD) is an integrated circuit with internal logic gates
that are connected through electronic fuses. Programming the device involves the blow-
ing of fuses along the paths that must be disconnected so as to obtain a particular
configuration. The word “programming” here refers to a hardware procedure that
specifies the internal configuration of the device. The gates in a PLD are divided into
an AND array and an OR array that are connected together to provide an AND-OR
sum of product implementation, The initial state of a PLD has all the fuses intact. Pro-
gramming the device involves the blowing of internal fuses to achieve a desired logic
function.

In this chapter we introduce three programmable logic devices and establish proce-
dures for their use in the design of digital systems. The three types of PLDs differ in
the placement of fuses in the AND-OR array. Figure 5-1 shows the fuse locations of
the three PLDs. The programmable read-only memory (PROM) has a fixed AND array
and programmable fuses for the output OR gates. The PROM implements Boolean
functions in sum of minterms, as explained in Section 5-7. The programmable array
logic (PAL) has a fused programmable AND array and a fixed OR array. The AND
gates are programmed to provide the product terms for the Boolean functions that are
logically summed in each OR gate. PALs are presented in Section 5-9. The most
flexible PLD is the programmable logic array (PLA), where both the AND and OR ar-
rays can be programmed. The product terms in the AND array may be shared by any
OR gate to provide the required sum of products implementation. The operation of the
PLA is explained in Section 5-8.

The advantage of using PLDs in the design of digital systems is that they can be pro-
grammed to incorporate complex logic functions within one LSI circuit. The use of
programmable logic devices is an alternative to another design technology called VLSI
design. VLSI design refers to the design of digital systems that contain thousands of
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Fixed Fuses Fused
Inputs ———————— N ——O—0——»1 programmable }— OQutputs
AND array OR array

(a) Programmable read-only memory (PROM)

Fuses Fused ;
Inputs ———O—0Q—»{ programmable - oglxed b Qutpuits
AND array array
(b) Programmable array logic (PAL}
Fuses Fused Fuses Fused
Inputs O—CO—»{ programmable |——O—C0—® programmable |— Qutputs
AND array OR array
(c) Programmable logic array (PLA)
FIGURE 5-1

Basic configuration of three PLDs

gates within a single integrated-circuit chip. The basic component used in VLSI design
is the gate array. A gate array consists of a pattern of gates fabricated in an area of sili-
con that is repeated thousands of times until the entire chip is covered with identical
gates. Arrays of 1000 to 10,000 gates can be fabricated within a single integrated-
circuit chip, depending on the technology used. The design with gate arrays requires
that the designer specify the layout of the chip and the way that the gates are routed and
connected. The first few levels of the fabrication process are common and independent
of the final logic function. Additional fabrication levels are required to interconnect the
gates in order to realize the desired function. This is usually done by means of com-
puter-aided design methods. Both the gate array and the programmable logic device re-
quire extensive computer software tools to facilitate the design procedure.

5-2 BINARY ADDER AND SUBTRACTOR

The full-adder introduced in Section 4-3 forms the sum of two bits and a previous
carry. Two binary numbers of r bits each can be added by means of this circuit. To
demonstrate with a specific example, consider two binary numbers, A = 1011 and
B = 0011, whose sum is § = 1110. When a pair of bits are added through a full-
adder, the circuit produces a carry to be used with the pair of bits one significant posi-
tion higher. This is shown in the following table:
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Full-adder of
Subscript f 4 3 21 Fig. 4-5
Inputcarry 0 1 1 0 C z
Augend 1 011 A; x
Addend 0011 B; y
Sum 1110 & §
Outputcarry 0 0 1 1 Gy C

The bits are added with full-adders, starting from the least significant position (sub-
script 1), to form the sum bit and carry bit. The inputs and outputs of the full-adder cir-
cuit of Fig. 4-5 are also indicated. The input carry C, in the least significant position
must be 0. The value of Ci., in a given significant position is the output carry of the
full-adder. This value is transferred into the input carry of the fuli-adder that adds the
bits on¢ higher significant position to the left. The sum bits are thus generated starting
from the rightmost position and are available as soon as the corresponding previous
carry bit is generated.

The sum of two n-bit binary numbers, A and B, can be generated in two ways: either
in a serial fashion or in parallel. The serial addition method uses only one full-adder
circuit and a storage device to hold the generated output carry. The pair of bits in A and
B are transferred serially, one at a time, through the single full-adder to produce a
string of output bits for the sum. The stored output carry from one pair of bits is used
as an input carry for the next pair of bits. The parallel method uses » full-adder circuits,
and all bits of A and B are applied simultaneously. The output carry from one full-adder
is connected to the input carry of the full-adder one position to its left. As soon as the
carries are generated, the correct sum bits emerge from the sum outputs of all full-
adders.

Binary Parallel Adder

A binary parallel adder is a digital circuit that produces the arithmetic sum of two bi-
nary numbers in parallel. It consists of full-adders connected in a chain, with the output
carry from each full-adder connected to the input carry of the next full-adder in the
chain.

Figure 5-2(a) shows the interconnection of four full-adder (FA) circuits to provide a
4-bit binary parallel adder. The augend bits of A and the addend bits of B are desig-
nated by subscript numbers from right to left, with subscript 1 denoting the low-order
bit. The carries are connected in a chain through the full-adders. The input carry to the
adder is C, and the output carry is Cs. The § outputs generate the required sum bits.
When the 4-bit full-adder circuit is enclosed within an IC package, it has four terminals
for the augend bits, four terminals for the addend bits, four terminals for the sum bits,
and two terminals for the input and output carries.

An n-bit parallel adder requires n full-adders. It can be constructed from 4-bit, 2-
bit, and 1-bit full-adders ICs by cascading several packages. The output carry from one
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(b) 4-bit adder-subtractor
FIGURE 5-2
Adder and subtractor circuits

package must be connected to the input carry of the one with the next higher-order
bits.

The 4-bit full-adder is a typical example of an MSI function. It can be used in many
applications involving arithmetic operations. Observe that the design of this circuit by
the classical method would require a truth table with 2° = 512 entries, since there are
nine inputs to the circuit. By using an iterative method of cascading an already known
function, we were able to obtain a simple and well-organized implementation.

Binary Adder-Subtractor

The subtraction of binary numbers can be done most conveniently by means of comple-
ments, as discussed in Section 1-5. Remember that the subtraction A — B can be done
by taking the 2’s complement of B and adding it to A. The 2's complement can be ob-
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tained by taking the 1’s complement and adding one to the least significant pair of bits.
The 1’s complement can be implemented with inverters and a one can be added to the
sum through the input carry.

The circuit for subtracting A — B consists of a parallel adder with inverters placed
between c¢ach data input B and the corresponding input of the full-adder. The input
carry C, must be equal to 1 when performing subtraction. The operation thus per-
formed becomes A plus the 1's complement of B pius 1. This is equal to A plus the 2’s
complement of B. For unsigned numbers, this gives A — Bif A = B or the 2’s com-
plement of B — A if A << B (see Section 1-5). For signed numbers, the resultis A — B
provided there is no overflow. (See Section 1-6.)

The addition and subtraction operations can be combined into one circuit with one
common binary adder. This is done by including an exclusive-OR gate with each full-
adder. A 4-bit adder-subtractor circuit is shown in Fig. 5-2(b). The mode input M con-
trols the operation. When M = 0, the circuit is an adder, and when M = 1, the circuit
becomes a subtractor. Each exclusive-OR gate receives input M and one of the inputs of
B. When M = 0, we have B @ 0 = B. The full-adders receive the value of B, the in-
put carry is 0, and the circuit performs A plus B. When M = 1, wehave B 1 = B’
and C; = 1. The B inputs are all complemented and a 1 is added through the input
carry. The circuit performs the operation A plus the 2’s complement of B.

Carry Propagation

The addition of two binary numbers in parallel implies that all the bits of the augend
and the addend are available for computation at the same time. As in any combina-
tional circuit, the signal must propagate through the gates before the correct output sum
is available in the output terminals. The total propagation time is equal to the propaga-
tiont delay of a typical gate times the number of gate levels in the circuit. The longest
propagation delay time in a parallel adder is the time it takes the carry to propagate
through the full-adders. Since each bit of the sum output depends on the value of the
input carry, the value of §; in any given stage in the adder will be in its steady-state
final value only after the input carry to that stage has been propagated. Consider output
S, in Fig. 5-2(a). Inputs A, and B, reach a steady value as soon as input signals are ap-
plied to the adder. But input carry C, does not settle to its final steady-state value until
C, is available in its steady-state value, Similarly, Cs has to wait for C2, and so on down
to C,. Thus, only after the carry propagates through all stages will the last output 5,
and carry Cs settle to their final steady-state value.

The number of gate levels for the carry propagation can be found from the circuit of
the full-adder. This circuit was derived in Fig. 4-5 and is redrawn in Fig. 5-3 for con-
venience. The input and output variables use the subscript i to denote a typical stage in
the parallel adder. The signals at P; and G: settle to their steady-state values after the
propagation through their respective gates. These two signals are common to all full-
adders and depend only on the input augend and addend bits. The signal from the input
carry,.C, to the output carry, Ciy1, propagates through an AND gate and an OR gate,
which constitute two gate levels. If there are four full-adders in the parallel adder, the
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Full-adder circuit

output carry Cs would have 2 X 4 = 8 gate levels from C, to Cs. The total propagation
time in the adder would be the propagation time in one half-adder plus eight gate levels.
For an n-bit parallel adder, there are 2n gate levels tor the carry to propagate through.

The carry propagation time is a liniting factor on the speed with which two numbers
are added in parallel. Although a parallel adder, or any combinational circuit, will al-
ways have some value at its output terminals, the outputs will not be correct unless the
signals are given enough time to propagate through the gates connected from the inputs
to the outputs. Since all other arithmetic operations are implemented by successive ad-
ditions, the time consumed during the addition process is very critical. An obvious so-
lution for reducing the carry propagation delay time is to employ faster gates with re-
duced delays. But physical circuits have a limit to their capability. Another solution is
to increase the equipment complexity in such a way that the carry delay time is re-
duced. There are several techniques for reducing the carry propagation time in a paral-
lel adder. The most widely used technique employs the principle of lock-ahead carry
and is described below.

Consider the circuit of the full-adder shown in Fig. 5-3. f we define two new binary
variables:

Pi=A®D B
G;‘=A¢'B,'

the output sum and carry can be expressed as

Si=Pj®Ci
Civi = G + PG

G; is called a carry generate and it produces an output carry when both A; and B, are
one, regardiess of the input carry. P; is called a carry propagate because it is the term
associated with the propagation of the carry from C to Cisy.

‘We now write the Boolean function for the carry output of each stage and substitute
for each C; its value from the previous equations:
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C.=Gi+ Pi(4,
Cy = G2+ P,C = Gy + PGy + PC) =G, + PGy + PLP.Cy
Co=Gi+ PsCi =G + P3Gy + PyPG + P3P P C

Since the Boolean function for each output carry is expressed in sum of products, each
function can be implemented with one level of AND gates followed by an OR gate (or
by a two-level NAND). The three Boolean functions for Ca, Cs, and C, are imple-
mented in the look-ahead carry generator shown in Fig. 5-4. Note that C, does not
have to wait for C; and C; to propagate; in fact, C, is propagated at the same time as C;
and Cs.

The construction of a 4-bit parallel adder with a look-ahead carry scheme is shown
in Fig. 5-5. Each sum output requires two exclusive-OR gates. The output of the first
exclusive-OR gate generates the P; variable, and the AND gate generates the G; vari-
able. All the P’s and G’s are generated in two gate levels. The carries are propagated
through the look-ahead carry generator (similar to that in Fig. 5-4) and applied as in-

G
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o

FIGURE 5-4
Logic diagram of a look-ahead carry generator
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4-bit full-adders with look-ahead carry

puts to the second exclusive-OR gate. After the P and G signals settle into their steady-
state values, all output carries are generated after a delay of two levels of gates. Thus,
outputs .5 through S, have equal propagation delay times. The two-level circuit for the
output carry Cs is not shown in Fig. 5-4. This circuit can be easily derived by the equa-
tion-substitution method, as done above (see Problem 5-8).

5-3 DECIMAL ADDER

Computers or calculators that perform arithmetic operations directly in the decimal
number system represent decimal numbers in binary-coded form. An adder for such a
computer must employ arithmetic circuits that accept coded decimal numbers and
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present results in the accepted code, For binary addition, it was sufficient to consider a
pair of significant bits at a time, together with a previous carry. A decimal adder re-
quires a minimum of nine¢ inputs and five outputs, since four bits are required to code
each decimal digit and the circuit must have an input carry and output carry. Of course,
there is a wide variety of possible decimal adder circuits, dependent upon the code used
to represent the decimal digits.

The design of a nine-input, five-output combinational circuit by the classical method
requires a truth table with 2° = 512 entries. Many of the input combinations are don’t-
care conditions, since each binary code input has six combinations that are invalid, The
simplified Boolean functions for the circuit may be obtained by a computer-generated
tabular method, and the result would probably be a connection of gates forming an ir-
regular pattern. An alternate procedure is to add the numbers with full-adder circuits,
taking into consideration the fact that six combinations in each 4-bit input are not used.
The output must be modified so that only those binary combinations that are valid com-
binations of the decimal code are generated.

Consider the arithmetic addition of two decimal digits in BCD, together with a possible
carry from a previous stage. Since each input digit does not exceed 9, the output sum
cannot be greater than 9 + 9 + 1 = 19, the 1 in the sum being an input carry. Sup-
pose we apply two BCD digits to a 4-bit binary adder. The adder will form the sum in
binary and produce a result that may range from 0 to 19. These binary numbers are
listed in Table 5-1 and are labeled by symbols K, Zs, Zs, Z,, and Z,. K is the carry, and
the subscripts under the letter Z represent the weights 8, 4, 2, and 1 that can be as-
signed to the four bits in the BCD code. The first column in the table lists the binary
sums as they appear in the outputs of a 4-bit binary adder. The output sum of two deci-
mal digits must be represented in BCD and should appear in the form listed in the sec-
ond column of the table. The problem is to find a simple rule by which the binary num-
ber,in the first column can be converted to the correct BCD-digit representation of the
number in the second column.

In examining the contents of the table, it is apparent that when the binary sum is
equai to or less than 1001, the corresponding BCD number is identical, and therefore
no conversion is needed. When the binary sum is greater than 1001, we obtain a non-
valid BCD representation. The addition of binary 6 (0110} to the binary sum converts
it to the correct BCD representation and also produces an output carry as required.

The logic circuit that detects the necessary correction can be derived from the table
entries. It is obvious that a correction is needed when the binary sum has an output
carry K = 1. The other six combinations from 1010 to 1111 that need a correction
have a 1 in position Zs. To distinguish them from binary 1000 and 1001, which also
have a 1 in position Zs, we specify further that either Z, or Z, must have a 1. The condi-
tion for a correction and an output carry can be expressed by the Boolean function

C =K+ ZsZ, + Zx 7,
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TABLE 5-1
Derivation of a BCD Adder

Binary Sum BCD Sum __ Decimal
K Zg Z4 Zs Z C Sa S4 Sz S
0 0 0 ] 0 Q 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 i
0 0 0 1 0 0 0 0 1 0 2
0 0 0 1 1 0 0] 0 1 } 3
0 0 1 0 0 0 0 1 0 0 4
0 0 1 0 1 0 0 1 0 1 5
0 0 1 1 0 0 0 | 1 0 6
0 0 1 1 1 0 0 1 1 1 7
0 1 0 0 0 0 | 0 0 0 8
0 | 0 0 1 0 1 0 0 1 9
0 1 0 1 0 1 0 0 0 0 10
0 I 0 { I 1 0 0 0 1 11
0 1 1 0 0 1 0 0 1 0 12
0 1 i 0 1 1 0 0 1 1 13
0 1 1 1 0 i 0 1 0 0 14
0 1 1 1 1 1 0 1 0 1 15
1 0 0 0 0 i 0 1 | 0 16
1 0 0 0 1 1 0 1 1 l 17
1 0 0 ] 0 1 1 0 0 0 18
1 0 0 1 | 1 1 0 0 | 19

When C = 1, it is necessary to add 0110 to the binary sum and provide an output carry
for the next stage.

A BCD adder is a circuit that adds two BCD digits in parallel and produces a sum
digit also in BCD. A BCD adder must include the correction logic in its internal con-
struction. To add 0110 to the binary sum, we use a second 4-bit binary adder, as
shown in Fig. 5-6. The two decimal digits, together with the input carry, are first
added in the top 4-bit binary adder to produce the binary sum. When the output carry
is equal to zero, nothing is added to the binary sum. When it is equal to one, binary
0110 is added to the binary sum through the bottom 4-bit binary adder. The output
carry generated from the bottom binary adder can be ignored, since it supplies informa-
tion already available at the output-carry terminal.

The BCD adder can be constructed with three IC packages. Each of the 4-bit adders
is an MSI function and the three gates for the correction logic need one SSI package.
However, the BCD adder is available in one MSI circuit. To achieve shorter propaga-
tion delays, an MSI BCD adder includes the necessary circuits for look-ahead carries.
The adder circuit for the correction does not need all four full-adders, and this circuit
can be optimized within the IC package.

A decimal parailel adder that adds » decimal digits needs n BCD adder stages. The
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FIGURE 5-6
Block diagram of a BCD adder

output carry from one stage must be connected to the input carry of the next higher-
order stage.

MAGNITUDE COMPARATOR

The comparison of two numbers is an operation that determines if one number is
greater than, less than, or equal to the other number. A magnitude comparator is a
combinational circuit that compares two numbers, A and B, and determines their rela-
tive magnitudes. The outcome of the comparison is specified by three binary variables
that indicate whether A > B,A = B,or A < B.

The circuit for comparing two n-bit numbers has 2** entries in the truth table and be-
comes too cumbersome even with n = 3. On the other hand, as one may suspect, a
comparator circuit possesses a certain amount of regularity. Digital functions that pos-
sess an inherent well-defined regularity can usually be designed by means of an al-
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gorithmic procedure if one is found to exist. An algorithm is a procedure that specifies
a finite set of steps that, if followed, give the solution to a problem. We illustrate this
method here by deriving an algorithm for the design of a 4-bit magnitude comparator.
The algorithm is a direct application of the procedure a person uses to compare the
relative magnitudes of two numbers. Consider two numbers, A and B, with four digits
each. Write the coefficients of the numbers with descending significance as follows:

A= A3A2A]A0
B = BszB]B(]

where each subscripted letter represents one of the digits in the number. The two num-
bers are equal if all pairs of significant digits are equal, i.e., if A; = B5 and A; = B,
and A; = B, and A = By. When the numbers are binary, the digits are cither 1 or 0
and the equality relation of each pair of bits can be expressed logically with an equiva-
lence function:

x, = AB + A/ B/ i=0,123

where x; = 1 only if the pair of bits in position / are equal, i.e., if both are 1’s or both
are 0’s.

The equality of the two numbers, A and B, is displayed in a combinational circuit by
an output binary variable that we designate by the symbol (A = B). This binary vari-
able is equal to 1 if the input numbers, A and B, are equal, and it is equal to O other-
wise. For the equality condition to exist, all x; variables must be equat to 1. This dic-
tates an AND operation of all variables:

(A = B) = X3X2X1Xo

The binary variable (A = B) is equal to 1 only if all pairs of digits of the two numbers
are equal.

To determine if A is greater than or less than B, we inspect the relative magnitudes
of pairs of significant digits starting from the most significant position. If the two digits
are equal, we compare the next lower significant pair of digits. This comparison con-
tinues until a pair of unequal digits is reached. If the corresponding digit of A is 1 and
that of B is 0, we conclude that A > B. If the corresponding digit of A is 0 and that of
B is 1, we have that A <C B. The sequential comparison can be expressed logically by
the following two Boolean functions:

(A > B) = AJB:; + X3AQB;:_ + X3x2AlBi + 131211A036
(A << B) = AiB: + x:AI By + x3x2 AL By + xzxoxi Ao Bo

The symbols (A > B) and (A < B} are binary output variables that are equal to 1 when
A > BorA < B, respectively.

The gate implementation of the three output variables just derived is simpler than it
seems because it involves a certain amount of repetition. The “unequal” outputs can use
the same gates that are needed to generate the “equal” output. The logic diagram of the
4-bit magnitude comparator is shown in Fig. 5-7. The four x outputs are generated with
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equivalence (exclusive-NOR) circuits and applied to an AND gate to give the output bi-
nary variable (A = B). The other two outputs use the x variables to generate the
Boolean functions listed before. This is a multilevel implementation and, as clearly
seen, it has a regular pattern. The procedure for obtaining magnitude-comparator cir-
cuits for binary numbers with more than four bits should be obvious from this example.
The same circuit can be used to compare the relative magnitudes of two BCD digits.
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5-5 DECODERS AND ENCODERS

Discrete quantities of information are represented in digital systems with binary codes.
A binary code of n bits is capable of representing up to 2" distinct clements of the
coded information. A decoder is a combinational circuit that converts binary informa-
tion from r input lines to a maximum of 2" unique output lines. If the n-bit decoded in-
formation has unused or don’t-care combinations, the decoder output will have fewer
than 2" outputs.

The decoders presented here are called n-to-m-line decoders, where m = 2". Their
purpose is to generate the 2" (or fewer) minterms of # input variables. The name de-
coder is also used in conjunction with some code converters such as a BCD-to-seven-
segment decoder.

As an example, consider the 3-to-8-line decoder circuit of Fig. 5-8. The three inputs
are decoded into eight outputs, each output representing one of the minterms of the 3-
input variables. The three inverters provide the complement of the inputs, and each one
of the eight AND gates generates one of the minterms. A particular application of this
decoder would be a binary-to-octal conversion. The input variables may represent a bi-
nary number, and the outputs will then represent the eight digits in the octal number

] J|>° D D, = xyz
S~ B -

FIGURE 5-8
A 3.10-8 line decoder
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TABLE 5-2
Truth Table of a 3-to-8-Line Decoder

Inputs Outputs
X Yy z Dy oD D> D, Ds Dy Dy
0 0 0 1 0 0 0 0 0 0 0
0 [ ¥} 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

system. However, a 3-to-8-line decoder can be used for decoding any 3-bit code to
provide eight outputs, one for each element of the code,

The operation of the decoder may be further clarified from its input—output relation-
ship, listed in Table 5-2. Observe that the output variables are mutually exclusive be-
cause only one output can be equal to 1 at any one time. The output line whose value is
equal to 1 represents the minterm equivalent of the binary number presently available
in the input lines.

Combinational Logic Implementation

A decoder provides the 2" minterm of » input variables. Since any Boolean function
can be expressed in sum of minterms canonical form, one can use a decoder to generate
the minterms and an external OR gate to form the sum. In this way, any combinational
circuit with » inputs and m outputs can be implemented with an n-to-2"-line decoder
and m OR gates.

The procedure for implementing a combinational circuit by means of a decoder and
OR gates requires that the Boolean functions for the circuit be expressed in sum of
minterms. This form can be easily obtained from the truth table or by expanding the
functions to their sum of minterms (see Section 2-5). A decoder is then chosen that
generates all the minterms of the » input variables. The inputs to each OR gate are se-
lected from the decoder outputs according to the minterm list in each function.

Example
5-1

Implement a full-adder circuit with a decoder and two OR gates.
From the truth table of the full-adder (Section 4-3), we obtain the functions for this
combinational circuit in sum of minterms:

S(x,v,2)=2(1,2,4,7)
Clx,v,z2)=2(3,5,6,7)

Since there are three inputs and a total of eight minterms, we need a 3-to-8-line de-
coder. The implementation is shown in Fig. 5-9. The decoder generates the cight
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Implementation of a fuil-adder with a decoder

minterms for x, y, z. The OR gate for output § forms the sum of minterms 1, 2, 4, and
7. The OR gate for output C forms the sum of minterms 3, 5, 6, and 7. [ ]

A function with a long list of minterms requires an OR gate with a large number of
inputs. A function F having a list of k minterms can be expressed in its complemented
form F' with 2" — k minterms. If the number of minterms in a function is greater than
27/2, then F' can be expressed with fewer minterms than required for F. In such a
case, it is advantageous to use a NOR gate to sum the minterms of F . The output of
the NOR gate will gencrate the normal output F.

The decoder method can be used to implement any combinational circuit. However,
its implementation must be compared with all other possible implementations to deter-
mine the best solution. In some cases, this method may provide the best implementa-
tion, especially if the combinational circuit has many outputs and if each output func-
tion (or its complement) is expressed with a small number of minterms.

Demultiplexers

Some IC decoders are constructed with NAND gates. Since a NAND gate produces the
AND operation with an inverted output, it becomes more economical to generate the
decoder minterms in their complemented form. Most, if not all, IC decoders include
one or more enable inputs to control the circuit operation. A 2-to-4-line decoder with
an enable input constructed with NAND gates is shown in Fig. 5-10. All outputs are
equal to 1 if enable input £ is 1, regardless of the values of inputs A and B. When the
enable input is 0, the circuit operates as a decoder with complemented outputs. The
truth table lists these conditions. The X’s under A and B are don’t-care conditions. Nor-
mal decoder operation occurs only with £ = 0, and the outputs are selected when they
are in the O state.

The block diagram of the decoder is shown in Fig. 5-11(a). The small circle at input
E indicates that the decoder is enabled when £ = 0. The small circles at the outputs in-
dicate that all outputs are complemented.
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FIGURE 5-10
A 2-to-4-ine decoder with enable [£) input

A decoder with an enable input can function as a demultiplexer. A demudtiplexer is a
circuit that receives information on a single line and transmits this information on one
of 2" possible output lines. The selection of a specific output line is controlled by the bit
values of n selection lines. The decoder of Fig. 5-10 can function as a demultiplexer if
the E line is taken as a data input line and lines A and B are taken as the selection lines.
This is shown in Fig. 5-11(b). The single input variable £ has a path to all four outputs,
but the input information is directed to only one of the output lines, as specified by the
binary value of the two selection lines, A and B. This can be verified from the truth
table of this circuit, shown in Fig. 5-10(b). For example, if the selection lines
AB = 10, output D, will be the same as the input value E, while all other outputs are
maintained at 1. Because decoder and demultiplexer operations are obtained from the
same circuit, a decoder with an enable input is referred to as a decoderidemultiplexer.
It is the enable input that makes the circuit a demultiplexer; the decoder itself can use
AND, NAND, or NOR gates.

o— D, Dy
A —»
2x4 b— D, I x4 — D,
Inputs decoder E— demultiplexer
B —ai P— D, Input — D,
P— D, D,y
| ) o
Enable A B
Select
(a) Decoder with enable (b) Demultiplexer
FIGURE 5-11

Block diagrams for the circuit of Fig. 5-10
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A 4 x 16 decoder constructed with two 3 x 8 decoders

Decoder/demultiplexer circuits can be connected together to form a larger decoder
circuit. Figure 5-12 shows two 3 X 8 decoders with enable inputs connected to form a
4 % 16 decoder. When w = 0, the top decoder is enabled and the other is disabled.
The bottom decoder outputs are all ("s, and the top eight outputs gencrate minterms
0000 to 0111. When w = 1, the enable conditions are reversed; the bottom decoder
outputs generate minterms 1000 to 1111, while the outputs of the top decoder are all
0’s. This example demonstrates the usefulness of enable inputs in ICs. In general, en-
able lines are a convenient feature for connecting two or more IC packages for the pur-
pose of expanding the digital function into a similar function with more inputs and out-
puts.

An encoder is a digital circuit that performs the inverse operation of a decoder. An
encoder has 27 (or fewer) input lines and » output lines. The output lines generate the
binary code corresponding to the input value. An example of an encoder is the octal-
to-binary encoder whose truth table is given in Table 5-3. It has eight inputs, one for
each of the octal digits, and three outputs that generate the corresponding binary num-
ber. It is assumed that only one input has a value of 1 at any given time; otherwise the
circuit has no meaning.

The encoder can be implemented with OR gates whose inputs are determined di-
rectly from the truth table. Output z is equal to 1 when the input octal digit is 1 or 3 or
5 or 7. Qutput y is 1 for octal digits 2, 3, 6, or 7, and output x is 1 for digits 4, 5, 6, or
7. These conditions can be expressed by the following output Boolean functions:

Z:D1+D3+D5+D7
y:Dz+D3+D5+D7
X=D4+D5+DG+D7
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TABLE 5-3
Truth Table of Octal-to-Blnary Encoder
Inputs QOutputs

Dy fo Dy Dy Dy Ds Dg Dy X y F4
1 0 0 0 0 0 0 0 0 4 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 ¢ 1 0 0 0 0 0 1 l
0 0 0 0 1 0 0 0 1 t] 0
0 0 0 0 0 1 0 0 1 0 1
0 ¢ 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 i

The encoder is implemented with three OR gates, as shown in Fig. 5-13.

The encoder defined in Table 5-3 has the limitation that only one input can be active
at any given time. If two inputs are active simuitaneously, the output produces an
undefined combination. For example, if D; and Dg are | simultaneously, the output of
the encoder will be 111 because all three outputs are equal to 1. This does not represent
binary 3 nor binary 6. To resolve this ambiguity, encoder circuits must establish a pri-
ority to ensure that only one input is encoded. If we establish a higher priority for in-
puts with higher subscript numbers, and if both D5 and D¢ are 1 at the same time, the
output will be 110 because Ds has higher priority than D;.

Another ambiguity in the octal-to-binary encoder is that an output with all 0’s is
generated when all the inputs are 0. The problem is that an output with all Q’s is also
generated when D is equal to 1. This ambiguity can be resolved by providing an addi-
tional output that specifies the condition that none of the inputs are active.

X=D4+DS+D6+D7

D, _‘s
]

y=Dy+D;+Dg+ D,

2= Dy +Dy+Ds+ D,

T N B

FIGURE 5-13
Octal-to-binary encoder
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TABLE 5-4
Truth Table of a Priority Encoder
) Input;t___ 9utputs
Dy Dy D, Ds x y Vv
0O 0 0 0O XX0
1 ¢ 0 0 0 01
X 1 0 0 011
X X 1 0 1 01
X X X 1 111

Priority Encoder

A priority encoder is an encoder circuit that includes the priority function. The opera-
tion of the priority encoder is such that if two or more inputs are equal to 1 at the same
time, the input having the highest priority will take precedence. The truth table of a
four-input priority encoder is given in Table 5-4. The X’s are don’t-care conditions that
designate the fact that the binary value may be equal either to 0 or L. Input Ds has the
highest priority; so regardless of the values of the other inputs, when this input is 1, the
output for xy is 11 (binary 3). D, has the next priority level. The output is 10 if Dy =1
provided that Dy = 0, regardless of the values of the other two lower-priority inputs.
The output for D; is generated only if higher-priority inputs are 0, and so on down the
priority level. A vafid-output indicator, designated by V, is set to 1 only when one or
more of the inputs are equal to 1. If all inputs are 0, V is equal to 0, and the other two
outputs of the circuit are not used.

n, Dy
f—% f—'A'——ﬁ
00 0l 110 00 o0l il 10
wl| v | 1 1 wo| x |1 1
01 1 [ 1 o [1o [iv ] o
; D, ’ I— D,
11 | I SN I ]
Dy — Dy _ .
10 vl | ;
[ R B 10 IR
o, D,
x=D,+ Dy ¥ =D+ DD
FIGURE 5-14

Maps for a priority encoder
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D, ﬁ'>0—| d
D x

—1 ,
D, e 4

FIGURE 5-15
4-input priority encoder

RS

The maps for simplifying outputs x and y are shown in Fig. 5-14. The minterms for
the two functions are derived from Table 5-4. Although the table has only five rows,
when each don’t-care condition is replaced first by O and then by 1, we obtain all 16
possible input combinations. For example, the third row in the table with X 100 repre-
sents minterms 0100 and 1100 since X can be assigned either 0 or 1. The simplified
Boolean expressions for the priority encoder are obtained from the maps. The condi-
tion for output V is an OR function of all the input variables. The priority encoder is
implemented in Fig. 5-15 according to the following Boolean functions:

x=D2+D3
y=D3+Dlpé
V=DQ+D1+D2+D3

5-6 MULTIPLEXERS

Multiplexing means transmitting a large number of information units over a smaller
number of channels or lines. A digital multiplexer is a combinational circuit that selects
binary information from one of many input lines and directs it to a single output line.
The selection of a particular input line is controlled by a set of selection lines. Nor-
mally, there are 2" input lines and n selection lines whose bit combinations determine
which input is selected.

A 4-to-1-line multiplexer is shown in Fig. 5-16. Each of the four input lines, f; to I,
is applied to one input of an AND gate. Selection lines s, and s, are decoded to select a
particular AND gate. The function table, Fig. 5-16(b), lists the input-to-output path for
each possible bit combination of the selection lines. When this MSI function is used in
the design of a digital system, it is represented in block diagram form, as shown in Fig,
5-16(c). To demonstrate the circuit operation, consider the case when 5,5, = 10. The
AND gate associated with input I, has two of its inputs equal to 1 and the third input
connected to I;. The other three AND gates have at least one input equal to 0, which
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’ L O—
1) \
¥
Iy ) .
{b) Function table
13 —j\
0
—-! 41
lnpmg_,_ 5 MUX ¥ b+ Output

§) — ] 3 ;l ;D
o Select

(a) Logic diagram (c) Block diagram
FIGURE 5-16

A 4-to-1-lne multiglexer

makes their outputs equal to 0. The OR gate output is now equal to the value of [, thus
providing a path from the selected input to the output. A multiplexer is also called a
data selector, since it selects one of many inputs and steers the binary information to
the output line.

The AND gates and inverters in the multiplexer resemble a decoder circuit and, in-
deed, they decode the input-selection lines. In general, a 2"-to-1-line multiplexer is
constructed from an n-to-2" decoder by adding to it 2" input lines, one to each AND
gate. The outputs of the AND gates are applied to a single OR gate to provide the 1-line
output. The size of a muitiplexer is specified by the number 2” of its input lines and the
single output line. Tt is then implied that it also contains n selection lines. A multiplexer
is often abbreviated as MUX.

As in decoders, multiplexer ICs may have an enable input to control the operation of
the unit. When the enable input is in a given binary state, the outputs are disabled, and
when it is in the other state (the enable state), the circuit functions as a normal multi-
plexer. The enable input (sometimes called strobe) can be used to expand two or more
multiplexer ICs to a digital multiplexer with a larger number of inputs.

In some cases, two or more multiplexers are enclosed within one IC package. The
selection and enable inputs in multiple-unit ICs may be common to all multiplexers. As
an illustration, a quadruple 2-to-1-line multiplexer 1C is shown in Fig. 5-17. It has four
multiplexers, each capable of selecting one of two input lines. Output Y can be selected
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By
Function table
E 5 [Output ¥
| ¢ all 0's
0 0 select A
B3 0 1 select B

5 —‘D)J—D)—J
(select)

E Dc
(enable)

FIGURE 5-17
Quadruple 2-to-1-line multiplexer

to be equal to either A, or B;. Similarly, output ¥> may have the value of A; or B,, and
so on. One input selection line, S, suffices to select one of two lines in all four multi-
plexers. The control input E enables the multiplexers in the O state and disables them in
the 1 state. Although the circuit contains four multiplexers, we may think of it as a cir-
cuit that selects one in a pair of 4-input lines. As shown in the function table, the unit
is selected when E = 0. Then, if § = 0, the four A inputs have a path to the outputs.
On the other hand, if $ = 1, the four B inputs are selected. The outputs have all 0’s
when £ = 1, regardless of the value of §.
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Boolean-Function Implementation

It was shown in the previous section that a decoder can be used to implement a Boolean
function by employing an external OR gate. A quick reference to the multiplexer of
Fig. 5-16 reveals that it is essentially a decoder with the OR gate already available. The
minterms out of the decoder to be chosen can be controlled with the input lines. The
minterms to be included with the function being implemented are chosen by making
their corresponding input lines equal to 1; those minterms not included in the function
are disabled by making their input lines equal to 0. This gives a method for implement-
ing any Boolean function of n variables with a 2"-to-1 multiplexer. However, it is pos-
sible to do better than that.

If we have a Boolen function of # + 1 variables, we take » of these variables and
connect them to the selection lines of a multiplexer. The remaining single variable of
the function is used for the inputs of the multiplexer. If A is this single variable, the in-
puts of the multiplexer are chosen to be either A or A’ or 1 or 0. By judicious use of
these four values for the inputs and by connecting the other variables to the selection
lines, one can implement any Boolean function with a multiplexer. In this way, it is
possible to generate any function of n + 1 variables with a 2"-to-1 multiplexer.

To demonstrate this procedure with a concrete example, consider the function of
three variables:

F(A,B, C)=x(1,3.5,06)

The function can be implemented with a 4-to-1 multiplexer, as shown in Fig. 5-18.
Two of the variables, B and C, are applied to the selection lines in that order, i.e., B is
connected to s, and C to so. The inputs of the multiplexer are 0, 1, A, and A '. When
BC = 00, output F = 0 since [, = 0. Therefore, both minterms m, = A'B'C' and
ms = AB’'C’ produce a 0 output, since the output is 0 when BC = 00 regardless of the
value of A. When BC = 01, output £ = |, since I, = 1. Thercfore, both minterms
m = A'B'C and ms = AB'C produce a 1 output, since the output is 1 when BC = 0l
regardless of the value of A. When BC = 10, input I; is selected. Since A is connected
to this input, the output will be equal to 1 only for minterm m, = ABC’, but not for
minterm m, = A'BC’, because when A’ = 1, then A = 0, and since J» = 0, we have
F = 0. Finally, when BC = 11, input I is selected. Since A’ is connected to this in-
put, the output will be equal to 1 only for minterm m, = A’BC, but not for m; = ABC.
This information is summarized in Fig. 5-18(b), which is the truth table of the function
we want to implement.

This discussion shows by analysis that the multiplexer implements the required func-
tion. We now present a general procedure for implementing any Boolean function of n
variables with a 2"~ '-to-1 multiplexer.

First, express the function in its sum of minterms form. Assume that the ordered se-
quence of variables chosen for the minterms is ABCD . . . , where A is the leftmost
variable in the ordered sequence of s variables and BCD . . . are the remaining n — |
variables. Connect the n — 1 variables to the selection lines of the multiplexer, with B
connected to the high-order selection line, C to the next lower selection line, and so on
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Minterm A B C| F
0 00 0f o0
0 fo 1 00 1] 1
. L a4y v - 2 01 0fo
A r, MUX 3 01 11
A1, 51 s 4 1 0 o0f 0
] 1 0 1 1
B——J 6 1 1 01
7 1 1 1|0
C
{a) Multiplexer implementation (b) Truth table
Ly I, L, &
410 @ 2 B
414 @ G 7
0 1 4 A
(c) Implementation table
FIGURE 5-18

implementing F(A, 8, C) = 3, (1, 3, 5, 6) with a muftiplexer

down to the last variable, which is connected to the lowest-order selection line so. Con-
sider now the single variable A. Since this variable is in the highest-order position in the
sequence of variables, it will be complemented in minterms 0 to (27/2) — 1, which
comprise the first half in the list of minterms. The second half of the minterms will
have their A variable uncomplemented. For a three-variable function, A, B, C, we have
eight minterms. Variable A is complemented in minterms 0 to 3 and uncomplemented
in minterms 4 to 7.

List the inputs of the multiplexer and under them list all the minterms in two rows.
The first row lists all those minterms where A is complemented, and the second row all
the minterms with A uncomplemented, as shown in Fig. 5-18(c). Circle all the
minterms of the function and inspect each column separately.

If the two minterms in a column are not circled, apply 0 to the corresponding multi-
plexer input.

If the two minterms are circled, apply 1 to the corresponding multiplexer input,

If the bottom minterm is circled and the top is not circled, apply A to the corre-
sponding multiplexer input.

If the top minterm is circled and the bottom is not circled, apply A’ to the corre-
sponding multiplexer input.
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This procedure follows from the conditions established during the previous analysis.
Figure 5-18(c) shows the implementation table for the Boolean function

F(A,B.C)=2(1,3,5,6)

from which we obtain the multiplexer connections of Fig. 5-18(a). Note that B must be
connected to s; and C 10 so.

Tt is not necessary to choose the leftmost variable in the ordered sequence of a vari-
able list for the data inputs of the multiplexer. In fact, any one of the variables can be
chosen for the inputs, provided we modify the multiplexer implementation table. More-
over, it is possible to derive the multiplexer circuit directly from the truth table. Con-
sider, for example, the following three-variable Boolean function:

F(A,B,C)=Z2(1,2,4,5)

We wish to implement the function with a multiplexer, but in this case, we will connect
variables A4 and B to selection inputs s, and so, respectively, and use the rightmost vari-

B « F
¢ 0 0 0
F=¢
C
o 0 ' o
o 1 0 ! D h 4% :
F=C MUX ¥ !
o 11 0 L—1
1 0 0 1 0 —| 75
=1 Sy Sy
1 0 1 |
P10 0 A
F=0
1 1 1 ] B
(4) Truth table (b) Multiplexer implementation
iy 1 1 I3
AEECHICHE
c|lO 5 O
C c’ 1 0
(c) Lmplementation table
FIGURE 5-19

implementing FiA, B, C) = L (1, 2, 4, 5) with a muitiplexer
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able C for the data inputs of the multiplexer. Figure 5-19(a) is the truth table of the
function. The table is divided into sections, with each section having identical values
for variables A and B. We note that when AB = 00, output F is the same as input C.
When AB = 01, F is the same as C’. When AB = 10, F = 1, and when AB = 11,
F = 0. The multiplexer circuit of Fig. 5-19(b) can be derived directly from the truth
table without the need of an implementation table. However, if an implementation
table is desired, it must be modified to take into account the relationship between the
minterms and the inputs of the multiplexer. As seen from the truth table, variable C is
complemented in the even-numbered minterms 0, 2, 4, and 6, and uncomplemented in
the odd-numbered minterms 1, 3, 5, and 7. The arrangement of the two rows in the
implementation table must be as shown in Fig. 5-19(c). By circling the minterms of the
function and using the rules stated before, we obtain the multiplexer inputs for imple-.
menting the function.

In a similar fashion, it is possible to choose any other variable of the function for the
multiplexer data inputs. In any case, all input variables except one are applied to the se-
lection inputs of the multiplexer. The remaining single variable, or its complement, or
0, or 1, is then applied to the data inputs of the multiplexer.

Example
5-2

Implement the following function with a multiplexer:
F(A,B,C,D)=3(0,1,3,4,8,09, 15)

This is a four-variable function and, therefore, we need a multiplexer with three selec-
tion lines and eight inputs. We choose to apply variables B, C, and D to the selection
lines. The implementation table is then as shown in Fig. 5-20. The first half of the

B
‘rl

0 1
8x1 .
I MU Y £
I 1 L, L I, I i I I,
2 0@ s s 7

410 O
A ® @ 1011 12 13 14
1

1 0 A" 4" 0 0 A

I
o
A

FIGURE 5-20
Implementing FA. 8.C.0) = 2, (0,1,3.4,8,9, 15)
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minterms are associated with A’ and the second half with A. By circling the minterms
of the function and applying the rules for finding values for the multiplexer inputs, we
obtain the implementation shown. [}

Let us now compare the multiplexer method with the decoder method for imple-
menting combinational circuits. The decoder method requires an OR gate for each out-
put function, but only one decoder is needed to generate all minterms. The muitiplexer
method uses smaller-size units but requires one multiplexer for each output function. It
would seem reasonable to assume that combinational circuits with a small number of
outputs should be implemented with multiplexers. Combinational circuits with many
output functions would probably use fewer ICs with the decoder method.

Although multiplexers and decoders may be used in the implementation of combina-
tional circuits, it must be realized that decoders are mostly used for decoding binary in-
formation and multiplexers are mostly used to form a selected path between multiple
sources and a single destination.

5-7 READ-ONLY MEMORY {ROM)

We saw in Section 5-5 that a decoder generates the 2" minterms of the # input vari-
ables. By inserting OR gates to sum the minterms of Boolean functions, we were able
to generate any desired combinational circuit. A read-only memory (ROM) is a device
that includes both the decoder and the OR gates within a single IC package. The con-
nections between the outputs of the decoder and the inputs of the OR gates can be
specified for each particular configuration. The ROM is used to implement complex
combinational circuits within one IC package or as permanent storage for binary infor-
mation.

A ROM is essentially a memory (or storage) device in which permanent binary in-
formation is stored. The binary information must be specified by the designer and is
then embedded in the unit to form the required interconnection pattern. ROMs come
with special internal electronic fuses that can be “programmed” for a specific config-
uration. Once the pattern is established, it stays within the unit even when power 18
turned off and on again.

A block diagram of a ROM is shown in Fig. 5-21. It consists of n input lines and m
output lines. Each bit combination of the input variables is called an address. Each bit
combination that comes out of the output lines is called a word. The number of bits per
word is equal to the number of output lines, m. An address is essentially a binary num-
ber that denotes one of the minterms of # variables. The number of distinct addresses
possible with 7 input variables is 2". An output word can be selected by a unique ad-
dress, and since there are 2" distinct addresses in a ROM, there are 2" distinct words
that are said to be stored in the unit. The word available on the output lines at any
given time depends on the address value applied to the input lines. A ROM is charac-
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l

m outputs
FIGURE 5-21
ROM block diagram

terized by the number of words 2" and the number of bits per word m. This terminol-
ogy is used because of the similarity between the read-only memory and the random-
access memory, which is presented in Section 7-7.

Consider a 32 X 8 ROM. The unit consists of 32 words of 8 bits each. This means
that there are eight output lines and that there are 32 distinct words stored in the unit,
each of which may be applied to the output lines. The particular word selected that is
presently available on the output lines is determined from the five input lines. There are
only five inputs in a 32 X 8 ROM because 2° = 32, and with five variables, we can
specify 32 addresses or minterms. For each address input, there is a unique selected
word, Thus, if the input address is 00000, word number O is selected and it appears on
the output lines. If the input address is 11111, word number 31 is selected and applied
to the output lines. In between, there are 30 other addresses that can select the other 30
words. :

The number of addressed words in a ROM is determined from the fact that » input
lines are needed to specify 2" words. A ROM is sometimes specified by the total num-
ber of bits it contains, which is 2" X m. For example, a 2048-bit ROM may be organ-
ized as 512 words of 4 bits each. This means that the unit has four output lines and nine
input lines to specify 2° = 512 words. The total number of bits stored in the unit is
512 X 4 = 2048.

Internally, the ROM is a combinational circuit with AND gates connected as a de-
coder and a number of OR gates equal to the number of outputs in the unit. Figure 5-22
shows the internal logic construction of a 32 X 4 ROM. The five input variables are
decoded into 32 lines by means of 32 AND gates and § inverters. Each output of the
decoder represents one of the minterms of a function of five variables. Each one of the
32 addresses selects one and only one output from the decoder. The address is a 5-bit
number applied to the inputs, and the selected minterm out of the decoder is the one
marked with the equivalent decimal number. The 32 outputs of the decoder are con-
nected through fuses to each OR gate. Only four of these fuses are shown in the dia-
gram, but actually each OR gate has 32 inputs and each input goes through a fuse that
can be blown as desired. '

The ROM is a two-level implementation in sum of minterms form. It does not have
to be an AND-OR implementation, but it can be any other possible two-level minterm
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Logic construction of a 32 < 4 ROM

implementation. The second level is usually a wired-logic connection (see Section 3-7)
to facilitate the blowing of fuses.

ROM:s have many important applications in the design of digital computer systems.
Their use for implementing complex combinational circuits is just one of these applica-
tions. Other uses of ROMs are presented in other parts of the book in conjunction with
their particular applications.

Combinational Logic implementation

From the logic diagram of the ROM, it is clear that each output provides the sum of all
the minterms of the » input variables. Remember that any Boolean function can be ex-
pressed in sum of minterms form. By breaking the links of those minterms not in-
cluded in the function, each ROM output can be made to represent the Boolean func-
tion of one of the output variables in the combinational circuit. For an n-input,
m-output combinational circuit, we need a 2" X m ROM. The blowing of the fuses is
referred to as programming the ROM. The designer need only specify a ROM program
table that gives the information for the required paths in the ROM. The actual pro-
gramming is a hardware procedure that follows the specifications listed in the program
table.

Let us clarify the process with a specific example. The truth table in Fig. 5-23(a)
specifies a combinational circuit with two inputs and two outputs. The Boolean func-
tions can be expressed in sum of minterms:
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FIGURE 5-23
Combinatfonal-circuit implementation with a 4 X 2 ROM

Fi(A1, Ag) = 2(1, 2, 3)
Fy(A,, Ao) = 20, 2)

When a combinational circuit is implemented by means of a ROM, the functions must
be expressed in sum of minterms or, better yet, by a truth table. If the output functions
are simplified, we find that the circuit needs only one OR gate and an inverter. Obvi-
ously, this is too simple a combinational circuit to be implemented with a ROM. The
advantage of a ROM is in complex combinational circuits. This example merely
demonstrates the procedure and should not be considered in a practical situation.

The ROM that implements the combinational circuit must have two inputs and two
outputs; so its size must be 4 X.2. Figure 5-23(b) shows the internal construction of
such a ROM. It is now necessary to determine which of the eight available fuses must
be blown and which should be left intact. This can be easily done from the output func-
tions listed in the truth table. Those minterms that specify an output of 0 should not
have a path to the output through the OR gate. Thus, for this particular case, the truth
table shows three 0’s, and their corresponding fuses to the OR gates must be blown, It



184 Chapter 5 MSI and PLD Components

is obvious that we must assume here that an open input to an OR gate behaves as a 0
input.

Some ROM units come with an inverter after each of the OR gates and, as a conse-
quence, they are specified as having initially all 0’s at their outputs. The programming
procedure in such ROMs requires that we open the paths of the minterms (or addresses)
that specify an output of 1 in the truth table. The output of the OR gate will then gener-
ate the complement of the function, but the inverter placed after the OR gate comple-
ments the function once more to provide the normal output. This is shown in the ROM
of Fig. 5-23(c).

The previous example demonstraies the general procedure for implementing any
combinational circuit with a ROM. From the number of inputs and outputs in the com-
binational circuit, we first determine the size of ROM required. Then we must obtain
the programming truth table of the ROM; no other manipulation or simplification is re-
quired. The O’s (or 17s) in the output functions of the truth table directly specify those
fuses that must be blown to provide the required combinational circuit in sum of
minterms form.

In practice, when one designs a circuit by means of a ROM, it is not necessary (o
show the internal gate connections of fuses inside the unit, as was done in Fig. 5-23.
This was shown there for demonstration purposes only. All the designer has to do is
specify the particular ROM (or its designation number) and provide the ROM truth
table, as in Fig. 5-23(a). The truth table gives all the information for programming the
ROM. No internal logic diagram is needed to accompany the truth table.

Example
5-3

Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and
generates an output binary number equal to the square of the input number.

The first step is to derive the truth table for the combinational circuit. In most cases,
this is all that is needed. In some cases, we can fit a smaller truth table for the ROM by
using certain properties in the truth table of the combinational circuit. Table 5-5 is the

TABLE 5-5

Truth Table for Circuit of Example 5-3

. fnputs . upus

A A Ay By Ba B_; B, B, By Decimal
0 0 0 0 0 ¢ 0 0 0 O
0 Q 1 0] 0 0 0 0 | 1
0 1 0 0 0 0 1 0 0 4
0 1 | 1] 0 1 0 0 1 9
1 0 0 0 1 0 0 0 0 16
1 0 1 0 1 | 0 0 1 25
1 i 0 I 0 0 1 0 0 36
1 1 1 1 1 0 0 0 1

49
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FIGURE 5-24
ROM implementation of Example 5-3

truth table for the combinational circuit. Three inputs and six outputs are needed to
accommodate all possible numbers. We note that output B, is always equal to input Aq;
s0 there is no need to generate B, with a ROM since it is equal to an input variable.
Moreover, output B, is always 0, so this output is always known. We actually need to
generate only four outputs with the ROM; the other two are easily obtained. The mini-
mum-size ROM needed must have three inputs and four outputs. Three inputs specify
eight words, so the ROM size must be 8 X 4. The ROM implementation is shown in
Fig. 5-24. The three inputs specify eight words of four bits each. The other two outputs
of the combinational circuit are equal to 0 and A,. The truth table in Fig. 5-24 specifies
all the information needed for programming the ROM, and the block diagram shows
the required connections. [ ]

Types of ROMs

The required paths in a ROM may be programmed in two different ways. The first is
called mask programming and is done by the manufacturer during the last fabrication
process of the unit. The procedure for fabricating a ROM requires that the customer fill
out the truth table the ROM is to satisfy. The truth table may be submitted on a special
form provided by the manufacturer. More often, it is submitted in a computer input
medium in the format specified on the data sheet of the particular ROM. The manufac-
turer makes the corresponding mask for the paths to produce the 1’s and 0's according
to the customer’s truth table. This procedure is costly because the vendor charges the
customer a special fee for custom masking a ROM. For this reason, mask programming
is economical only if large quantities of the same ROM configuration are to be manu-
factured.
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For small quantities, it is more economical to use a second type of ROM called a
programmable read-only memory, or PROM. When ordered, PROM units contain all
0’s (or ail 1’s) in every bit of the stored words. The fuses in the PROM are blown by
application of current pulses through the output terminals. A blown fuse defines one bi-
nary state and an unbroken link represents the other state. This allows the user to pro-
gram the unit in the laboratory to achieve the desired relationship between input ad-
dresses and stored words. Special units called PROM programmers are available
commercially to facilitate this procedure. In any case, all procedures for programming
ROMs are hardware procedures even though the word programming is used.

The hardware procedure for programming ROMs or PROMs is irreversible and,
once programmed, the fixed pattern is permanent and cannot be altered. Once a bit
pattern has been established, the unit must be discarded if the bit pattern is to be
changed. A third type of unit available is called erasable PROM, or EPROM. EPROMs
can be restructured to the initial value (all 0’s or all 1's) even though they have been
changed previously. When an EPROM is placed under a special ultraviolet light for a
given period of time, the shortwave radiation discharges the internal gates that serve as
contacts. After erasure, the ROM returns to its initial state and can be reprogrammed.
Certain ROMs can be erased with electrical signals instead of ultraviolet light, and
these are called elecrrically erasable PROMs, or EEPROMs.

The function of a ROM can be interpreted in two different ways. The first interpre-
tation is of a unit that implements any combinational circuit. From this point of view,
each output terminal is considered separately as the output of a Boolean function ex-
pressed in sum of minterms. The second interpretation considers the ROM to be a stor-
age unit having a fixed pattern of bit strings called words. From this point of view, the
inputs specify an address to a specific stored word, which is then applied to the outputs.
For exarnple, the ROM of Fig. 5-24 has three address lines, which specify eight stored
words as given by the truth table. Each word is four bits long. This is the reason why
the unit is given the name read-only memory. Memory is commonly used to designate a
storage unit. Read is commonly used to signify that the contents of a word specified by
an address in a storage unit is placed at the output terminals. Thus, a ROM is a memory
unit with a fixed word pattern that can be read out upon application of a given address.
The bit pattern in the ROM is permanent and cannot be changed during normal opera-
tion.

ROMs are widely used to implement complex combinational circuits directly from
their truth tables. They are useful for converting from one binary code to another (such
as ASCII to EBCDIC and vice versa), for arithmetic functions such as multipliers, for
display of characters in a cathode-ray tube, and in many other applications requiring a
large number of inputs and outputs. They are also employed in the design of control
units of digital systems. As such, they are used to store fixed bit patterns that represent
the sequence of controi variables needed to enable the various operations in the system.
A control unit that utilizes a ROM to store binary control information is called a mi-
croprogrammed control unit.
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5-8 PROGRAMMABLE LOGIC ARRAY ([PLA)

A combinational circuit may occasionally have don’t-care conditions. When imple-
mented with a ROM, a don’t-care condition becomes an address input that will never
occur. The words at the don’t-care addresses need not be programmed and may be left
in their original state (all ¢"s or all 1’s). The result is that not all the bit patterns avail-
able in the ROM are used, which may be considered a waste of available equipment.

Consider, for example, a combinational circuit that converts a 12-bit card code to a
©0-bit internal alphanumeric code (see end of Section 1-7). The input card code consists
of 12 lines designated by 0, 1,2, . . ., 9, 11, 12. The size of the ROM for implement-
ing the code converter must be 4096 X 6, since there are 12 inputs and 6 outputs.
There are only 47 valid entries for the card code; all other input combinations are
don’t-care conditions. Thus, only 47 words of the 4096 available are used. The remain-
ing 4049 words of ROM are not used and are thus wasted.

For cases where the number of don’t-care conditions is excessive, it is more eco-
nomical to use a second type of LSI component called a programmable logic array, or
PLA. A PLA is similar to a ROM in concept; however, the PLA does not provide full
decoding of the variables and does not generate all the minterms as in the ROM. In the
PLA, the decoder is replaced by a group of AND gates, each of which can be pro-
grammed to generate a product term of the input variables. The AND and CR gates
inside the PLA are initially fabricated with fuses among them. The specific Boolean
functions are implemented in sum of products form by blowing appropriate fuses and
leaving the desired connections.

A block diagram of the PLA is shown in Fig. 5-25. It consists of n inputs, m out-
puts, k product terms, and m sum terms. The product terms constitute a group of k
AND gates and the sum terms constitute a group of m OR gates. Fuses are inserted
between all n inputs and their complement values to each of the AND gates. Fuses are
also provided between the outputs of the AND gates and the inputs of the OR gates.
Another set of fuses in the output inverters allows the output function to be generated
either in the AND-OR form or in the AND-OR-INVERT form. With the inverter fuse
in place, the inverter is bypassed, giving an AND-OR implementation. With the fuse
blown, the inverter becomes part of the circuit and the function is implemented in the
AND-OR-INVERT form.

m
n Xk fuses
fuses °
O——O0——0—*1 £ product m sum
terms e O O] terms
: o o—] (AND gates) kX m (OR gates) m
n n Xk fuses output
inputs fuses
FIGURE 5-25

PLA block diagram
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PLA Program

The size of the PLA is specified by the number of inputs, the number of product
terms, and the number of outputs (the number of sum terms is equal to the number of
outputs). A typical PLA has 16 inputs, 48 product terms, and 8 outputs. The number of
programmed fuses is 2n X k& + & X m + m, whereas that of a ROM is 2" X m.

Figure 5-26 shows the internal construction of a specific PLA. It has three inputs,
three product terms, and two outputs. Such a PLA is too small to be available commer-
ically; it is presented here merely for demonstration purposes. Each input and its com-
plement are connected through fuses to the inputs of all AND gates. The cutputs of the
AND gates are connected through fuses to each input of the OR gates. Two more fuses
are provided with the output inverters. By blowing selected fuses and leaving others in-
tact, it is possibie to implement Boolean functions in their sum of products form.

As with a ROM, the PLA may be mask-programmable or field-programmable. With
a mask-programmable PLA, the customer must submit a PLA program table te the
manufacturer. This table is used by the vendor to produce a custom-made PLA that has
the required internal paths between inputs and outputs. A second type of PLA available
is called a field-programmable logic array, or FPLA. The FPLA can be programmed by
the user by means of certain recommended procedures. Commercial hardware pro-
grammer units are available for use in conjunction with certain FPLAs,

Table

The use of a PLA must be considered for combinational circuits that have a large num-
ber of inputs and outputs. It is superior to a ROM for circuits that have a large number
of don’t-care conditions. The example to be presented demonstrates how a PLA is pro-
grammed. Bear in mind when going through the example that such a simple circuit will
not require a PLA because it can be implemented more economically with 551 gates.

S

]

DO )

—O

B 3
L/

DC —

8]

ol

8]

C I
%

FIGURE 5-26

PLA with three inputs, three produet terms, and two oulputs; it implements the combinational
circuit specified in Fig. 5-27
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0 01 11 10

A B C I F [N —
0 0 00 0 C
¢ 0 170 0 Fy=AB' +AC
0 1 0 o 0
[ 1 0 1
1 0 0 1 0 B
1 0 1 1 1 BC ——h——y
1 1 0 0 0 00 01 11 10
1 1 1 1 1 A
0 1
(a) Truth table
A { 1 1 1
—
p
Fy=AC+ BC
(b) Map simplification
Preduct Inputs QOutputs
term A B C |F F
AB 1 | ¢ I I -
AC 2 1 - 1 1 i
BC 3 - 1 ] - 1
T T T/C—|
(c) PLA program table
FIGURE 5-27

Steps required in PLA implementation

Consider the truth table of the combinational circuit, shown in Fig. 5-27(a). Al-
though a ROM implements a combinational circuit in its sum of minterms form, a PLA
implements the functions in their sum of products form. Each product term in the
expression requires an AND gate. Since the number of AND gates in a PLA is finite, it
is necessary to simplify the function to a minimum number of product terms in order to
minimize the number of AND gates used. The simplified functions in sum of products
are obtained from the maps of Fig. 5-27(b):

F1=ABr+AC
B =AC + BC

There are three distinct product terms in this combinational circuit: AB’, AC, and
BC. The circuit has three inputs and two outputs; so the PLA of Fig. 5-26 can be used
to implement this combinational circuit.
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Programming the PLA means that we specify the paths in its AND-OR-NOT pat-
tern. A typical PLA program table is shown in Fig. 5-27(c). It consists of three
columns. The first column lists the product terms numerically. The second column
specifies the required paths between inputs and AND gates. The third column specifies
the paths between the AND gates and the OR gates. Under each output variable, we
write a T (for true) if the output inverter is to be bypassed, and C (for complement) if
the function is to be complemented with the output inverter. The Boolean terms listed
at the left are not part of the table; they are included for reference only.

For each product term, the inputs are marked with 1, 0, or — (dash). If a variable in
the product term appears in its normal form (unprimed}, the corresponding input vari-
able is marked with a 1. If it appears complemented (primed), the corresponding input
variable is marked with a 0. If the variable is absent in the product term, it is marked
with a dash. Each product term is associated with an AND gate. The paths between the
inputs and the AND gates are specified under the column heading inputs. A 1 in the in-
put column specifies a path from the corresponding input to the input of the AND gate
that forms the product term. A 0 in the input column specifies a path from the corre-
sponding complemented input to the input of the AND gate. A dash specifies no con-
nection. The appropriate fuses are blown and the ones left intact form the desired
paths, as shown in Fig. 5-26. It is assumed that the open terminals in the AND gate
behave like a 1 input.

The paths between the AND and OR gates are specified under the column heading
outputs. The output variables are marked with 1’s for all those product terms that for-
mulate the function. In the example of Fig. 5-27, we have

F, = AB" + AC

s0 F is marked with 1’s for product terms 1 and 2 and with a dash for product term 3.
Each product term that has a 1 in the output column requires a path from the corre-
sponding AND gate to the output OR gate. Those marked with a dash specify no
connection. Finally, a T (true) output dictates that the fuse across the output inverter re-
mains intact, and a C (complement) specifies that the corresponding fuse be blown.
The internal paths of the PLA for this circuit are shown in Fig. 5-26. It is assumed that
an open terminal in an OR gate behaves like a 0, and that a short circuit across the out-
put inverter does not damage the circuit.

When designing a digital system with a PLA, there is no need to show the internal
connections of the unit, as was done in Fig. 5-26. All that is needed is a PLA program
table from which the PLA can be programmed to supply the appropriate paths.

When implementing a combinational circuit with PLA, careful investigation must be
undertaken in order to reduce the total number of distinct product terms, since a given
PLA would have a finite number of AND terms. This can be done by simplifying each
function to a minimum number of terms. The number of literals in a term is not impor-
tant since we have available all input variables. Both the true value and the complement
of the function should be simplified to see which one can be expressed with fewer
product terms and which one provides product terms that are common to other func-
tions.
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Example
5-4

A combinational circuit is defined by the functions
F(A,B,C)=2(3,5,6,7)
F(A,B,C) = 2(0,2,4,7)

Implement the circuit with a PLA having three inputs, four product terms, and two out-
puts.

The two functions are simplified in the maps of Fig. 5-28. Both the true values and
the complements of the functions are simplified. The combinations that give a mini-
mum number of product terms are

FF={(B'C'+A'C'+ A'B"Y
F,=B'C'+ A'C' + ABC

B B
BC —_— BC
00 o1 11 10 00 o1 1t 10
A A
0 1 01 1 1
A {] 1 1 1 ,4{ {1 1
[ — ——
C C
Fi =AC+ AB + BC F,=B'C"+A'C'+ 4BC
B B
BC — BC ——
p 00 0oL Il 10 00 61 11 10
oj o 0 ¢ 0 0 0
A {l 0 A{ 1 0 0
[ ’ —
C C
FI=8C+4C+4'8 Fi=B'C+A'C+ABC
PLA program table
Product Inputs Outputs
term A B C|F F,
B'C' 1 - 0 0 o1
A'c’ 2 0o - 0 1 1
A'B' 3 o o0 —-]1 -
ABC 4 1 1 1 - 1
c T |T/C
FIGURE 5-28

Solution to Example 5-4
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This gives only four distinct product terms: 8'C", A'C’, A’B’, and ABC. The PLA
program table for this combination is shown in Fig. 5-28. Note that output Fi is the
normal (or true) output even though a C is marked under it. This is because F1 is gener-
ated prior to the output inverter. The inverter complements the function to produce F
in the output. m

The combinational circuit for this example is too small for practical implementation
with a PLA. It was presented here merely for demonstration purposes. A typical com-
mercial PLA would have over 10 inputs and about 50 product terms. The simplification
of Boolean functions with so many variables should be carried out by means of a tabu-
lation method or other computer-assisted simplification method. This is where a com-
puter program may aid in the design of complex digital systems. The computer program
should simplify each function of the combinational circuit and its complement to a min-
imum number of terms. The program then selects a minimum number of distinct terms
that cover all functions in their true or complement form.

Programmable logic devices have hundreds of gates interconnected through hundreds
of electronic fuses. It is sometimes convenient to draw the internal logic of such
devices in a compact form referred to as array logic. Figure 5-29 shows the conven-
tional and array logic symbols for a multiple-input AND gate. The conventional symbol
is drawn with multiple lines showing the fuses connected to the inputs of the gate. The
corresponding array logic symbol uses a single horizontal line connected to the gate in-
put and multiple vertical lines to indicate the individual inputs. Each intersection be-
tween a vertical line and the common horizontal line has a fused connection. Thus, in
Fig. 5-29(b), the AND gate has four inputs connected through fuses. In a similar fash-
ion, we can draw the array logic for the OR gate or any other type of multiple-input
gate.

The programmable array logic (PAL) is a programmable logic device with a fixed
OR array and a programmable AND array. Because only the AND gates arc pro-
grammable, the PAL is easier to program, but is not as flexible as the PLA. Figure 5-
30 shows the array logic configuration of a typical PAL. It has four inputs and four out-

Fuses
o ) L
—O——O—]
_-O—_(:)— }
OO
(a) Conventional symbol (b) Array logic symbol
FIGURE 5-29

Two graphic symbols for an AND gate
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FIGURE 5-30
PAL with four fnputs, four outputs, and three-wide AND-OR structure
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puts. Each input has a buffer and an inverter gate. Note that the two gates are shown
with one composite graphic symbol with normal and complement outputs. There are
four sections in the unit, each being composed of a threewide AND-OR array. This is
the term used to indicate that there are three programmable AND gates in each section
and one fixed OR gate. Each AND gate has 10 fused programmable inputs. This is
shown in the diagram by 10 vertical lines intersecting each horizontal line. The hori-
zontal line symbolizes the multiple-input configuration of the AND gate. One of the
outputs is connected to a buffer—inverter gate and then fed back into the inputs of the
AND gates through fuses,

Commercial PAL devices contain more gates than the one shown in Fig. 5-30. A
typical PAL integrated circuit may have eight inputs, eight outputs, and eight sections,
each consisting of an eightwide AND-OR array. The output terminals are sometimes
bidirectional, which means that they can be programmed as inputs instead of outputs if

desired.
When designing with a PAL, the Boolean functions must be simplified to fit into

each section. Unlike the PLA, a product term cannot be shared among two or more OR
gates. Therefore, each function can be simplified by itself without regard to common
product terms. The number of product terms in each section is fixed, and if the number
of terms in the function is too large, it may be necessary to use two sections to imple-

ment one Boolean function.
As an example of using a PAL in the design of a combinational circuit, consider the

following Boolean functions given in sum of minterms:

w(A, B, C, D) = 2(2, 12, 13)

x(A, B, C,D) = 2(7,8,9, 10, 11, 12, 13, 14, 15)
v(A, B, C, D)= 2(0,2,3,4,5,6,7,8,10, 11, 15)
z(A, B, C, D) = Z(1, 2,8, 12, 13}

Simplifying the four functions to a minimum number of terms results in the following
Boolean functions:

w = ABC' + A'B'CD’
x=A+ BCD
y=A'B+CD+B'D’

ABC' + A'B'CD' + AC'D' + A'B'C'D

N
I

w+ AC'D' + A'B'C'D
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Note that the function for z has four product terms. The logical sum of two of these
terms is equal to w. By using w, it is possible to reduce the number of terms for z from
four to three.

The PAL programming table is similar to the one used for the PLA except that only
the inputs of the AND gates need to be programmed. Table 5-6 lists the PAL program-
ming table for the four Boolean functions. The table is divided into four sections with
three product terms in each to conform with the PAL of Fig. 5-30. The first two sec-
tions need only two product terms to implement the Boolean function. The last section
for output z needs four product terms. Using the output from w, we can reduce the func-
tion to three terms. _

The fuse map for the PAL as specified in the programming table is shown in Fig. 5-
31. For each 1 or 0 in the table, we mark the corresponding intersection in the diagram
with the symbol for an intact fuse. For each dash, we mark the diagram with blown
fuses in both the true and complement inputs. If the AND gate is not used, we leave all
its input fuses intact. Since the corresponding input receives both the true and comple-
ment of each input variable, we have AA" = 0 and the output of the AND gate is al-
ways (0.

As with all PLDs, the design with PALs is facilitated by using computer-aided de-
sign techniques. The blowing of internal fuses is a hardware procedure done with the
help of special ¢lectronic instruments.

TABLE 5-6
PAL Programming Table
Product AND Inputs
Term AR CD W Outputs
1 110 - - w = ABC'
010 -~ + A'B'CD’
3 - - - - =
4 1 - - - = x=4A
5 -111 - + BCD
6 - - - - _
7 01 - - - y=A'B
8 --11 - + CD
9 -0 -0 - + B'D’
10 e | z=w
11 1 -0 0 - + AC'D’
12 0001 ~ + A'B'C'D
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Fuse map for PAL as specified in Table 5-6
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PROBLEMS
5-1 Construct a 16-bit parallel adder with four MSI circuits, each containing a 4-bit parallel
adder. Use a block diagram with nine inputs and five outputs for each 4-bit adder. Show
how the carries are connected between the MSI circuits.
/-2 Construct a BCD-to-excess-3-code converter with a 4-bit adder. Remember that the ex-
cess-3 code digit is obtained by adding three to the corresponding BCD digit. What must
- - be done to change the circuit to an excess-3-t0-BCD-code converter?
5-3 The adder-subtractor of Fig. 5-2(b) is used to subtract the following unsigned 4-bit num-
bers: 0110 — 1001 (6 — 9).
(2) What are the binary values in the nine inputs of the circuit?
(b) What are the binary values of the five outputs of the circuit? Explain how the output is
related to the operation of 6 — 9,
5-4 The adder-subtractor circuit of Fig. 5-2(b) has the following values for mode input M and

data inputs A and B. In each case, determine the values of the outputs: Sa, Sz, 52, $1, and
Cs.
M A B

(ay ¢ 0111 0110

(b) O 1000 1001

(© 1 1100 1000

d 1 0101 1010

(e) 1 0000 0001



198

Chapter 5 MSI and PLD Components

55

5-6

(a)

(b)

(a)

(b)

(c}

Using the AND-OR-INVERT implementation procedure described in Section 3-7,
show that the output carry in a full-adder circuit can be expressed as

C;+| = G" -+ P_.'C,‘: (G:P.‘\L G:C:)'

IC type 74182 is a look-ahead carry generator MSI circuit that generates the carries
with AND-OR-INVERT gates. The MSI circuit assumes that the input terminals have
the complements of the G’s, the P’s, and of ;. Derive the Boolean functions for the
look-ahead carries Ca, Ca, and Cy in this IC. (Hint: Use the equation-substitution
method to derive the carries in terms of C7.)

Redefine the carry propagate and carry generate as follows:
P= A+ B;
G; = AB;
Show that the output carry and output sum of a full-adder becomes
Cii = (CIG, + P)) =G+ PG
S =(PGHDC

The logic diagram of the first stage of a 4-bit parallel adder as implemented in IC type
74283 is shown in Fig. P5-6. Identify the P and G{ terminals as defined in part (a)
and show that the circuit implements a full-adder circuit.

Obtain the output carries Cs and C, as functions of P{, Pi, P3, G, G2, Gi, and C1{ in
AND-OR-INVERT form, and draw the two-level look-ahead circuit for this IC. [Hint:
Use the equation-substitution method as done in the text when deriving Fig. 5-4, but
use the AND-OR-INVERT function given in part (a) for Ci4;.]

By

w—1] >
™

FIGURE P5-6
First stage of a parallel adder

5.7 Assume that the exclusive-OR gate has a propagation delay of 20 ns and that the AND or
OR gatcs have a propagation delay of 10 ns. What is the total propagation delay time in the
4-bit adder of Fig. 5-5?
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Derive the two-level Boolean expression for the output carry Cs shown in the look-ahead
carry generator of Fig. 5-5,

How many unused input combinations are there in a BCD adder?
Design a combinational circuit that generated the 9's complement of a BCD digit.

Construct a 4-digit BCD adder-subtractor using four BCD adders, as shown in Fig. 5-6,
and four 9’s complement circuits from Problem 5-10. Use block diagrams for each compo-
nent, showing only inputs and outputs.

It is necessary to design a decimal adder for two digits represented in the excess-3 code.
Show that the correction after adding the two digits with a 4-bit binary adder is as fol-
lows:

(a) The output carry is equal to the carry from the binary adder.

(b) If the output carry = 1, then add 0011.

(c) If the output carry = 0, then add 1101.

Construct the decimal adder with two 4-bit adders and an inverter.

Design a combinational circuit that compares two 4-bit numbers A and B to check if tiey
are equal. The circuit has one output x, so that x = 1ifA = Bandx = 0 if A is not equal
to B.

Design a BCD-to-decimal decoder using the unused combinations of the BCD code as
don’t-care conditions.

A combinationai circuit is defined by the following three Boolean functions. Design the
circuit with a decoder and external gates.

LI |

F=x"y'2' + az

F=xy'z’ +x'y

F=x'y'z+xy
A combinational circuit is specified by the following three Boolean functions. Implement
the circuit with a 3 X 8 decoder constructed with NAND gates (similar to Fig. 5-10) and

three external NAND or AND gates. Use a block diagram for the decoder. Minimize the
number of inputs in the externai gates.

F(A, B, C)=2(2,4,7)
F(A, B, C) = (0, 3)
F(A,B,C)=2(0,2,3,4,7)

Draw the logic diagram of a 2-to-4-line decoder with only NOR gates. Include an enable
input.

Construct a 5 X 32 decoder with four 3 x 8 decoders with enable and one 2 X 4 de-
coder. Use block diagrams similar to Fig. 5-12.

Rearrange the truth table for the circuit of Fig. 5-10 and verify that it can function as a
demuitiplexer.

Design a 4-input priority encoder with inputs as in Table 5-4, but with input D, having the
highest priority and input D; the lowest priority.
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5-21

5-22

5.23

5-24

5-25
5-26

5-27

5-28

5-29

5.-30

5-31

5-32

Specify the truth table of an octal-to-binary priority encoder. Provide an output V to indi-
cate that at least one of the inputs is a 1. The input with the highest subscript number has
the highest priority. What will be the value of the four outputs if inputs Ds and D5 are |
and the other inputs are all 0’s?

Draw the logic diagram of a dual 4-to-1-line multiplexer with common selection inputs
and a common enable input.

Construct a 16 X 1 multiplexer with two 8 X 1 and one 2 X | multiplexers. Use block
diagrams for the three muluplexers.

Implement the following Boolean function with an 8 X i multiplexer.
F(A,B,C, D)=3(0,3,5,6,8,9, 14,15
Implement a full-adder with two 4 X 1 multiplexers.

Implement the Boolean function of Example 5.2 with an 8 X 1 multiplexer, but with in-
puts A, B, and C connected to selection inputs ss, $1, and s, respectively.

An 8 x 1 multiplexer has inputs A, B, and C connected to the selection inputs $a, 51, and
so, respectively. The data inputs, o through I, are as follows: I, = L =5 =
Ih=1I = 1;1g=1, = D; and Iy = D'. Determine the Boolean function that the multi-
plexer implements.

Implement the following Boolean function with a 4 X 1 multiplexer and external gates.
Connect inputs A and B to the selection lines. The input requirements for the four data
lines will be a function of variables C and D. These values are obtained by expressing F as
a function of € and D for each of the four cases when AB = 00, 01, 10, and 11. These
functions may have to be implemented with external gates.

F(A,B,C,D)y=2(1,3,4, 11,12, 13, 14, 15)

Given a 32 X 8 ROM chip with an enable input, show the external connections necessary
to construct a 128 x 8 ROM with four chips and a decoder.

A ROM chip of 4096 X 8 bits has two enable inputs and operates from a 5-volt power

supply. How many pins are needed for the integrated-circuit package? Draw a block dia-

gram and label all input and output terminals in the ROM.

Specify the size of a ROM (number of words and number of bits per word} that will ac-

commodate the truth table for the following combinational circuit components:

{a) A binary multiplier that multiplies two 4-bit numbers.

{b) A 4-bit adder-subtractor; see Fig. 5-2(b).

(c) A gquadruple 2-to-1-line multiplexers with common select and enable inputs; see Fig.
5-17.

(d} A BCD-to-seven-segment decoder with an enable input; see Problem 4-16.

Tabulate the truth table for an 8 X 4 ROM that implements the following four Boolean

functions:

Alx, v, 2y = 2(1,2,4,6,)
B(x,y,2) = Z(0,1,6,7)
Cle,y,2) = Z(2,6)
Dix,v,2y = 2(1,2,357
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5-33 Tabulate the PLA programming table for the four Boolean functions listed in Problem 5-
32. Minimize the number of product terms.

5-34 Derive the PLA programming table for the combinational circuit that squares a 3-bit num-
ber. Minimize the number of product terms. (See Fig. 5-24 for the equivalent ROM im-
plementation. )

5-35 List the PLA programming table for the BCD-to-excess-3-code converter whose Boolean
functions are simplified in Fig. 4-7,

5-36 Repeat Problem 5-35 using a PAL.

5-37 The following is a truth table of a 3-input, 4-output combinational circuit, Tabulate the
PAL programming table for the circuit and mark the fuses to be blown in a PAL diagram
similar to the one shown in Fig. 5-30.

Inputs Qutputs
X vy z A B CD
000 0100
001 i11°1
010 1 011
011 0101
100 1010
101 0001
110 1110
111 0111
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The digital circuits considered thus far have been combinational, i.e., the outputs at any
instant of time are entirely dependent upon the inputs present at that time. Although
every digital system is likely to have combinational circuits, most sysiems encountered
in practice also include memory elements, which require that the system be described in
terms of sequential logic.

A block diagram of a sequential circuit is shown in Fig. 6-1. 1t consists of a combi-
national circuit to which memory elements are connected to form a feedback path. The
memory clements are devices capable of storing binary information within them. The
binary information stored in the memory elements at any given time defines the state of
the sequential circuit. The sequential circuit receives binary information from external
inputs., These inputs, together with the present state of the memory elements, deter-
mine the binary value at the output terminals. They also determine the condition for
changing the statc in the memory elements. The block diagram demonstrates that the
external outputs in a sequential circuit are a function not only of external inputs, but
also of the present state of the memory elements. The next state of the memory ele-
ments is also a function of external inputs and the present state. Thus, a sequential cir-
cuit is specified by a time sequence of inputs, outputs, and internal states.

There are two main types of sequential circuits. Their classification depends on the
timing of their signals. A synchronous sequential circuit is a system whose behavior can
be defined from the knowledge of its signals at discrete instants of time. The behavior
of an asynchronous sequential circuit depends upon the order in which its input signals
change and can be affected at any instant of time. The memory elements commonly
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FIGURE 6-1
Block diagram of a sequential circuit

used in asynchronous sequential circuits are time-delay devices. The memory capability
of a time-delay device is due to the finite time it takes for the signal to propagate
through the device. In practice, the internal propagation delay of logic gates is of
sufficient duration to produce the needed delay, so that physical time-delay units may be
unnecessary. In gate-type asynchronous systems, the memory elements of Fig. 6-1
consist of logic gates whose propagation delays constitute the required memory. Thus,
an asynchronous sequential circuit may be regarded as a combinational circuit with
feedback. Because of the feedback among logic gates, an asynchronous sequential cir-
cuit may, at times, become unstable. The instability problem imposes many difficulties
on the designer. Asynchronous sequential circuits are presented in Chapter 9.

A synchronous sequential logic system, by definition, must employ signals that affect
the memory elements only at discrete instants of time. One way of achieving this goal
is to use pulses of limited duration throughout the system so that one pulse amplitude
represents logic-1 and another pulse amplitude (or the absence of a pulse) represents
logic-0. The difficulty with a system of pulses is that any two pulses arriving from sep-
arate independent sources to the inputs of the same gate will exhibit unpredictable de-
lays, will separate the pulses slightly, and will result in unreliable operation.

Practical synchronous sequential logic systems use fixed amplitudes such as voltage
levels for the binary signals. Synchronization is achieved by a timing device called a
master-clock generator, which generates a periodic train of clock pulses. The clock
pulses are distributed throughout the system in such a way that memory elements are
affected only with the arrival of the synchronization pulse. In practice, the clock pulses
are applied into AND gates together with the signals that specify the required change in
memory elements. The AND-gate outputs can transmit signals only at instants that co-
incide with the arrival of clock pulses. Synchronous sequential circuits that use clock
pulses in the inputs of memory elements are called clocked sequential circuits. Clocked
sequential circuits are the type encountered most frequently. They do not manifest in-
stability problems and their timing is easily divided into independent discrete steps,
each of which is considered separately. The scquential circuits discussed in this chapter
are exclusively of the clocked type.

The memory elements used in clocked sequential circuits are called flip-flops. These
circuits are binary cells capable of storing one bit of information. A flip-flop circuit has
two outputs, one for the normal value and one for the complement value of the bit
stored in it. Binary information can enter a flip-flop in a variety of ways, a fact that
gives rise to different types of flip-flops. In the next section, we examine the various
types of flip-flops and define their logical properties.
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6-2 FLIP-FLOPS

A flip-flop circuit can maintain a binary state indefinitely (as long as power is delivered
to the circuit) until directed by an input signal to switch states. The major differences
among various types of flip-flops are in the number of inputs they possess and in the
manner in which the inputs affect the binary state. The most common types of flip-flops
are discussed in what follows,

Basic Flip-Filop Circuit

It was mentioned in Sections 4-7 and 4-8 that a flip-flop circuit can be constructed from
two NAND gates or two NOR gates. These constructions are shown in the logic dia-
grams of Figs. 6-2 and 6-3. Each circuit forms a basic flip-flop upon which other more
complicated types can be built. The cross-coupled connection from the output of one
gate to the input of the other gate constitutes a feedback path. For this reason, the cir-
cuits are classified as asynchronous sequential circuits. Each fiip-flop has two outputs,
Q and Q', and two inputs, set and reser. This type of flip-flop is sometimes called a
direct-coupled RS flip-flop, or SR latch. The R and § are the first letters of the two in-
put names.

To analyze the operation of the circuit of Fig. 6-2, we must remember that the output
of a NOR gate is 0 if any input is 1, and that the output is 1 only when all inputs are 0.
As a starting point, assume that the set input is 1 and the reset input is 0. Since gate 2
has an input of 1, its output Q' must be O, which puts both inputs of gate 1 at 0, so that
output Q is 1. When the set input is returned to 0, the outputs remain the same, because
output Q remains a 1, leaving one input of gate 2 at 1. That causes output Q' to stay at
0, which leaves both inputs of gate number 1 at 0, so that output 0 is a 1. In the same
manner, it is possible to show that a 1 in the reset input changes output Qto0and Q'
to 1. When the reset input returns to 0, the outputs do not change.

When a 1 is applied to both the set and the reset inputs, both Q and @' outputs go to
0. This condition violates the fact that outputs Q and Q' are the complements of each
other. In normal operation, this condition must be avoided by making sure that 1’s are
not apphed to both inputs simultaneously.

A flip-flop has two useful states. When O = 1 and Q' = 0, it is in the set state (or

| __|——|__

( Rireset)
| __'——l.._ Q
0 S(sel)

(a) Logic diagram (b} Truth table

{after § ~ 1.R - Q)

(after§ -0, R 1)

—_—oCc o —|w
—_—o = o olx

FIGURE 6-2
Basic flip-flop circuit with NOR gates
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(after§ -~ 1ILR ~ )

(after S=0,R:= 1}

LI
0 R (reset)

{a) Logic diagram (b) Truth table

FIGURE &-3
Basic flip-flop circuit with NAND gates

I-state). When Q@ = 0 and Q' = 1, it is in the clear state (or O-state). The outputs Q
and Q' are complements of each other and are referred to as the normal and comple-
ment outputs, respectively. The binary state of the flip-flop is taken to be the value of
the normal output.

Under normal operation, both inputs remain at 0 unless the state of the flip-flop has
to be changed. The application of a momentary 1 to the set input causes the flip-flop to
go to the set state. The set input must go back to 0 before a 1 is applied to the reset
input. A momentary 1 applied to the reset input causes the flip-flop to go the clear
state. When both inputs are initially 0, a 1 applied to the set input while the flip-flop is
in the set state or a 1 applied to the reset input while the flip-flop is in the clear state
leaves the outputs unchanged. When a 1 is applied to both the set and the reset inputs,
both outputs go to 0. This state is undefined and is usually avoided. If both inputs now
go to 0, the state of the flip-flop is indeterminate and depends on which input remains a
1 longer before the transition to 0.

The NAND basic flip-flop circuit of Fig. 6-3 operates with both inputs normally at 1
unless the state of the flip-flop has to be changed. The application of a momentary 0 to
the set input causes output Q to go to 1 and Q' to go to 0, thus putting the flip-flop into
the set state. After the set input returns to 1, a momentary 0 to the reset input causes a
transition to the clear state. When both inputs go to 0, both outputs go to 1—a condi-
tion avoided in normal flip-flop operation.

The operation of the basic flip-flop can be modified by providing an additional control
input that determines when the state of the circuit is to be changed. An RS flip-flop with
a clock pulse (CP) input is shown in Fig. 6-4(a). It consists of a basic flip-flop circuit
and two additional NAND gates. The pulse input acts as an enable signal for the other
two inputs. The outputs of NAND gates 3 and 4 stay at the logic 1 level as long as the
CP input remains at 0. This is the quiescent condition for the basic flip-flop. When the
pulse input goes to 1, information from the § or R input is allowed to reach the output.
The set state is reached with § = t, R = 0, and CP = 1. This causes the output of
gate 3 to go to 0, the output of gate 4 to remain at 1, and the output of the flip-flop at Q
to go to 1. To change to the reset state, the inputs mustbe S = 0, R = 1, and CP = 1.
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(c) Characteristic cquation (d) Graphic symbol
FIGURE 6-4
RS flip-flop

In either case, when CP returns to O, the circuit remains in its previous state. When
CP = 1 and both the § and R inputs are equal to 0, the state of the circuit does not
change.

An indeterminate condition occurs when CP = 1 and both S and R are equal to 1.
This condition places (s in the outputs of gates 3 and 4 and 1’s in both outputs Q and
Q'. When the CP input goes back to 0 (while § and R are maintained at 1), it is not
possible to determine the next state, as it depends on whether the output of gate 3 or
gate 4 goes to | first. This indeterminate condition makes the circuit of Fig. 6-4(a)
difficult to manage and it is seldom used in practice. Nevertheless, it is an important
circuit because all other flip-flops are constructed from it.

The characteristic table of the flip-flop is shown in Fig. 6-4(b). This table shows the
operation of the flip-flop in tabular form. Q is an abbreviation of Q(r) and stands for
the binary state of the flip-flop before the application of a clock pulse, referred to as the
present state. The 5 and R columns give the possible values of the inputs, and @t + 1)
is the state of the flip-flop after the application of a single pulse, referred to as the next
state. Note that the CP input is not included in the characteristic table. The table must
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be interpreted as follows: Given the present state Q and the inputs § and R, the applica-
tion of a single pulse in the CP input causes the flip-flop to go to the next state,
ot + 1).

The characteristic equation of the flip-flop is derived in the map of Fig. 6-4(c). This
equation specifies the value of the next state as a function of the present state and the
inputs. The characteristic equation is an algebraic expression for the binary information
of the characteristic table. The two indeterminate states are marked with dont’t-care
X’s in the map, since they may result in either 1 or 0. However, the relation SR = 0
must be included as part of the characteristic equation to specify that both § and R can-
not equal to 1 simultaneously.

The graphic symbol of the RS flip-flop is shown in Fig. 6-4(d). It consists of a
rectangular-shape block with inputs S, R, and C. The outputs are Q and @', where Q'
is the complement of Q (except in the indeterminate state).

One way to eliminate the undesirable condition of the indeterminate state in the RS fiip-
flop is to ensure that inputs § and R are never equal to 1 at the same time. This is done
in the D flip-flop shown in Fig. 6-5(a). The D flip-flop has only two inputs: D and CP.
The D input goes directly to the S input and its complement is applied to the R input.
As long as the pulse input is at 0, the outputs of gates 3 and 4 are at the 1 level and the
circuit cannot change state regardless of the value of D. The D input is sampled when
CP = 1. f D is 1, the @ output goes to 1, placing the circuit in the set state. If D is O,
output Q goes to 0 and the circuit switches to the clear state.

D D—
3 .
I Q

cp

Dt

(4) Logic diagram

[T1
S o

Qir+ 1)=D
(b} Characteristic table {c) Characteristic equation {d) Graphic symbol

FIGURE 6-5
D fiip-flop
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The D flip-flop receives the designation from its ability to hold data into its internal
storage. This type of flip-flop is sometimes called a gated D-latch. The CP input is of-
ten given the designation G (for gate) to indicate that this input enables the gated latch
to make possible data entry into the circuit. The binary information present at the data
input of the D flip-flop is transferred to the O output when the CP input is enabled. The
output follows the data input as long as the pulse remains in its 1 state. When the pulse
goes to 0, the binary information that was present at the data input at the time the pulse
transition occurred is retained at the @ output until the pulse input is enabled again.

The characteristic table for the D flip-flop is shown in Fig. 6-5(b). It shows that the
next state of the flip-flop is independent of the present state since Q(z + 1} is equal to
input D whether () is equal to 0 or 1. This means that an input pulse will transfer the
value of input D into the output of the flip-flop independent of the value of the output
before the pulse was applied. The characteristic equation shows clearly that Q(¢ + 1) is
equal to D.

The graphic symbol for the level sensitive D flip-flop is shown in Fig. 6-5(d). The
graphic symbol for a transition-sensitive D flip-flop is shown later in Fig. 6-14.

JK and T Flip-Fiops

A JK flip-flop is a refinement of the RS flip-flop in that the indeterminate state of the RS
type is defined in the JK type. Inputs J and K behave like inputs S and R to set and clear
the flip-flop, respectively. The input marked J is for ser and the input marked X is for
reset. When both inputs J and K are equal to 1, the flip-flop switches to its complement
state, that is, if ¢ = 1, it switches to @ = 0, and vice versa.

A JK flip-flop constructed with two cross-coupled NOR gates and two AND gates is
shown in Fig. 6-6(a). Output Q is ANDed with K and CP inputs so that the flip-flop is
cleared during a clock pulse only if Q was previously 1. Similarly, output Q' is ANDed
with J and CP inputs so that the flop-flop is set with a clock pulse only when @' was
previously 1. When both J and K are 1, the input pulse is transmitted through one AND
gate only: the one whose input is connected to the flip-flop output that is presently equal
to 1. Thus, if Q = 1, the output of the upper AND gate becomes 1 upon application of
the clock pulse, and the flip-flop is cleared. If Q' = 1, the output of the lower AND
gate becomes 1 and the flip-flop is set. In either case, the output state of the flip-flop is
complemented. The behavior of the JK flip-flop is demonstrated in the characteristic
table of Fig. 6-6(b).

It is very important to realize that because of the feedback connection in the JK flip-
flop, a CP pulse that remains in the 1 state while both J and K are equal to 1 will cause
the output to complement again and repeat complementing until the puise goes back to
0. To avoid this undesirable operation, the clock pulse must have a time duration that is
shorter than the propagation delay time of the flip-flop. This is a restrictive require-
ment, since the operation of the circuit depends on the width of the pulse. For this rea-
son, JK flip-flops are never constructed as shown in Fig. 6-6(a). The restriction on the
pulse width can be eliminated with a master—slave or edge-triggered construction, as
discussed in the next section. The same reasoning applies to the T fiip-flop.
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The T flip-flop is a single-input version of the JK flip-flop. As shown in Fig. 6-7(a),
the T flip-flop is obtained from the JK flip-flop when both inputs are tied together. The
designation 7" comes from the ability of the flip-flop to “toggle,” or complement, its
state. Regardless of the present state, the flip-flop complements its output when the
clock pulse occurs while input 7 is 1. The characteristic table and characteristic equa-
tion show that when 7 = 0, Q{t + 1) = (), that is, the next state is the same as the
present state and no change occurs. When 7 = 1, then Q(t + 1) = O, and the state
of the flip-flop is complemented.

6-3 TRIGGERING OF FLIP-FLOPS

The state of a flip-flop is switched by a momentary change in the input signal. This mo-
mentary change is called a trigger and the transition it causes is said to trigger the flip-
flop. Asynchronous flip-flops, such as the basic circuits of Figs. 6-2 and 6-3, require an
input trigger defined by a change of signal level. This level must be returned to its ini-
tial value (0 in the NOR and [ in the NAND flip-flop) before a second trigger is ap-
plied. Clocked flip-flops are triggered by pulses. A pulse starts from an initial value of
0, goes momentarily to |, and after a short time, returns to its initial 0 value. The time
interval from the application of the pulse until the output transition occurs is a critical
factor that needs further investigation.

As seen from the block diagram of Fig. 6-1, a sequential circuit has a feedback path
between the combinational circuit and the memory elements. This path can produce in-
stability if the outputs of memory elements (flip-flops) are changing while the outputs
of the combinational circuit that go to flip-flop inputs are being sampled by the clock
pulse. This timing problem can be prevented if the outputs of flip-flops do not start
changing until the pulse input has returned to 0. To ensure such an operation, a flip-flop
must have a signal-propagation delay from input to output in excess of the pulse dura-
tion. This delay is usually very difficult to control if the designer depends entirely on
the propagation delay of logic gates. One way of ensuring the proper delay is to include
within the flip-flop circuit a physical delay unit having a delay equal to or greater than
the pulse duration. A better way to solve the feedback timing problem is to make the
flip-flop sensitive to the pulse transition rather than the pulse duration.

A clock pulse may be either positive or negative. A positive clock source remains at
0 during the interval between pulses and goes to 1 during the occurrence of a pulse.
The pulse goes through two signal transitions: from 0 to 1 and the return from 1 to 0.
As shown in Fig. 6-8, the positive transition is defined as the positive edge and the neg-
ative transition as the negative edge. This definition applies also to negative pulses.

The clocked Rlip-flops introduced in Section 6-2 are triggered during the positive
edge of the pulse, and the state transition starts as soon as the pulse reaches the logic-1
level. The new state of the flip-flop may appear at the output terminals while the input
pulse is still 1. If the other inputs of the flip-flop change while the clock is still 1, the
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flip-flop will start responding to these new values and a new output state may occur.
When this happens, the output of one flip-flop cannot be applied to the inputs of another
flip-flop when both are triggered by the same clock pulse. However, if we can make
the flip-flop respond to the positive- (or negative-) edge transition only, instead of the
entire pulse duration, then the multiple-transition problem can be eliminated.

One way to make the flip-flop respond only to a pulse transition is to use capacitive
coupling. In this configuration, an RC (resistor—capacitor) circuit is inserted in the
clock input of the flip-flop. This circuit generates a spike in response to a momentary
change of input signal. A positive edge emerges from such a circuit with a positive
spike, and a negative edge emerges with a negative spike. Edge triggering is achieved
by designing the flip-flop to neglect one spike and trigger on the occurrence of the
other spike. Another way to achieve edge triggering is to use a master—slave or edge-
triggered flip-flop as discussed in what follows.

Master-Slave Flip-Flop

A master—slave flip-flop is constructed from two separate flip-flops. One circuit serves
as a master and the other as a slave, and the overall circuit is referred to as a master—
slave flip-flop. The logic diagram of an RS master—slave flip-flop is shown in Fig. 6-9.
It consists of a master flip-flop, a slave flipflop, and an inverter. When clock pulse CP
is 0, the output of the inverter is 1. Since the clock input of the slave is 1, the flip-fiop
is enabled and output Q is equal to ¥, while Q' is equal to ¥'. The master flip-flop is
disabled because CP = (0. When the pulse becomes 1, the information then at the ex-
ternal R and S inputs is transmitted to the master flip-flop. The slave flip-flop, however,
is isolated as long as the pulse is at its 1 level, because the output of the inverter is 0. ~
When the pulse returns to 0, the master flip-flop is isolated, which prevents the external
inputs from affecting it. The slave flip-flop then goes to the same state as the master
flip-flop.

The timing relationships shown in Fig. 6-10 illustrate the sequence of events that oc-
cur in a master—slave flip-flop. Assume that the flip-flop is in the clear state prior to the
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FIGURE 6-9
Logic diagram of @ master—slave flip-fiop

occurrence of a pulse, so that ¥ = 0 and Q = 0. The input conditions are § = 1,
R = 0, and the next clock puise should change the flip-flop to the set state with O = 1.
During the pulse transition from 0 to |, the master flip-flop is set and changes ¥ to 1.
The slave flip-flop is not affected because its CP input is 0. Since the master flip-flop is
an internal circuit, its change of state is not noticeable in the outputs ¢ and Q'. When
the puise returns to 0, the information from the master is allowed to pass through to the
slave, making the external output ) = 1. Note that the external § input can be changed
at the same time that the pulse goes through its negative-edge transition. This is be-
cause, once the CP reaches 0, the master is disabled and its R and § inputs have no
influence until the next clock pulse occurs. Thus, in a master—siave flip-flop, it is possi-
ble to switch the output of the flip-flop and its input information with the same clock
puise. It must be realized that the § input could come from the output of another
master—slave flip-flop that was switched with the same clock pulse.

The behavior of the master—slave flip-flop just described dictates that the state
changes in all flip-flops coincide with the negative-edge transition of the pulse. How-
ever, some IC master—siave flip-flops change output states in the positive-edge transi-

CcP

: [

FIGURE 6-10
Timing relationships irr a master--siave flip-flop
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tion of clock pulses. This happens in flip-flops that have an additional inverter between
the CP terminal and the input of the master. Such flip-flops are triggered with negative
pulses (see Fig. 6-8), so that the negative edge of the pulse affects the master and the
positive edge affects the slave and the output terminals.

The master—slave combination can be constructed for any type of flip-flop by adding
a clocked RS flip-flop with an inverted clock to form the slave. An example of a mas-
ter—slave JK flip-flop constructed with NAND gates is shown in Fig. 6-11. It consists
of two flip-flops; gates 1 through 4 form the master flip-flop, and gates 5 through 8 form
the slave flip-flop. The information present at the J and K inputs is transmitted to the
master flip-flop on the positive edge of a clock pulse and is held there until the negative
edge of the clock pulse occurs, after which it is allowed to pass through to the slave
flip-flop. The clock input is normally 0, which keeps the outputs of gates 1 and 2 at the
1 level. This prevents the J and K inputs from affecting the master flip-flop. The slave
flip-flop is a clocked RS type, with the master flip-flop supplying the inputs and the
clock input being inverted by gate 9. When the clock is 0, the output of gate 9 is 1, so
that output Q is equal to ¥, and @' is equal to ¥ '. When the positive edge of a clock
pulse occurs, the master flip-flop is affected and may switch states. The slave flip-flop is
isolated as long as the clock is at the 1 level, because the output of gate 9 provides a 1
to both inputs of the NAND basic flip-flop of gates 7 and 8. When the clock input re-
turns to 0, the master flip-flop is isolated from the J and X inputs and the slave flip-flop
goes to the same state as the master flip-flop.

Now consider a digital system containing many master-slave flip-flops, with the out-
puts of some flip-flops going to the inputs of other flip-flops. Assume that clock-pulse
inputs to all flip-flops are synchronized (occur at the same time). At the beginning of
each clock pulse, some of the master elements change state, but all flip-flop outputs re-
main at their previous values. After the clock pulse returns to 0, some of the outputs
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FIGURE 6-11

Clocked master-slave JK flip-flop
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change state, but none of these new states have an effect on any of the master elements
until the next clock pulse. Thus, the states of flip-flops in the system can be changed
simultaneously during the same clock pulse, even though outputs of fip-flops are con-
nected to inputs of flip-flops. This is possible because the new state appears at the out-
put terminals only after the clock pulse has returned to 0. Therefore, the binary content
of one flip-flop can be transferred to a second flip-flop and the content of the second
transferred to the first, and both transfers can occur during the same clock pulse.

Edge-Triggered Flip-Flop

Another type of flip-flop that synchronizes the state changes during a clock-pulse transi-
tion is the edge-triggered flip-flop. In this type of flip-flop, output transitions occur at a
specific level of the clock pulse. When the pulse input level exceeds this threshold
level, the inputs are locked out and the flip-flop is therefore unresponsive to further
changes in inputs until the clock pulse returns to 0 and another pulse occurs, Some
edge-triggered flip-flops cause a transition on the positive edge of the pulse, and others
cause a transition on the negative edge of the pulse.

The logic diagram of a D-type positive-edge-triggered flipfiop is shown in Fig. 6-
12. It consists of three basic flip-flops of the type shown in Fig. 6-3. NAND gates 1
and 2 make up one basic flip-flop and gates 3 and 4 another. The third basic flip-flop
comprising gates 5 and 6 provides the outputs to the circuit. Inputs S and R of the third
basic flip-flop must be maintained at logic-1 for the outputs to remain in their steady-
state values. When § = 0 and R = 1, the output goes to the set state with ¢ = 1.
When § = 1 and R = 0, the output goes to the clear state with @ = 0. Inputs S and R

CP'——r

TR
S

FIGURE 6-12
D-type positive-edge-triggered fiip-flop
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are determined from the states of the other two basic flip-flops. These two basic flip-
flops respond to the external inputs D {data) and CP (clock pulse).

The operation of the circuit is explained in Fig. 6-13, where gates 1-4 are redrawn
to show all possible transitions. Outputs S and R from gates 2 and 3 go to gates 5 and 6,
as shown in Fig. 6-12, to provide the actual outputs of the flip-flop. Figure 6-13(a)
shows the binary values at the outputs of the four gates when CP = 0. Input D may be
equal to O or 1. In either case, a CP of 0 causes the outputs of gates 2 and 3togoto 1,
thus making § = R = 1, which is the condition for a steady-state output. When

CP=() —eg CP=0 —¢
Di=0 D=1
(a) With CP=10
CP=1—+ CP=1 —s¢
D=0 D=1 4 0
(b) With CP =1
FIGURE 6-13

Operation of the D-type edged-triggered flip-flop
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D = 0, pate 4 has a | output, which causes the output of gate 1 to go to 0. When
D =1, gate 4 goes to 0, which causes the output of gate 1 to go to 1. These are the two
possible conditions when the CP terminal, being 0, disables any changes at the outputs
of the flip-flop, no matter what the value of D happens to be.

There is a definite time, called the serup time, in which the £ input must be main-
tained at a constant value prior to the application of the pulse. The setup time is equal
to the propagation delay through gates 4 and 1 since a change in D causes a change in
the outputs of these two gates. Assume now that D does not change during the setup
time and that input C'F becomes 1. This situation is depicted in Fig. 6-13(b). If D = 0
when CP becomes |, then § remains 1 but R changes to 0. This causes the output of the
flip-flop Q to go to O (in Fig. 6-12). If now, while CP = 1, there is a change in the D
input, the output of gate 4 will remain at 1 (even if D goes to 1), since one of the gate
inputs comes from R, which is maintained at 0. Only when CP returns to O can the out-
put of gate 4 change; but then both R and S become 1, disabling any changes in the out-
put of the flip-flop. However, there is a definite time, called the hold time, that the D
input must not change after the application of the positive-going transition of the pulse.
The hold time is equal to the propagation delay of gate 3, since it must be ensured that
R becames 0 in order to maintain the output of gate 4 at 1, regardless of the vaiue of D.

If D = | when CP = |, then § changes to {, but R remains at 1, which causes the
output of the flip-flop @ to go to 1. A change in D while CP = 1 does not alter S and
R, because gate 1 is maintained at | by the O signal from §. When CP goes to zero,
both § and R go to | to prevent the output from undergoing any changes.

In summary, when the input clock pulse makes a positive-going transition, the value
of D is transferred to . Changes in D when CP is maintained at a steady 1 value do
not affect . Moreover, a negative pulse transition does not affect the output, nor does
it when CP = (). Hence, the edge-triggered flip-flop eliminates any feedback problems
in sequential circuits just as a master—slave flip-flop does. The setup time and hold time
must be taken into consideration when using this type of flip-flop.

When using difterent types of flip-flops in the same sequential circuit, one must en-
sure that all flip-flop outputs make their transitions at the same time, i.e., during either
the negative edge or the positive edge of the pulse. Those flip-flops that behave opposite
from the adopted polarity transition can be changed easily by the addition of inverters
in their clock inputs. An alternate procedure is to provide both positive and negative
pulses (by means of an inverter), and then apply the positive pulses to flip-flops that
trigger during the negative edge and negative pulses to flip-flops that trigger during the
positive edge, or vice versa.

I

Graphic Symbols

The graphic symbols for tour flip-flops are shown in Fig. 6-14. The input letter symbols
in each diagram designate the type of flip-flop such as RS, JK, D, and T. The clock-
pulse input 1s recognized in the diagram from the arrowhead-shape symbol. This is a
symbol of a dynamic indicator and denotes that the flip-flop responds to a positive-edge
transition of the clock. The presence of a small circle outside the block along the dy-
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FIGURE 6-14

Graphic symbols for flip-flops

namic indicator designates a negative-edge transition for triggering the flip-flop. The
letter symbol C is used for the clock input when the fiip-flop responds to a pulse level
rather than a pulse transition. This was shown in Fig. 6-5(d) for the level-sensitive D
flip-flop.

The outputs of the flip-flop are marked with the letter symbol Q and Q' within the
block. The flip-flop may be assigned a different variable name even though @ is written
inside the block. In that case, the letter symbol for the flip-flop output is marked outside
the block along the output line. The state of the flip-flop is determined from the value
of its normal output Q. If one wishes to obtain the complement output, it is not neces-
sary to use an inverter because the complement value is available directly from Q.

Flip-flops available in IC packages sometimes provide special inputs for setting or
clearing the flip-flop asynchronously. These inputs are usually called direct preset and
direct clear. They affect the flip-flop on a positive (or negative) value of the input signal
without the need for a clock pulse. These inputs are vseful for bringing all flip-flops to
an initial state prior to their clocked operation. For example, after power is turned on in
a digital system, the states of its flip-flops are indeterminate. A clear switch clears all
the flip-flops to an initial cleared state and a star? switch begins the system’s clocked
operation. The clear switch must clear all flip-flops asynchronously without the need for
a pulse.

The graphic symbol of a negative-edge-triggered JK flip-flop with direct clear is
shown in Fig. 6-15. The clock-pulse input CP has a small circle under the dynamic
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Function table

l | i Inputs i Outputs‘"%
- Clear Clock J K o ¢
Clear Q ¢ B X X 0 |
K A J 0 X
| i 1 ! 0 0 No change
T 1 | a0 1 0 {
P 1 i | { 1 0
Lo b1 j Tosgle |
FIGURE 6-15

JK flip-fiop with direct clear

symbol to indicate that the outputs change in response to a negative transition of the
clock. The direct-clear input also has a small circle to indicate that, normally, this input
must be maintained at 1. If the clear input is maintained at 0, the flip-flop remains
cleared, regardless of the other inputs or the clock pulse. The function table specifies
the circuit operation. The X's are don’t-care conditions, which indicate that a 0 in the
direct-clear input disables all other inputs. Only when the clear input is 1 would a nega-
tive transition of the clock have an effect on the outputs. The outputs do not change if
J = K = 0. The flip-flop toggles, or complements, when J = K = 1. Some flip-flops
may also have a direct-preset input, which sets the output Q to 1 (and Q' to 0) asyn-
chronously.

6-4 ANALYSIS OF CLOCKED SEQUENTIAL CIRCUITS

The behavior of a sequential circuit is determined from the inputs, the outputs, and the
state of its flip-flops. The outputs and the next state are both a function of the inputs
and the present state. The analysis of a sequential circuit consists of obtaining a table or
a diagram for the time sequence of inputs, outputs, and internal states. It is also possi-
ble to write Boolean expressions that describe the behavior of the sequential circuit.
However, these expressions must include the necessary time sequence, either directly
or indirectly.

A logic diagram is recognized as a clocked sequential circuit if it includes flip-flops.
The flip-flops may be of any type and the logic diagram may or may not include combi-
national circuit gates. In this section, we first introduce a specific example of a clocked
sequential circuit with D flip-flops and use it to present the basic methods for describ-
ing the behavior of sequential circuits. Additional examples are used throughout the
discussion to illustrate other procedures.

Sequential-Circuit Example

An example of a clocked sequential circuit is shown in Fig. 6-16. The circuit consists
of two D flip-flops A and B, an input x, and an output y. Since the D inputs determine
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Exampte of a sequential circuit

the flip-flops’ next state, it is possible to write a set of next-state equations for the cir-
cuit:
At + 1) =A@®x@®) + Bl)x(®)

B+ 1) =A4"(nx®

A state equation is an algebraic expression that specifics the condition for a flip-flop
state transition. The left side of the equation denotes the next state of the flip-flop and
the right side of the equation is a Boolean expression that specifies the present state
and input conditions that make the next state equal to 1. Since all the variables in the
Boolean expressions are a function of the present state, we can omit the designation (¢)
after each variable for convenience. The previous equations can be expressed in more
compact form as follows:

At + 1) = Ax + Bx
B(t+1)=A'x
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State Table

The Boolean expressions for the next state can be derived directly from the gates that
form the combinational-circuit part of the sequential circuit. The outputs of the combi-
national circuit are applied to the D inputs of the flip-flops. The £ input values deter-
mine the next state.

Similarly, the present-state value of the output can be expressed algebraically as fol-
lows:

y() = [Alt) + BO)]x'(2)
Removing the symbol (¢) for the present state, we obtain the output Boolean function:

y = (A + B)x’

The time sequence of inputs, outputs, and flip-lop states can be enumerated in a stare
table. The state table for the circuit of Fig. 6-16 is shown in Table 6- 1. The table con-
sists of four sections labeled present state, input, next state, and output. The present-
state section shows the states of flip-flops A and B at any given time ¢. The input sec-
tion gives a value of x for each possible present state. The next-state section shows the
states of the tlip-flops one clock period later at time ¢ + 1. The output section gives the
value of y for each present state.

The derivation of a state table consists of first listing all possible binary combinations
of present state and inputs. In this case, we have eight binary combinations from 000 to
111. The next-state values are then determined from the logic diagram or from the state
equations. The next state of flip-flop A must satisfy the state equation

A(r + 1) = Ax + Bx

The next-state section in the state table under column A has three 1's where the present

TABLE 6-1

State Tahble for the Circuit of Fig. 6-16

Present Next

State Input State Output
A B X A B ¥
00 0 0 0 0
00 1 0 1 0
0 1 0 00 1
0 1 ! 1t 0
1 0 ) 00 |
1 0 | 1 0 0
11 ( 0 0 i
I 1 1 1 0 0
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TABLE 6-2
Second Form of the State Table
Next State Output

Present State x=0 x=1 W
AB AB AB ¥ ¥
00 00 01 0 0
01 00 11 1 0
10 00 10 1 0
11 00 10 1 0

state and input value satisfy the conditions that the present state of A and input x are
both equal to 1 or the present state of B and input x are both equal to 1. Similarly, the
next state of flip-flop B is derived from the state equation

B(t+ 1)=A'x

It is equal to 1 when the present state of A is 0 and input x is equal to 1. The output
column is derived from the output equation

y = Ax' + Bx

The state table of any sequential circuit with D-type flip-flops is obtained by the
same procedure outlined in the previous example. In general, a sequential circuit with
m flip-flops and » inputs needs 27" rows in the state table. The binary numbers from 0
through 2™*" — 1 are listed under the present-state and input columns. The next-state
section has m columns, one for cach flip-flop. The binary values for the next state are
derived directly from the state equations. The output section has as many columns as
thete are output variables. Its binary value is derived from the circuit or from the
Boolean function in the same manner as in a truth table. Note that the examples in this
chapter use only one input and one output variabie, but, in general, a sequential circuit
may have two or more inputs or outputs.

It is sometimes convenient to express the state table in a slightly different form. In
the other configuration, the state table has only three sections: present state, next state,
and output. The input conditions are enumerated under the next-state and output sec-
tions. The state table of Table 6-1 is repeated in Table 6-2 using the second form. For
cach present state, there are two possible next states and outputs, depending on the
value of the input. We will use both forms of the state table. One form may be prefer-
able over the other, depending on the application.

State Diagram

The information available in a state table can be represented graphically in a state dia-
gram. In this type of diagram, a state is represented by a circle, and the transition be-
tween states is indicated by directed lines connecting the circles. The state diagram of
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FIGURE 6-17
State diagram of the circuit of Fig. 6-16

the sequential circuit of Fig. 6-16 is shown in Fig. 6-17. The state diagram provides
the same information as the state table and is obtained directly from Table 6-2. The bi-
nary number inside each circle identifies the state of the flip-flops. The directed lines
are labeled with two binary numbers separated by a slash. The input value during the
present state is labeled first and the number after the slash gives the output during the
present state. For example, the directed line from state 00 to 01 is labeled 1/0, mean-
ing that when the sequential circuit is in the present state 00 and the input is 1, the out-
put is 0. After a clock transition, the circuit goes to the next state, O1. The same clock
transition may change the input value. If the input changes to 0, then the output be-
comes 1, but if the input remains at 1, the output stays at 0. This information is ob-
tained from the state diagram along the two directed lines emanating from the circle
representing state 01. A directed line connecting a circle with itself indicates that no
change of state occurs.

There is no difference between a state table and a state diagram except in the manner
of representation. The state table is easier to derive from a given logic diagram and the
state diagram follows directly from the state table. The state diagram gives a pictorial
view of state transitions and is the form suitable for human interpretation of the circuit
operation. For example, the state diagram of Fig. 6-17 clearly shows that, starting from
state 00, the output is O as long as the input stays at 1. The first O input after a string of
1’s gives an output of 1 and transfers the circuit back to the initial state 00.

Flip-Flop Input Functions

The logic diagram of a sequential circuit consists of flip-flops and gates. The intercon-
nections among the gates form a combinational circuit and may be specified alge-
braically with Boolean functions. Thus, knowledge of the type of flip-flops and a list of
the Boolean functions of the combinational circuit provide all the information needed
to draw the logic diagram of a sequential circuit. The part of the combinational circuit
that penerates external outputs is described algebraically by the circuit output functions.
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The part of the circuit that generates the inputs to flip-flops are described algebraically
by a set of Boolean functions called flip-flop input functions, or sometimes input equa-
tions.

We shall adopt the convention of using two letters to designate a flip-flop input func-
tion; the first to designate the name of the input and the second the name of the flip-
flop. As an example, consider the following flip-flop input functions:

JA=BC'x + B'Cx'
KA=B+y

JA and KA designate two Boolean variables. The first letter in each denotes the J and K
input, respectively, of a JK flip-flop. The second letter, A, is the symbol name of the
flip-flop. The right side of each equation is a Boolean function for the corresponding
flip-flop input variable. The implementation of the two input functions is shown in the
logic diagram of Fig. 6-18. The JK flip-flop has an output symbol A and two inputs la-
beled J and K. The combinational circuit drawn in the diagram is the implementation of
the algebraic expression given by the input functions. The outputs of the combinational
circuit are denoted by JA and KA in the input functions and go to the J and X inputs,
respectively, of flip-flop A.

From this example, we see that a flip-flop input function is an algebraic expression
for a combinational circuit. The two-letter designation is a variable name for an output
of the combinational circuit. This output is always connected to the input (designated
by the first letter) of a flip-flop (designated by the second letter).

The sequential circuit of Fig. 6-16 has one input x, one output y, and two D flip-
flops A and B. The logic diagram can be expressed algebraically with two flip-flop input
functions and one output-circuit function:

DA = Ax + Bx
DB =A'x
y={A+ B)x'
CP
I'e Qr A
e
r— >
—) D> o—
B’ [ \
C
xf )
FIGURE 6-18

Implementation of the flip-flop input functions
JA=BCx+ BCx andKA=8B+ y
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This set of Boolean functions provides all the necessary information for drawing the
logic diagram of the sequential circuit. The symbol DA specifies a D flip-flop labeled A.
DB specifies a second D flip-flop labeled B. The Boolean expressions associated with
these two variables and the expression for output y specify the combinational-circuit
part of the sequential circuit.

The flip-flop input functions constitute a convenient algebraic form for specifying a
logic diagram of a sequential circuit. They imply the type of flip-flop from the first let-
ter of the input variable and they fully specify the combinational circuit that drives the
flip-flop. Time is not included explicitly in these equations, but is implied from the
clock-pulse operation. It is sometimes convenient to specify a sequential circuit alge-
braically with circuit output functions and flip-flop input functions instead of drawing
the logic diagram.

Characteristic Tables

The analysis of a sequential circuit with flip-flops other than the D type is complicated
because the relationship between the inputs of the flip-flop and the pext state is not
straightforward. This relationship is best described by means of a characteristic table
rather than a state equation. The characteristic tables of four flip-flops were presented
in Section 6-2. When analyzing sequential circuits, it is more convenient to present the
characteristic table in a somewhat different form. The modified form of the characteris-
tic tables of four types of flip-flops are shown in Table 6-3. They define the next state as
a function of the inputs and present state. (¢} refers to the present state prior to the
application of a pulse. Q{r + 1) is the next state one clock period later. Note that the
clock-pulse input is not listed in the characteristic table, but is implied to occur between
time rand ¢ + 1.

The characteristic table for the JK flip-flop shows that the next state is equal to the

TABLE 6-3
Flip-Flop Characteristic Tables
JK Flip-Flop RS Flip-Fiop
J K ait + 1) SR Qi+ 1)
00 Qi) No change 00 o1} No change
01 0 Reset 01 0 Reset
1 0 1 Set 10 | Set
11 o°'(1) Complement | T O A Unpredictable
il L.

D Flip-Flop T Flip-Flop
D Qi+ 1) T Qr+ 1)
0 0 Reset 0 Q) No change
1 ] Set | Q') Complement
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present state when inputs J and K are both equal to 0. This can be expressed as
¢t + 1) = Q(z), indicating that the clock pulse produces no change of state. When
K = 1 and J = 0, the clock pulse resets the flipflop and Q(r + 1) = 0. WithJ = 1
and K = 0, the flip-flop sets and Q(r + 1) = 1. When both J and X are equal to 1, the
next state changes to the complement of the present state, which can be expressed as
Q@+ 1)=Q'(0.

The RS flip-flop is similar to the JK when § is replaced by J and R by K except for
the indeterminate case. The question mark for the next state when S and R are both
equal to | indicates an unpredictable next state.

The next state of a D flip-flop is dependent only on the D input and independent of
the present state, which can be expressed as Q(¢r + 1) = D, This means that the next-
state value can be obtained directly from the binary logic value of the D input. Note
that the D flip-flop does not have a “no-change” condition. This condition can be ac-
complished either by disabling the clock pulses or by leaving the clock pulses and con-
necting the output back into the D input when the state of the flip-flop must remain the
same.

The T flip-flop is obtained from a JK flip-flop when inputs J and X are tied together.
The characteristic table has only two conditions. When T = 0 (J = K = 0), a clock
pulse does not change the state, When 7 = 1 (J = K = 1), a clock pulse comple-
ments the state of the flip-flop.

Analysis with JK and Other Flip-Flops

It was shown previously that the next-state values of a sequential circuit with D flip-
flops can be derived directly from the next-state equations. When other types of flip-
flops are used, it is necessary to refer to the characteristic table. The next-state values
of a sequential circuit that uses any other type of flip-flop such as JK, RS, or T can be
derived by following a two-step procedure:

1. Obtain the binary values of each flip-flop input function in terms of the present-
state and input variables.

2. Use the corresponding flip-flop characteristic table to determine the next state.

To illustrate this procedure, consider the sequential circuit with two JK flip-flops A and
B and one input x, as shown in Fig. 6-19. The circuit has no outputs and, therefore, the
state table does not need an output column. (The outputs of the flip-flops may be con-
sidered as the outputs in this case.) The circuit can be specified by the following flip-
flop input functions:

JA=~R8 JB =x'
KA = Bx' KB=Ax+Ax = ADx

The state table of the sequential circuit is shown in Table 6-4. First, we derive the
binary values listed under the columns labeled flip-flop inputs. These columns are not
part of the state table, but they are needed for the purpose of evaluating the next state
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FIGURE 6-19
Sequentiai circuit with JK flip-flops

as specified in step 1 of the procedure. These binary values are obtained directly from
the four input fiip-flop functions in a manner similar to that for obtaining a truth table
from an algebraic expression. The next state of each flip-flop is evaluated from the cor-
responding J and X inputs and the characteristic table of the JK flip-flop listed in
Table 6-3. There are four cases to consider. When J = 1 and X = 0, the next state is
l. When J = ( and K = 1, the next state is 0. When J = K = 0, there is no change
of state and the next-state value is the same as the present state. WhenJ = K = |, the

TABLE 6-4
State Table for Sequential Circuit with JK flip-Flops
Present MNext

state Input state Flip-flop inputs

A B X A B JA KA JB KB
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State diagram of the circuit of Fig. 6-19

next-state bit is the complement of the present-state bit. Examples of the last two cases
oceur in the table when the present state AB is 10 and input x is 0. JA and KA are both
equal to O and the present state of A is 1. Therefore, the next state of A remains the
same and is equal to 1. In the same row of the table, /B and KB are both equal to 1.
Since the present state of B is 0, the next state of B is complemented and changes to 1.

The state diagram of the sequential circuit is shown in Fig. 6-20. Note that since the
circuit has no outputs, the directed lines out of the circles are marked with one binary
number only to designate the value of input x.

Mealy and Moore Models

The most general model of a sequential circuit has inputs, outputs, and internal states.
It is customary to distinguish between two models of sequential circuits: the Mealy
model and the Moore model. In the Mealy model, the outputs are functions of both the
present state and inputs. In the Moore model, the outputs are a function of the present
state only. An example of a Mealy model is shown in Fig. 6-16. Output y is a function
of both input x and the present state of A and B. The corresponding state diagram
shown in Fig. 6-17 has both the input and output values included along the directed
lines between the circles. An example of a Moore model is shown in Fig. 6-19. Here
the outputs are taken from the flip-flops and are a function of the present state only.
The corresponding state diagram in Fig. 6-20 has only the inputs marked along the di-
rected lines. The outputs are the flip-flop states marked inside the circles. The outputs
of a Moore model can be a combination of flip-flop variables such as A € B. This out-
put is a function of the present state only even though it requires an additional exclu-
sive-OR gate to generate it.

The state table of a Mealy model sequential circuit must include an output section
that is a function of both the present state and inputs. When the outputs are taken di-
rectly from the flip-flops, the state table can exclude the output section because the out-
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puts are already listed in the present-state columns of the state table. In a general
Moore model sequential circuit, there may be an output section, but it will be a func-
tion of the present state only.

In a Moore model, the outputs of the sequential circuit are synchronized with the
clock because they depend on only flip-flop outputs that are synchronized with the
clock. In a Mealy model, the outputs may change if the inputs change during the clock-
pulse period. Moreover, the outputs may have momentary false values because of the
delay encountered from the time that the inputs change and the time that the flip-flop
outputs change. in order to synchronize a Mealy type circuit, the inputs of the sequen-
tial circuit must be synchronized with the clock and the outputs must be sampled only
during the clock-pulse transition.

6-5 STATE REDUCTION AND ASSIGNMENT

The analysis of sequential circuits starts from a circnit diagram and culminates in a
state table or diagram. The design of a sequential circuit starts from a set of specifi-
cations and culminates in a logic diagram. Design procedures are presented starting
from Section 6-7. This section discusses certain properties of sequential circuits that
may be used to reduce the number of gates and flip-flops during the design.

State Reduction

Any design process must consider the problem of minimizing the cost of the final cir-
cuit. The two most obvious cost reductions are reductions in the number of flip-flops
and the number of gates. Because these two items seem the most obvious, they have
been extensively studied and investigated. In fact, a large portion of the subject of
switching theory is concerned with finding algorithms for minimizing the number of
flip-flops and gates in sequential circuits.

The reduction of the number of flip-flops in a sequential circuit is referred to as the
state-reduction problem. State-reduction algorithms are concerned with procedures for
reducing the number of states in a state table while keeping the external input—output
requirements unchanged. Since m flip-flops produce 2™ states, a reduction in the num-
ber of states may (or may not) result in a reduction in the number of flip-flops. An un-
predictable effect in reducing the number of flip-flops is that sometimes the equivalent
circuit (with less flip-flops) may require more combinational gates.

We shall illustrate the need for state reduction with an example. We start with a se-
quential circuit whose specification is given in the state diagram of Fig. 6-21. In this
example, only the input-output sequences are important; the internal states are used
merely to provide the required sequences. For this reason, the states marked inside the
circles are denoted by letter symbols instead of by their binary values. This is in con-
trast to a binary counter, where the binary-value sequence of the states themselves are
taken as the outputs.

There are an infinite number of input sequences that may be applied to the circuit;
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FIGURE 6-21
State diagram

each results in a unique output sequence. As an example, consider the input sequence
01010110100 starting from the initial state a. Each input of O or 1 produces an output
of 0 or 1 and causes the circuit to go to the next state. From the state diagram, we ob-
tain the output and state sequence for the given input sequence as follows: With the cir-
cuit in initial state @, an input of 0 produces an output of 0 and the circuit remains in
state @. With present state a and input of 1, the output is 0 and the next state is . With
present state b and input of 0; the output is O and next state is ¢. Continuing this pro-
cess, we find the complete sequence to be as follows:

state a a b ¢ d e f f 8 f g a
input 6 1 0 1 o0 1 1 ©0 1 0O O
outpt O O O O O 1 1 0 1 0 0

In each column, we have the present state, input value, and cutput value. The next state
is written on top of the next column. It is important to realize that in this circuit, the
states themselves are of secondary importance because we are interested only in output
sequences caused by input sequences.

Now let us assume that we have found a sequential circuit whose state diagram has
less than seven states and we wish to compare it with the circuit whose state diagram is
given by Fig. 6-21. If identical input sequences are applied to the two circuits and
identical outputs occur for all input sequences, then the two circuits are said to be
equivalent (as far as the input—output is concerned) and one may be replaced by the
other. The problem of state reduction is to find ways of reducing the number of states in
a sequential circuit without altering the input—output relationships.

We shall now proceed to reduce the number of states for this example. First, we
need the state table; it is more convenient to apply procedures for state reduction here
than in state diagrams. The state table of the circuit is listed in Table 6-5 and is ob-
tained directly from the state diagram of Fig. 6-21.
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TABLE 6-5
State Table
Next State Qutput

Present State x=0 x=1 X = X =
a 7] b 0 0
b c d 0 0
c a d 0 0
d e f ' 0 |
I3 a f 0 !
s g f 0 L
g I 0 1

An algorithm for the state reduction of a completely specified state table is given
here without proof: “Two states are said to be equivalent if, for each member of the set
of inputs, they give exactly the same output and send the circuit either to the same state
or to an equivalent state. When two states are equivalent, one of them can be removed
without altering the input—output relationships.”

‘We shall apply this algorithm to Table 6-5. Going through the state table, we look
for two present states that go to the same next state and have the same output for both
input combinations. States g and e are two such states: they both go to states a and f
and have outputs of 0 and 1 for x = 0 and x = 1, respectively. Therefore, states g and
e are equivalent; one can be removed. The procedure of removing a state and replacing
it by its equivalent is demonstrated in Table 6-6. The row with present state g is
crossed out and state g is replaced by state e each time it occurs in the next-state
columns.

Present state f now has next states e and f and outputs O and 1 forx = Oand x = 1,
respectively. The same next states and outputs appear in the row with present state 4.
Therefore, states f and d are equivalent; state f can be removed and replaced by d. The

TABLE 6-6
Reducing the State Table
Next State Outpﬁ.{ )

Present State ;_;_6_-_;_; - _] ;7} ,,,,,,;,; 1
a a b 0 0
b ¢ d 0 0
¢ a d 0 0
d € fd 0 1
e a Jd 0 1
/ ge ! 0 1
4 a f 0 1
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TABLE 6-7
Reduced State Table
Next state Qutput

Present State x=0 x=1 x=0 x=1
a a b 0 0
b c d 0 0
c a d 0 0
d e d 0 1
e a d 0 1

final reduced table is shown in Table 6-7. The state diagram for the reduced table con-
sists of only five states and is shown in Fig. 6-22. This state diagram satisfies the origi-
nal input-output specifications and will produce the required output sequence for any
given input sequence. The following list derived from the state diagram of Fig. 6-22 is
for the input sequence used previously. We note that the same output sequence results
although the state sequence is different:

state a a b c d e d d e d e a
input o 1 o 1 ¢ 1 1 O 1 0 0O
otpt O O O O O 1 1 0 1 0 0

In fact, this sequence is exactly the same as that obtained for Fig. 6-21, if we replace g
by e and f by d.

The checking of each pair of states for possible equivalence can be done systemati-
cally by means of a procedure that employs an implication table. The implication table
consists of squares, one for every suspected pair of possible equivalent states. By judi-
cious use of the table, it is possible to determine all pairs of equivalent states in a state
table. The use of the implication table for reducing the number of states in a state table
is demonstrated in Section 9-5.

/1

FIGURE 6-22
Reduced state diagram
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It is worth noting that the reduction in the number of states of a sequential circuit is
possible if one is interested only in external input-output relationships. When external
outputs are taken directly from flip-flops, the outputs must be independent of the num-
ber of states before state-reduction algorithms are applied.

The sequential circuit of this example was reduced from seven to five states. In ei-
ther case, the representation of the states with physical components requires that we
use three flip-flops, because m flip-flops can represent up to 27 distinct states. With
three flip-flops, we can formulate up to eight binary states denoted by binary numbers
000 through 111, with each bit designating the state of one flip-flop. If the state table of
Table 6-5 is used, we must assign binary values to seven stales; the remaining state is
unused. If the state table of Table 6-7 is used, only five states need binary assignment,
and we are left with three unused states. Unused states are treated as don’t-care condi-
tions during the design of the circuit. Since don’t-care conditions usually help in ob-
taining a simpler Boolean function, it is more likely that the circuit with five states will
require fewer combinational gates than the one with seven states. In any case, the re-
duction from seven to five states does not reduce the number of flip-flops. In general,
reducing the number of states in a state table is likely to result in a circuit with less
equipment. However, the fact that a state table has been reduced to fewer states does
not guarantee a saving in the number of flip-flops or the number of gates.

State Assignment

The cost of the combinational-circuit part of a sequential circuit can be reduced by us-
ing the known simplification methods for combinational circuits. However, there is an-
other factor, known as the stare-assignment problem, that comes into play in minimiz-
ing the combinational gates. State-assignment procedures are concerned with methods
for assigning binary values to states in such a way as to reduce the cost of the combina-
tional circuit that drives the flip-flops. This is particularly helpful when a sequential cir-
cuit is viewed from its external input-output terminals. Such a circuit may follow a se-
quence of internal states, but the binary values of the individual states may be of no
consequence as long as the circuit produces the required sequence of outputs for any
given sequence of inputs. This does not apply to circuits whose external outputs are
taken directly from flip-flops with binary sequences fully specified.

TABLE 6-8
Three Possible Binary State Assignments
State Assignment | Assignment 2 Assignment 3
a 001 000 000
b 010 010 100
011 01t 010

L™

100 101 1M
e 101 1 ol
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TABLE 6-9
Reduced State Table with Binary Assignment 1
Next State Qutput

Present state x=10 x=1 x=0 x=1
001 001 010 0 0
010 011 100 0 0
011 001 100 0 0
100 101 100 0 1
101 001 100 0 1

The binary state-assignment alternatives available can be demonstrated in conjunc-
tion with the sequential circuit specified in Table 6-7. Remember that, in this example,
the binary values of the states are immaterial as long as their sequence maintains the
proper input-output relationships. For this reason, any binary number assignment is sat-
isfactory as long as each state is assigned a unique number. Three examples of possible
binary assignments are shown in Table 6-8 for the five states of the reduced table. As-
signment 1 is a straight binary assignment for the sequence of states from a through e.
The other two assignments are chosen arbitrarily. In fact, there are 140 different dis-
tinct assignments for this circuit.

Table 6-9 is the reduced state table with binary assignment 1 substituted for the let-
ter symbols of the five states. It is obvious that a different binary assignment will result
in a state table with different binary values for the states, whereas the input—output re-
lationships remain the same. The binary form of the state table is used to derive the
combinational-circuit part of the sequential circuit. The complexity of the combina-
tional circuit obtained depends on the binary state assignment chosen.

Various procedures have been suggested that lead to a particular binary assignment
from the many available. The most common criterion is that the chosen assignment
should result in a simple combinational circuit for the flipflop inputs. However, to
date, there are no state-assignment procedures that guarantee a minimal-cost combina-
tional circuit. State assignment is one of the challenging problems of switching theory.
The interested reader will find a rich and growing literature on this topic. Techniques
for dealing with the state-assignment problem are beyond the scope of this book.

6-6 FLIP-FLOP EXCITATION TABLES

The characteristic table is useful for analysis and for defining the operation of the flip-
flop. It specifies the next state when the inputs and present state are known. During the
design process, we usually know the transition from present state to next state and wish
to find the flip-flop input conditions that will cause the required transition. For this rea-
son, we need a table that lists the required inputs for a given change of state. Such a list
is called an excitation table.



234 Chapter 6 Synchronous Sequential Logic

RS Flip-Flop

TABLE 6-10
Flip-Flop Excitation Tables

om  ac+n | S R a®  at+n | 4 K
0 o o Xx 0 0 0 X
0 1 10 0 1 X
] 0 0 1 1 0 X 1
1 1 X 0 1 1 X 0

() RS ) (b) JK

oy ai+1) | D aw  oe+n | T
0 0 0 0 0 0
0 1 1 0 1 1
| 0 0 1 0 ]
! I ] 1 1 0

©D &) T

Table 6-10 presents the excitation tables for the four flip-flops. Each table consists of
two columns, Q(¢) and Q(t + 1), and a column for each input to show how the re-
quired transition is achieved. There are four possible transitions from present state to
next state, The required input conditions for each of the four transitions are derived
from the information available in the characteristic table. The symbol X in the tables
represents a don’t-care condition, i.e., it does not matter whether the input is 1 or (.

The excitation table for the RS flip-flop is shown in Table 6-10(a}. The first row shows
the flip-flop in the 0-state at time ¢. It is desired to leave it in the O-state after the occur-
rence of the puise. From the characteristic table, Tabie 6-3, we find that if § and R are
both 0, the flip-flop will not change state. Therefore, both 5 and R inputs should be 0.
However, it really doesn’t matter if R is made a 1 when the pulse occurs, since it re-
sults in leaving the flip-flop in the O-state. Thus, R can be 1 or 0 and the flip-flop will
remain in the O-state at ¢ + 1. Therefore, the entry under R is marked by the don’t-
care condition X.

If the flip-flop is in the O-state and it is desired to have it go to the 1-state, then from
the characteristic table, we find that the only way to make Q(f + 1) equal to 1 is to
make S = 1 and R = 0. If the flip-flop is to have a transition from the 1-state to the
O-state, we must have S = Q0 and R = 1.

The last condition that may occur is for the flip-flop to be in the 1-state and remain
in the 1-state. Certainly, R must be 0; we do not want to clear the flip-flop. However, §
may be either a 0 or a 1. If it is 0, the flip-flop does not change and remains in the 1-



JK Flip-Flop

D Flip-Flop

T Flip-Flop
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state; if it is 1, it sets the flipflop to the 1-state as desired. Therefore, § is listed as a
don’t-care condition.

The excitation table for the JK flip-flop is shown in Table 6.10(b). When both present
state and next state are 0, the J input must remain at 0 and the X input can be either 0
or 1. Similarly, when both present state and next state are 1, the X input must remain at
0, while the J input can be 0 or 1. If the flip-flop is to have a transition from the 0-state
to the 1-state, J must be equal to 1, since the J input sets the flip-lop. However, input
K may be eitherOora 1. If K = 0, the J = 1 condition sets the flip-flop as required; if
K =1 and J = 1, the flipflop is complemented and goes from the O-state to the 1-
state as required. Therefore the K input is marked with a don’t-care condition for the
0-to-1 transition. For a transition from the 1-state to the O-state, we must have X = 1,
since the K input clears the flip-flop. However, the J input may be either 0 or 1, since
J = 0 has no effect, and J = 1 together with X = 1 complements the flip-flop with a
resultant transition from the 1-state to the O-state.

The excitation table for the JK flip-flop illustrates the advantage of using this type
when designing sequential circuits. The fact that it has so many don’t-care conditions
indicates that the combinational circuits for the input functions are likely to be simpler
because don’t-care terms usually simplify a function.

The excitation table for the D flip-flop is shown in Table 6-10(c). From the characteris-
tic table, Table 6-3, we note that the next state is always equal to the D input and inde-
pendent of the present state. Therefore, D must be 0 if Q(¢r + 1) has to be 0, and 1 if
Q(r + 1) has to be 1, regardless of the value of Q(¢).

The excitation table for the T flip-flop is shown in Table 6-10(d). From the characteris-
tic table, Table 6-3, we find that when input T = 1, the state of the flip-flop is comple-
mented; when T = 0, the state of the flip-flop remains unchanged. Therefore, when the
state of the flip-flop must remain the same, the requirement is that T = 0. When the
state of the flip-flop has to be complemented, T must equal 1.

Other Flip-Flops

The design procedure to be described in the next section can be used with any flip-flop.
It is necessary that the flip-flop characteristic table, from which it is possible to develop
a new excitation table, be known. The excitation table is then used to determine the
flip-flop input functions, as explained in the next section.



236

Chapter 6 Synchronous Sequential Logic

6-7 DESIGN PROCEDURE

The design of a clocked sequential circuit starts from a set of specifications and culnni-
nates in a logic diagram or a list of Boolean functions from which the logic diagram can
be obtained. In contrast to a combinational circuit, which is fully specified by a truth
table, a sequential circuit requires a state table for its specification. The first step in the
design of sequential circuits is to obtain a state table or an equivalent representation,
such as a state diagram.

A synchronous sequential circuit is made up of flip-flops and combinational gates.
The design of the circuit consists of choosing the flip-fiops and then finding a combina-
tional gatc structure that, together with the flip-flops, produces a circuit that fulfills
the stated specifications. The number of flip-flops is determined from the number of
states needed in the circuit. The combinational circuit is derived from the state table by
methods presented in this chapter. In fact, once the type and number of flip-flops are
determined, the design process involves a transformation from the sequential-circuit
problem into a combinattonal-circuit problem. In this way, the techniques of combina-
tional-circuit design can be applied.

This section presents a procedure for the design of sequential circuits. Although in-
tended to serve as a guide for the beginner, this procedure can be shortened with expe-
rience. The procedure is first summarized by a list of consecutive recommended steps:

1. The waord description of the circuit behavior is stated. This may be accompanied
by a state diagram, a timing diagram, or other pertinent information.

2. From the given information about the circuit, obtain the state table.

3. The number of states may be reduced by state-reduction methods if the sequential
circult can be characterized by input—output relationships independent of the num-
ber of states.

4. Assign binary values to each state if the state table obtained in step 2 or 3 con-

tains letter symbols.

. Determine the number of flip-flops needed and assign a letter symbol to each.

Choose the type of flip-flop to be used.

From the state table, derive the circuit excitation and output tables.

W~ N n

. Using the map or any other simplification method, derive the circuit output func-
tions and the flip-flop input functions.
9. Draw the logic diagram.

The word specification of the circuit behavior usually assumes that the reader is fa-
miliar with digital logic terminology. It is necessary that the designer use intuition and
experience to arrive at the correet interpretation of the circuit specifications, because
word descriptions may be incomplete and inexact. However, once such a specification
has been set down and the state table obtained, it is possible to make use of the formal
procedure to design the circuit.

The reduction of the number of states and the assignment of binary values to the
states were discussed in Section 6-5. The examples that follow assume that the number
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of states and the binary assignment for the states are known. As a consequence, steps 3
and 4 of the design will not be considered in subsequent discussions.

It has already been mentioned that m flip-flops can represent up to 2™ distinct states.
A circuit may have unused binary states if the total number of states is less than 2. The
unused states are taken as don’t-care conditions during the design of the combinational-
circuit part of the circuit.

The type of flip-flop to be used may be included in the design specifications or may
depend on what is available to the designer. Many digital systems are constructed en-
tirely with JK flip-fiops because they are the most versatile available. When many types
of flip-flops are available, it is advisable to use the D flip-flop for applications requiring
transfer of data (such as shift registers), the T type for applications involving comple-
mentation (such as binary counters), and the JK type for general applications.

The external output information is specified in the output section of the state table.
From it we can derive the circuit output functions. The excitation table for the circuit is
similar to that of the individual flip-flops, except that the input conditions are dictated
by the information ‘available in the present-state and next-state columns of the state
table. The method of obtaining the excitation table and the simplified flip-flop input
functions is best illustrated by an example.

We wish to design the clocked sequential circuit whose state diagram is given in Fig.
6-23. The type of flip-flop to be used is JK.

The state diagram consists of four states with binary values already assigned. Since
the directed lines are marked with a single binary digit without a slash, we conclude
that there is one input variable and no output variables. (The state of the flip-flops may
be considered the outputs of the circuit). The two flip-flops needed to represent the four
states are designated A and B. The input variable is designated x.

The state table for this circuit, derived from the state diagram, is shown in Table 6-
11. Note that there is no output section for this circuit. We shall now show the proce-
dure for obtaining the excitation table and the combinational gate structure.

The derivation of the excitation table is facilitated if we arrange the state table in a
different form. This form is shown in Table 6-12, where the present state and input

FIGURE 6-23
State diagram for design example
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TABLE 6-11
State Table
Next State

Present State x =0 x=1
A B A B A B
0 0 0 0 0 l
0 I 1 0 0 1
1 0 1 0 | 1
1 1 1 I 0 0

variables are arranged in the form of a truth table. The next-state value for each
present-state and input conditions is copied from Table 6-11. The excitation table of a
circuit is a list of flip-flop input conditions that will cause the required state transitions
and is a function of the type of flip-flop used. Since this example specified JK flip-flops,
we need columns for the J and X inputs of flip-flops A (denoted by JA and KA) and B
{(denoted by /B and KB).

The excitation table for the JK flip-flop was derived in Table 6-10(b). This table is
now used to derive the excitation table of the circuit. For example, in the first row of
Table 6-12, we have a transition for flip-flop A from O in the present state to O in the
next state. In Table 6-10(b), we find that a transition of states from O to (} requires that
input J = 0 and input K = X. So 0 and X are copied in the first row under JA and KA,
respectively. Since the first row also shows a transition for flip-flop B from 0 in the
present state to O in the next state, 0 and X are copied in the first row under /B and KB.
The second row of Table 6-12 shows a transition for flip-flop B from 0 in the present

TABLE 6-12
Excitation Table
inputs of Outputs of

Combinational Circuit Combinational Circuit
Present
State Input Nexl State Flip-Flop Inputs
A g X A B A KA Jg KB
0 0 0 O ¢ 0 X 0 X
0 0 1 0 l 0 X 1 X
0 | ¢ 1 0 1 X X 1
0 | | 0 1 0 X X 0
1 0 0 1 0 X ( 0 X
1 0 1 1 1 X 0 I X
1 1 0 1 1 X 0 X 0
1 | 1 0 0 X 1 X |
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state to 1 in the next state. From Table 6.10(b), we find that a transition from 0 to 1
requires that input / = 1 and input K = X. So 1 and X are copied in the second row
under JB and KB, respectively. This process is continued for each row of the table and
for each flip-flop, with the input conditions as specified in Table 6-10(b) being copied
into the proper row of the particular flip-flop being considered.

Let us now pause and consider the information available in an excitation table such
as Table 6-12. We know that a sequential citcuit consists of a number of flip-flops and a
combinational circuit. Figure 6-24 shows the two JK flip-flops needed for the circuit
and a box to represent the combinational circuit. From the block diagram, it is clear
that the outputs of the combinational circuit go to flip-flop inputs and external outputs
(if specified). The inputs to the combinational circuit are the external inputs and the
present state values of the flip-flops. Moreover, the Boolean functions that specify a
combinational circuit are derived from a truth table that shows the input-output rela-
tions of the circuit. The truth table that describes the combinational circuit is available
in the excitation table. The combinational circuit inputs are specified under the present-
state and input columns, and the combinational-circuit outputs are specified under the
flip-flop input columns. Thus, an excitation table transforms a state diagram to the truth
table needed for the design of the combinational-circuit part of the sequential circuit.

The simplified Boolean functions for the combinational circuit can now be derived.
The inputs are the variables A, B, and x; the outputs are the variables JA, KA, JB, and

A’ A B B
o' Q Q Q
K AT K A J
l -
KA |J4 KB |IB
' N External
A [ outputs
(none)
Combinational
B . circuit
B
External
inputs
FIGURE 6-24

Block diagram of seguential circuit
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FIGURE 6-25

Maps for combinational circuit
KB. The information from the truth table is transferred into the maps of Fig. 6-25,
where the four simplified flip-flop input functions are derived:
JA = Bx' KA = Bx
JB = x KB = (A D x)

The logic diagram is drawn in Fig. 6-26 and consists of two flip-flops, two AND gates,
one exclusive-NOR gate, and one inverter.
The excitation table of a sequential circuit with m flip-flops, & inputs per flip-flop,

A
B
o Q Q' Q
K A T K A T
L l cr
:Q x
FIGURE 6-26

Logic diagram of sequential circuit
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and n external inputs consists of m + n columns for the present state and input vari-
ables and up to 2*" rows listed in some convenient binary count. The next-state sec-
tion has m columns, one for each flip-flop. The flip-fiop input values are listed in mk
columns, one for each input of each flip-flop. If the circuit contains j outputs, the table
must include j columns. The truth table of the combinational circuit is taken from the
excitation table by considering the m + n present-state and input columns as inputs and
the mk + j flip-flop input values and external outputs as outputs.

Design with D Flip-Flops

The time it takes to design a sequential circuit that uses D flip-flops can be shortened if
we utilize the fact that the next state of the flip-flop is equal to its D input prior to the
application of a clock pulse. This is shown in the excitation table of the D flip-flop
listed in Table 6-10(c). The excitation table clearly shows that D = Q( + 1), which
means that the next-state values in the state table specify the D input conditions di-
rectly, so there is no need for an excitation table as required with other types of flip-
flops.

The design procedure with D flip-flops will be demonstrated by means of an exam-
ple. We wish to design a clocked sequential circuit that operates according to the state
table shown in Table 6-13. This table is the same as the state table part of Table 6-12
except for an additional column that includes an output y. For this case, it is not neces-
sary to include the excitation table for flip-flop inputs DA and DB since DA = A t+ 1)
and DB = B{t + 1). The flip-flop input functions can be obtained directly from the
next-state columns of A and B and expressed in sum of minterms as follows:

DA(A,B,x)=2(2,4,5,6)
DB(A,B,x) =2(1,3,5,6)
y(A,B,x) = % (1,5)

TABLE 6-13

State Tabie for Design with D Flip-Flops
Present Next

State Input State Output
A B X A 8 3%

0 0 0 0 0 0

0 0 1 0 1 1

0 1 0 1 0 0

0 1 1 0 1 0

1 0 0 1 0 0

1 0 1 1 1 1

i 1 0 1 1 0

1 1 1 0 0 0
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FIGURE 6-28
Logic diagram of a sequential circuit with £ flip-flops
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where A and B are the present-state values of flip-flops A and B, x is the input, and DA
and DB are the input functions. The minterms for output y are obtained from the output
column in the state table. '

The Boolean functions are simplified by means of the maps plotted in Fig. 6-27. The
simplified functions are

DA = AB' + Bx’
DB =A'x+ B'x + ABx’
y=B'x
The logic diagram of the sequential circuit is shown in Fig. 6-28.

Design with Unused States

A circuit with m flip-flops would have 2" states. There are occasions when a sequential
circuit may use less than this maximum number of states. States that are not used in
specifying the sequential circuit are not listed in the state table. When simplifying the
input functions to flip-flops, the unused states can be treated as don’t-care conditions.

Consider the state table shown in Table 6-14. There are five states listed in the table:
001, 010, 011, 100, and 101. The other three states, 000, 110, and 111, are not used.
When an input of O or 1 is included with these unused states, we obtain six minterms:
0, 1, 12, 13, 14, and 15. These six binary combinations are not listed in the table under
present state and input and are treated as don’t-care conditions.

The state table is extended into an excitation table with RS flip-flops. The flip-flop
input conditions are derived from the present-state and next-state values of the state
table. Since RS flip-flops are used, we need to refer to Table 6-10(a) for the excitation

TABLE 6-14

State Table with Unused States

Present Next

State Inp_ut State Flip-Flop inputs Output
A B C X A B C SA RA SB RB SC RC v
0 01 0 001 0 X 0 X X 0O 0
001 1 010 0 X 1 ¢ 0 1 0
010 0 011 O X Xx 01 0O 0
010 1 1 00 1 0 0 1 0 X 0
011 0 001 0O x 01 X O 0
011 1 1 00 1 0 ¢ 1 0 1 0
1 00 0 1 01 X 0 0 X 1 0 0
1 00 1 1 00 X 0 0 X 0 X 1
1 ¢ 1 0 001 01 0 X X 0 0
1 01 1 1 00 X 0 0 X 0 1 1
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conditions of this type of flip-flop. The three flip-flops are given variable names A, B,
and C. The input variable is x and the output variable is y. The excitation table of the
circuit provides all the information needed for the design of the sequential circuit.
The combinational-circuit part of the sequential circuit is simplified in the maps of
Fig. 6-29. There are seven maps in the diagram. Six maps are for simplifying the input
functions for the three RS flipflops. The seventh map is for simplifying the output y.
Each map has six X’s in the squares of the don’t-care minterms 0, [, 2, 13, 14, and 15.

C
{x A
AB 00 o1 1t 10
oof x | x x | x| x| [x] x x| 1]
01 S E X X X
; B
ntx [ XjxJx x x| x|y X lx|x]x
4
1wl x| x| x 1]
%{_J
X RA =Cx' S8 =A'B'x
54 =Bx
x| x X x| x (X x Vx| 1]
U i
L 1 | ¥
]! S
| X X
x bix | XA x| x ||x x |lxt x| x
Ytxlx]x 1 X ES
RB=BRC + Bx SC=x' RO =x
x| x
X !X x| ¥
o
v =Ax
FIGURE 6-29

Maps [or simpitfving the sequential circuit
i ,‘ ¥
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FIGURE 6-30
Logic diagram with RS flip-flops

The other don’t-care terms in the maps come from the X’s in the flip-flop input columns
of the table. The simplified functions are listed under each map. The logic diagram ob-
tained from these Boolean functions is shown in Fig. 6-30.

One factor neglected up to this point in the design is the initial state of a sequential
circuit. When power is first turned on in a digital system, one does not know in what
state the flip-flops will settle. It is customary to provide a master-reset input whose pur-
pose is to initialize the states of all flip-flops in the system. Typically, the master reset is
a signal applied to all flip-flops asynchronously before the clocked operations start. In
most cases, flip-flops are cleared to 0 by the master-reset signal, but some may be set to
1. For example, the circuit of Fig. 6.30 may initially be reset to a state ABC = 001,
since state 000 is not a valid state for this circuit.

But what if a circuit is not reset to an initial valid state? Or worse, what if, because
of a noise signal or any other unforeseen reason, the circuit finds itself in one of its in-
valid states? In that case, it is necessary to ensure that the circuit eventually goes into
one of the valid states so it can resume normal operation. Otherwise, if the sequential
circuit circulates among invalid states, there will be no way to bring it back to its in-
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tended sequence of state transitions. Although one can assume that this undesirable
condition is not supposed to occur, a careful designer must ensure that this situation
Never occurs.

It was stated previously that unused states in a sequential circuit can be treated as
don’t-care conditions. Once the circuit is designed, the m flip-flops in the system can be
in any one of 2" possible states. If some of these states were taken as don’t-care condi-
tions, the circuit must be investigated to determine the effect of these unused states.
The next state from invalid states can be determined from the analysis of the circuit. In
any case, it is always wise to analyze a circuit obtained from a design to ensure that no
mistakes were made during the design process.

Analysis of Previously Designed Circuit

We wish to analyze the sequential circuit of Fig. 6-30 to determine whether it operates
according to the original state table and also determine the effect of the unused states
on the circuit operation. The unused states are 000, 110, and 111. The apalysis of the
circuit can be done by the method outlined in Section 6-4. The maps of Fig. 6-29 may
also help in the analysis. What is needed here is 10 start with the circuit diagram of Fig.
6-30 and derive the state table or diagram. If the derived state table is identical to the
state-table part of Table 6-14, then we know that the design is correct. In addition, we
must determine the next states from the unused states 000, 110, and 111.

The maps of Fig. 6-29 can help in finding the next state from each of the unused
states. Take, for instance, the unused state 000. If the circuit, for some reason, happens
to be in the present state 000, an input x = 0 will transfer the circuit to some next state
and an input x = 1 will transfer it to another (or the same) next state. We first investi-
gate minterm ABCx = 0000. From the maps, we see that this minterm is not included
in any function except for SC, i.e., the set input of flip-flop C. Therefore, flip-flops A
and B will not change, but flip-flop C will be set to 1. Since the present state is
ABC = 000, the next state will be ABC = 001. The maps also show that minterm
ABCx = 0001 is included in the functions for §B and RC. Therefore, B will be set and
C will be cleared. Starting with ABC = 000 and setting B, we obtain the next state
ABC = 010 (C is already cleared). Investigation of the map for output y shows that y
will be O for these two minterms.

The result of the analysis procedure is shown in the state diagram of Fig. 6-31. The
circuit operates as intended, as long as it stays within the states 001, 010, 011, 100,
and 101. If it ever finds itself in one of the invalid states, 000, 110, or 111, it goes to
one of the valid states within one or two clock pulses. Thus, the circuit is self-correct-
ing, since it eventually goes to a valid state from which it continues to operate as re-
quired.

An undesirable situation would have occurred if the next state of 110 for x = 1 hap-
pened to be 111 and the next state of 111 for x = 0 or 1 happened to be 110, Then, if
the circuit starts from 110 or 111, it will circulate and stay between these two states
forever. Unused states that cause such undesirable behavior should be avoided; if they
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0/0

FIGURE 6-31
State diagram for the circuit of Fig. 6-30

are found to exist, the circuit should be redesigned. This can be done most easily by
specifying a valid next state for any unused state that is found to circulate among invalid
states.

6-8 DESIGN OF COUNTERS

A sequential circuit that goes through a prescribed sequence of states upon the applica-
tion of input pulses is called a counter. The input pulses, called count pulses, may be
clock pulses or they may originate from an external source and may occur at prescribed
intervals of time or at random. In a counter, the sequence of states may follow a binary
count or any other sequence of states. Counters are found in almost all equipment con-
taining digital logic. They are used for counting the number of occurrences of an event -
and are useful for generating timing sequences to control operations in a digital system.

Of the various sequences a counter may follow, the straight binary sequence is the
simplest and most straightforward. A counter that follows the binary sequence is called
a binary counter. An n-bit binary counter consists of n flip-flops and can count in bi-
nary from 0 to 2* — 1. As an example, the state diagram of a 3-bit counter is shown in
Fig. 6-32. As seen from the binary states indicated inside the circles, the flip-flop out-
puts repeat the binary count sequence with a return to 000 after 111. The directed lines
between circles are not marked with input—output values as in other state diagrams. Re-
member that state transitions in clocked sequential circuits occur during a clock pulse;
the flip-flops remain in their present states if ne pulse occurs. For this reason, the
clock-pulse variable CP does not appear explicitly as an input variable in a state dia-
gram or state table. From this point of view, the state diagram of a counter does not
have to show input—output values along the directed lines. The only input to the circuit
is the count pulse, and the outputs are directly specified by the present states of the flip-
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* (1)
*
FIGURE 6-32

Stare diagram of a 3-bit binary counter

flops. The next state of a counter depends entirely on its present state, and the state
transition occurs cvery time the pulse occurs.

Table 6-15 is the excitation table for the 3-bit binary counter. The three flip-flops
are given variable designations Az, A\, and Ao. Binary counters are most efficiently con-
structed with 7 flip-flops (or JK flip-flops with J and X tied together). The flip-flop ex-
citation for the 7 inputs is derived from the excitation table of the 7' flip-fiop and from
inspection of the state transition of the present state to the next state. As an illustration,
consider the flip-flop input entries for row 001. The present state here is 001 and the
next state is 010, which is the next count in the sequence. Comparing these two counts,
we note that Az goes from 0 to 0; so TA; is marked with a 0 because flip-flop A, must
remain unchanged when a clock pulse occurs. A, goes from 0 to 1; so TA, is marked
with a | because this flip-flop must be complemented in the next clock puise. Similarly,
Ap goes from 1 to 0, indicating that it must be complemented; so TA, is marked with a
1. The last row with present state 111 is compared with the first count 000, which is its

TAEBLE 6-15
Excitation Table for 3-Bit Counter
Present State Next State Flip-Flop Inputs
A A Ay A AL A TA; TA{ TAa
0 0 0 0 0 1 0 0 i
0 0 1 0o 1 0 O I 1
0 1 0 0 1 1 0 0 1
O 1 |1 10 0 1 1 |
I 0 0 1 0 1 0 0 1
I 0 1 I 1 0 0 1 I
| Y | 0 & 1
1 0 0 0 i
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FIGURE 6-33

Maps for a 3-bit binary counter

next state. Going from all 1’s to all s requires that all three flip-flops be comple-
mented.

The flip-flop input functions from the excitation tables are simplified in the maps of
Fig. 6-33. The Boolean functions listed under each map specify the combinational-
circuit part of the counter. Including these functions with the three flip-flops, we obtain
the logic diagram of the counter, as shown in Fig. 6-34.

Counter with Nonbinary Sequence

A counter with n flip-flops may have a binary sequence of less than 2" states. A BCD
counter counts the binary states from 0000 to 1001 and returns to 0000 to repeat the
sequence. Other counters may follow an arbitrary sequence that may not be the straight
binary sequence. In any case, the design procedure is the same. The state table is ob-
tained from the count sequence and the counter is designed using sequential-circuit de-
sign techniques. As an example, consider the counter specified in Table 6-16. The
count has a repeated sequence of six states, with flip-flops B and C repeating the binary
count 00, 01, 10, while flip-flop A alternates between 0 and 1 every three counts. The
count sequence is not straight binary and two states, 011 and 111, are not included in
the count. The choice of JK flip-flops results in the flip-flop input conditions listed in

A 2 A 1 A [
Q Q Q
A T A r A T
Count . l I
pulses
(I |
FIGURE 6-34

Logic diagram of a 3-bit binary counter
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TABLE 6-16
Excitation Table for Counter -

Present State Next State Fiip-Flop Inputs
A B s A g c A KA /8 KB JC KC
0 0 0 0 0 1 0 X 0 X | X
0 0 1 0 1 0 0 X 1 X X 1
0 1 0 1 0 0 l X X 1 0 X
1 0 0 1 0 1 X 0 0 X 1 X
.0 1 1 10 X 0 1 X X 1
1 1 0 0 0 0 X 1 X 1 0 X

the table. Inputs KB and KC have only 1’s and X’s in their columns, so these inputs are
always equal to 1. The other flip-flop input functions can be simplified using minterms 3
and 7 as don’t-care conditions. The simplified functions are

JA=B8 KA =8
JjB=C KB =1
JC =B’ KC =1

The logic diagram of the counter is shown in Fig. 6-35(a). Since there are two un-
used states, we analyze the circuit to determine their effect. If the circuit happens to be
in state 011 because of an error signal, the circuit goes to state 100 after the application

e

1
¢ 7 ¢ Q
K A L. L @ @
Count l l l
pulses
| (o))

(a) Logic diagram of counter (k) State diagram of counter

FIGURE 6-35

Logic and state diagrams
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of a clock pulse. This is obtained by noting that while the circuit is in present state 011,
the outputs of the flip-flops are A =0, B =1, and C = 1. From the flip-flop input
functions, we obtain JA = KA = 1,JB = KB =1, JC = 0, and KC = 1. Therefore,
flip-flop A is complemented and goes to 1. Flip-flop B is also complemented and goes
to 0. Flip-flop C is reset to 0 because XC = 1. This results in next state 100. In a simi-
lar manner, we can evaluate the next state from present state 111 to be (00,

The state diagram including the unused states is shown in Fig. 6-35(b). If the circuit
ever goes to one of the unused states because of an error, the next count pulse transfers
it to one of the valid states and the circuit continues to count correctly. Thus, the coun-
ter is self-correcting. A self-correcting counter is one that if it happens to be in one of
the unused states, it eventually reaches the normal count sequence after one or more
clock pulses.
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PROBLEMS

6-1 Construct a D flip-flop that has the same characteristics as the one shown in Fig. 6-5, but
instead of using NAND gates, use NOR and AND gates. (Remember that a one-input NOR
gate is equivalent to an inverter.)

6-2 Construct a D flip-flop that has the same characteristics as the one shown in Fig. 6-3, but
instead of using NAND gates, use NOR gates.
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6-3

6-4
6-5

- 6-6

6-7

6-8

The D flip-flop shown in Fig. 6-5 can be constructed with only four NAND gates. This

can be done by removing gate number 5 from the circuit and, instead, connecting the out-

put of gate number 3 to the input of gate number 4. Draw the modified circuit and show

that it operates the same way as the original circuit.

Draw the logic diagram of a master—slave D flip-flop. Use NAND gates,

The D-type positive-edge-triggered flip-flop of Fig. 6-12 is modified by including an

asynchronous-clear input in the circuit. The asynchronous-clear input is connected to a

third input in gate 2 and also to a third input in gate 6.

(a) Draw the logic diagram of the flip-flop, including the asynchronous-clear input.

(b) Analyze the circuit and show that when the asynchronous-clear input is logic-0, the Q
output is cleared to 0 regardless of the values of the other two inputs. D and CP.

(c) Show that when the asynchronous-clear input is logic-1, it has no effect on the normal
operation of the circuit.

A sequential circuit with two D flip-flops, A and B; two inputs, x and y; and one output, z,

is specified by the following next-state and output equations:

A + 1) = x'y + xA
Bt +1}=x'B+ xA
z=8
(a) Draw the logic diagram of the circuit.

(b} Derive the state table.
(¢) Derive the state diagram.

A sequential circuit has three D flip-flops, A, B, and C, and one input, x. It is described by
the following flip-flop input functions:

DA =(BC"+ B'C)x + (BC + B'C")x’'
DB = A
DC =B

(a)} Derive the state table for the circuit,
(b) Draw two state diagrams: one for x = 0 and the other for x = |.

A sequential circuit has one flip-flop, ¢; two inputs, x and y; and one output, S. It consists
of a full-adder circuit connected to a D flip-flop, as shown in Fig. P6-8. Derive the state
table and state diagram of the sequential circuit.

X ——— ] k)
Full
P adder | C
Q
Q
D
FIGURE P6-8 9 cr
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,,""‘6-9 Derive the state table and the state diagram of the sequential circuit shown in Fig. P6-9,
Explain the function that the circuit performs.

4 a g |&

Q' Q [ Q

A T A T

| I -
FIGURE P6-9

6-10 A JN flip-flop has two inputs, J and N. Input J behaves like the J input of a JK flipflop and
input N behaves like the complement of the K input of a JK flip-flop (that is, N =K").
(2) Tabulate the characteristic table of the flip-flop (as in Table 6-3).
(b} Tabulate the excitation table of the flipflop (as in Table 6-10).
{c) Show that by connecting the two inputs together, one obtains a D Flip-fiop.

6-11 A sequential circuit has two JK flip-flops, one input x, and one output y. The logic dia-
' gram of the circuit is shown in Fig. P6-11. Derive the state table and state diagram of the

circuit.

‘—J Q A D(‘ﬁ J Q B

cpP

x u_/

FIGURE Pé-11
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6-12 A sequential circuit has two JK flip-flops, A and B; two inputs, x and y; and one output, z.

6-13

6-14

The flip-fiop input functions and the circuit output function are as follows:
JA = Bx + B'y’ KA = B'xy’
JB=A'x KB =A+ xy’

z = Axy + Bx'y’
{a) Draw the logic diagram of the circuit.
(b) Tabulate the state table.
{c) Derive the next-state equations for A and B.

Starting from state 00 in the state diagram of Fig. 6-17, determine the state transitions
and output sequence that will be generated when an input sequence of 010110111011110 is
applied.

Reduce the number of states in the following state table and tabulate the reduced state
table.

Present MNext state Qutput
State x=0 x=1 x=0 x=1
a f b 0 0
b d ¢ 0 0
¢ f ¢ 0 0
d g a 1 0
e d C 0 0
f f b 1 |
g g h ¢ |
h g a 1 0

Starting from state a of the state table in problem 6-14, find the output sequence generated
with an input sequence 01110010011.

Repeat Problem 6-15 using the reduced table of Problem 6-14. Show that the same output
sequence is obtained.

Substitute binary assignment 2 of Table 6-8 to the states in Table 6-7 and obtain the bi-
nary state table. Repeat with binary assignment 3.

Analyze the circuit of Fig. P6-18 and prove that it is equivalent to a T flip-flop.

FIGURE P6-18 CP
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6-19 Convert a D flip-flop to a JK flipflop by including input gates to the D flip-flop. The gates
needed for the input of the D flip-flop can be determined by means of sequential-circuit
design procedures. The sequential circuit to be considered will have one D flip-fiop and
two inputs, J and K.

6-20 Design a sequential circuit with two D flip-flops, A and B, and one input, x. When x = 0,
the state of the circuit remains the same. When x = 1, the circuit goes through the state
transitions from 00 to 01 to 11 to 10 back to 00, and repeats.

./ 6-21 Design a sequential circuit with two JK flip-flops, A and B, and two inputs, E and x. If

/ E =0, the circuit remains in the same state regardless of the value of x. When E = 1 and
x = 1, the circuit goes through the state transitions from 00 to 01 to 10 to 11 back to 00,
and repeats. When E = 1 and x = 0, the circuit goes through the state transitions from 00
to 11 to 10 to 01 back to 00, and repeats.

6-22 A sequential circuit has three flip-flops, A, B, C; one input, x; and one output, y. The state
diagram is shown in Fig. P6-22. The circuit is to be designed by treating the unused states
as don’t-care conditions. The final circuit must be analyzed to ensure that it is self-
correcting.

(a) Use D flip-flops in the design.
(b) Use JK flip-flops in the design.

FIGURE P6-22

/

-/ 6-23 Design the sequential circuit specified by the state diagram of Fig. 6-23 using RS flip-
fiops.

6-24 Design the sequential circuit specified by the state diagram of Fig. 6-23 using T flip-flops.

7
/’ 6-25 Design the foliowing nonbinary sequence counters as specified in each case. Treat the un-
used states as don’t-care conditions. Analyze the final circuit to ensure that it is self-cor-
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recting. If your design produces a nonself-correcting counter, you must modify the circuit

to make it self-correcting.

(a) Design a counter with the following repeated binary sequence: 0, 1, 2,3, 4, 5, 6, Use
JK flip-flops.

(b) Design a counter with the following repeated binary sequence: 0, 1, 2, 4, 6. Use D
flip-flops.

(c) Design a counter with the following repeated binary sequence: 0, 1, 3,5, 7. Use T
flip-flops.

(d) Design a counter with the following repeated binary sequence: 0, 1,3, 7,6, 4. Use T
ftip-flops.
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Registersé;ﬁéogunters,
and the Memory Unit

INTRODUCTION

A clocked sequential circuit consists of a group of flip-flops and combinational gates
connected to form a feedback path. The flip-fiops are essential because, in their ab-
sence, the circuit reduces to a purely combinational circuit (provided there is no feed-
back path). A circuit with only flip-flops is considered a sequential circuit even in the
absence of combinational gates. Certain MSI circuits that include flip-flops are classi-
fied by the operation that they perform rather than the name sequential circuit. Two
such MSI components are registers and counters.

A register is a group of binary cells suitable for holding binary information. A group
of flip-flops constitutes a register, since each flip-flop is a binary celi capable of storing
one bit of information. An n-bit register has a group of n flip-flops and is capable of
storing any binary information containing » bits. In addition to the flip-flops, a register
may have combinational gates that perform certain data-processing tasks. In its broad-
est definition, a register consists of a group of flip-fiops and gates that affect their transi-
tion. The flip-flops hold binary information and the gates control when and how new
information is transferred into the register.

Counters were introduced in Section 6-8. A counter is essentially a register that goes
through a predetermined sequence of states upon the application of input pulses. The
gates in a counter are connected in such a way as to produce a prescribed sequence of
binary states in the register. Although counters are a special type of register, it is com-
mon to differentiate them by giving them a special name.

257
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A memory unit is a collection of storage cells together with associated circuits
needed to transfer information in and out of storage. A random-access memory (RAM)
differs from a read-only memory (ROM) in that a RAM can transfer the stored infor-
mation out (read) and is also capable of receiving new information in for storage
(write). A more appropriate name for such a memory would be read-write memory .

Registers, counters, and memories are extensively used in the design of digital sys-
tems in general and digital computers in particular. Registers can also be used to facili-
tate the design of sequential circuits. Counters are useful for generating timing vari-
ables to sequence and control the operations in a digital system. Memories are essential
for storage of programs and data in a digital computer. Knowledge of the operation of
these components is indispensable for the understanding of the organization and design
of digital systems.

7-2 REGISTERS

Various types of registers are available in MSI circuits. The simplest possible register is
one that consists of only flip-flops without any external gates. Figure 7-1 shows such a
register constructed with four D-type flip-flops and a common clock-pulse input. The
clock pulse input, CP, enables all flip-flops, so that the information presently available
at the four inputs can be transferred into the 4-bit register. The four outputs can be
sampled to obtain the information presently stored in the register.

The way that the flip-flops in a register are triggered is of primary importance. If the
flip-flops are constructed with gated D-type latches, as in Fig. 6-5, then information
present at a data (D) input is transferred to the Q output when the enable (CP) is 1, and
the @ output follows the input data as long as the CP signal remains 1. When CP goes
to 0. the information that was present at the data input just before the transition is re-
tained at the Q output. In other words, the flip-flops are sensitive to the pulse duration,
and the register is enabled for as long as CP = 1. A register that responds to the pulse
duration is commonly called a gared latch, and the CP input is frequently labeled with
the variable G (instead of CP). Latches are suitable for use as temporary storage of bi-
nary information that is to be transferred to an external destination.

Ay A, A, 4,
Q Q Q g

A D b A D A

CP ]
I, I 5 £

FIGURE 7-1
4-bit reqgister
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As explained in Section 6-3, a flip-flop can be used in the design of clocked sequen-
tial circuits provided that its clock input responds to the pulse transition rather than the
pulse duration. This means that the flip-flops in the register must be of the edge-
triggered or master—slave type. A group of flip-flops sensitive to pulse duration is
usually called a latch, whereas a group of flip-flops sensitive to pulse transition is called
a register. In subsequent discussions, we will assume that any group of flip-fiops drawn
constitutes a register and that all flip-flops are of the edge-triggered or master—slave

type.
Register with Parailel Load

The transfer of new information into a register is referred to as loading the register. If
all the bits of the register are loaded simultaneously with a single clock pulse, we say
that the loading is done in parallel. A pulse applied to the CP input of the register of
Fig. 7-1 will load all four inputs in parallel. In this configuration, the clock pulse must
be inhibited from the CP terminal if the content of the register must be left unchanged.
In other words, the CP input acts as an enable signal that controls the loading of new
information into the register. When CP goes to 1, the input information is loaded into
the register. If CP remains at 0, the content of the register is not changed. Note that the
change of state in the outputs occurs at the positive edge of the pulse. If a flip-flop
changes state at the negative edge, there will be a small circle under the triangle symbol
in the CP input of the flip-flop.

Most digital systems have a master-clock generator that supplies a continuous train
of clock pulses. All clock pulses are applied to all flip-flops and registers in the system.
The master-clock generator acts like a pump that supplies a constant beat to all parts of
the system. A separate control signal then decides what specific clock pulses will have
an effect on a particular register. In such a system, the clock pulses must be ANDed
with the control signal, and the output of the AND gate is then applied to the CP ter-
minal of the register shown in Fig. 7-1. When the control signal is 0, the output of the
AND gate is 0, and the stored information in the register remains unchanged. Only
when the control signal is a 1 does the clock pulse pass through the AND gate and into
the CP terminal for new information to be loaded into the register. Such a control vari-
able is called a load control input.

Inserting an AND gate in the path of clock pulses means that logic is performed with
clock pulses. The insertion of logic gates produces propagation delays between the
master-clock generator and the clock inputs of flip-flops. To fully synchronize the sys-
tem, we must ensure that all clock pulses arrive at the same time to all inputs of all flip-
flops so that they can all change simultaneously. Performing logic with clock pulses
inserts variable delays and may throw the system out of synchronism. For this reason, it
is advisable (but not necessary, as long as the delays are taken into consideration) to
apply clock pulses directly to all flip-flops and control the operation of the register with
other inputs, such as the R and S inputs of an RS flip-flop.

A 4-bit register with a load control input using RS flip-flops is shown in Fig. 7-2.
The CP input of the register receives continuous synchronized pulses, which are applied
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4-bit register with parailel load

to all flip-flops. The inverter in the CP path causes all flip-flops to be triggered by the
negative edge of the incoming pulses. The purpose of the inverter is to reduce the load-
ing of the master-clock generator. This is because the CP input is connected to only
one gate (the inverter) insiead of the four gate inputs that would have been required if
the connections were made directly into the flip-flop clock inputs (marked with small
triangles).

The clear input goes to a special terminal in each flip-flop through a noninverting
buffer gate. When this terminal goes to 0, the flip-flop is cleared asynchronously. The
clear input is uscful for clearing the register to all 0's prior to its clocked operation. The
clear input must be maintained at 1 during normal clocked operations (see Fig. 6-15).

The load input goes through a buffer gate (to reduce loading) and through a series of
AND gates to the R and S inputs of each flip-flop. Although clock pulses are continu-
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ously present, it is the load input that controls the operation of the register. The two
AND gates and the inverter associated with each input / determine the values of R and
S. If the load input is 0, both R and § are 0, and no change of state occurs with any
clock pulse. Thus, the load input is a control variable that can prevent any information
change in the register as long as its input is 0. When the load control goes to 1, inputs
I, through I, specify what binary information is loaded into the register on the next
clock pulse. For each  that is equal to 1, the corresponding flip-flop inputs are § = 1,
R = 0. For each I that is equal to 0, the corresponding flip-flop inputs are S = 0,
R = 1. Thus, the input value is transferred into the register provided the load input is
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FIGURE 7-3
Register with parallel load using O flip-fiops
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1, the clear input is 1, and a clock pulse goes from 1 to 0. This type of transfer is called
a parallel-load transfer because all bits of the register are loaded simultaneously. If the
buffer gate associated with the load input is changed to an inverter gate, then the regis-
ter is loaded when the load input is O and inhibited when the load input is 1.

A register with parallel load can be constructed with D flip-flops, as shown in Fig.
7-3. The clock and clear inputs are the same as before. When the load input is 1, the [
inputs are transferred into the register on the next clock pulse. When the load input is
0, the circuit inputs are inhibited and the D flip-flops are reloaded with their present
value, thus maintaining the content of the register. The feedback connection in each
flip-flop is necessary when a D type is used because a D flip-flop does not have a “no-
change” input condition. With each clock pulse, the D input determines the next state
of the output. To leave the output unchanged, it is necessary to make the D input equal
to the present Q output in each flip-flop.

Sequential-Logic Implementation

We saw in Chapter 6 that a clocked sequential circuit consists of a group of flip-flops
and combinational gates. Since registers are readily available as MSI circuits, it be-
comes convenient at times to employ a register as part of the sequential circuit. A block
diagram of a sequential circuit that uses a register is shown in Fig. 7-4. The present
state of the register and the external inputs determine the next state of the register and
the values of external outputs. Part of the combinational circuit determines the next
state and the other part generates the outputs. The next state value from the combina-
tional circuit is loaded into the register with a clock pulse. If the register has a load in-
put, it must be set to 1; otherwise, if the register has no load input (as in Fig. 7-1), the
next state value will be transferred automatically every clock pulse.

The combinational-circuit part of a sequential circuit can be implemented by any of
the methods discussed in Chapter 5. It can be constructed with SSI gates, with ROM,
or with a programmable logic array (PLA). By using a register, it is possible to reduce
the design of a sequential circuit to that of a combinational circuit connected to a
register.

Next-state value

—— I —
Register
P Combinational
circuit
Inputs ———— -3 F-—-—= Qutputs
FIGURE 7-4

Block diagram of a sequential circuit
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Example
7-1

Design the sequential circuit whose state table is listed in Fig. 7-5(a).
The state table specifies two flip-flops, A; and A2; one input, x; and one output, y.
The next-state and output information is obtained directly from the table:
At +1) =% (4,6)
Aft +1) =2(1,2,5,6)
y(Als AZ; x) = 2 (3! 7)

Present Next

state | Input state | Qutput
A A, X .
} 4 —D()—J—'D_

(a} State table (b) Logic diagram
FIGURE 7-5
Example of sequential-circuit imptementation
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The minterm values are for variables A, A;, and x, which are the present-state and in-
put variables. The functions for the next state and output can be simplified by means of
maps to give
A](f + l) = A]X,
Ar +1) = A, D x
y = Axx
The logic diagram is shown in Fig. 7-5(b). m

Example
7-2

Repeat Example 7-1, but now use a ROM and a register.

The ROM can be used to implement the combinational circuit and the register will
provide the flip-flops. The number of inputs to the ROM is equal to the number of flip-
flops plus the number of external inputs. The number of outputs of the ROM is equal to
the number of flip-flops plus the number of external outputs. In this case, we have three
inputs and three outputs for the ROM; so its size must be § X 3. The implementation is
shown in Fig. 7-6. The ROM truth table is identical to the state table with “present
state” and “inputs” specifying the address of ROM and “next state” and “outputs” speci-
fying the ROM outputs. The next-state values must be connected from the ROM outputs
to the register inputs. ]



264

Chapter 7 Registers, Counters, and the Memory Unit

ROM truth table

[ Address Outpuls ; ) - MM
12 3 1 2 3 ‘ |
7 T
0 0 0 0 0 o | i | %
0 0 1 0o 1 0 b Lo
o 1 0 0o 1 0 | A, I 7 _E [
0 1 1 0o 0 ! > [
10 0 it 0 0 § %3 J
0 1 O 1 0 t**** Ay ] 2 ROM o I
1 1 0 1 | 0
i 1 | o 0 1 X -——»13 3 -
FIGURE 7-6

Seqguential circuit using a register and a ROM

7-3 SHIFT REGISTERS

A register capable of shifting its binary information either to the right or to the left is
called a shift register. The logical configuration of a shift register consists of a chain of
flip-flops connected in cascade, with the output of one flip-flop connected to the input
of the next flip-flop. All flip-flops receive a common clock pulse that causes the shift
from one stage to the next.

The simplest possible shift register is one that uses only flip-flops, as shown in Fig,
7-7. The Q output of a given flip-flop is connected to the D input of the flip-flop at its
right. Each clock pulse shifts the contents of the register one bit position to the right.
The serial input determines what goes into the leftmost flip-flop during the shift. The
serial output is taken from the output of the rightmost flip-flop prior to the application
of a pulse. Although this register shifts its contents to the right, if we turn the page up-
side down, we find that the register shifts its contents (o the left. Thus, a unidirectional
shift register can function either as a shift-right or as a shift-left register.

The register in Fig. 7-7 shifts its contents with every clock pulse during the negative
edge of the pulse transition. (This is indicated by the small circle associated with the
clock input in all flip-flops.) If we want to control the shift so that it occurs only with
certain pulses but not with others, we must contro] the CP input of the register. It will
be shown later that the shift operations can be controlled through the D inputs of the
flip-flops rather than through the CP input. If, however, the shift register in Fig. 7-7 is

Serial ST hY#) Serial

input 12 ¢ ooQ 2 Do output
cP + ¢ ’ J

FIGURE 7-7

Shift reqister
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used, the shift can easily be controlled by means of an external AND gate, as shown in
what follows.

Serial Transfer

A digital system is said to operate in a serial mode when information is transferred and
manipulated one bit at a time. The content of one register is transferred to another by
shifting the bits from one register to the other. The information is transferred one bit at
a time by shifting the bits out of the source register into the destination register.

The serial transfer of information from register A to register B is done with shift reg-
isters, as shown in the block diagram of Fig. 7-8(a). The serial output (SO) of register
A goes to the serial input (ST) of register B. To prevent the loss of information stored in
the source register, the A register is made to circulate its information by connecting the
serial output to its serial input terminal. The initial content of register B is shifted out
through its serial output and is'lost unless it is transferred to a third shift register. The
shift-control input determines when and by how many times the registers are shifted.
This is done by the AND gate that allows clock pulses to pass into the CP terminals
only when the shift control is 1,

Suppose the shift registers have four bits each. The control unit that supervises the
transfer must be designed in such a way that it enables the shift registers, through the

Y S0 S SO
Shift register 4 Shift register 8 p—»
]
Clock — \ cr
Shift —
control

(a) Block diagram

Clock||||||||||l|||||||||||||

Shift
control

. U

(b} Timing diagram

|—— Wordtime —»

FIGURE 7-8
Serial transfer from register A to register 8
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shift-control signal, for a fixed time duration equal to four clock pulses. This is shown
in the timing diagram of Fig. 7-8(b). The shift-control signal is synchronized with the
clock and changes value just after the negative edge of a clock pulse. The next four
clock pulses find the shift-control signal in the 1 state, so the output of the AND gate
connected to the CP terminals produces four pulses, 71, Tz, T3, and T,. The fourth pulse
changes the shift control to 0 and the shift registers are disabled.

Assume that the binary content of A before the shift is 1011 and that of B, 0010.
The serial transfer from A to B will occur in four steps, as shown in Table 7-1. After
the first pulse, 71, the rightmost bit of A is shifted into the leftmost bit of B and, at the
same time, this bit is circulated into the leftmost position of A. The other bits of 4 and
B are shifted once to the right. The previous serial output from B is lost and its value
changes from O to 1. The next three pulses perform identical operations, shifting the
bits of A into B, one at a time. After the fourth shift, the shift control goes to 0 and
both registers A and B have the value 1011. Thus, the content of A is transferred into
B, while the content of A remains unchanged.

The difference between serial and parallel modes of operation should be apparent
from this example. In the parallel mode, information is available from all bits of a reg-
ister and all bits can be transferred simultaneously during one clock pulse. In the serial
mode, the registers have a single serial input and a single serial output. The information
is transferred one bit at a time while the registers are shifted in the same direction.

Computers may operate in a serial mode, a parallel mode, or in a combination of
both. Serial operations are slower because of the time it takes to transfer information in
and out of shift registers. Serial computers, however, require less hardware to perform
operations because one common circuit can be used over and over again to manipulate
the bits coming out of shift registers in a sequential manner. The time interval between
clock pulses is called the bit time, and the time required to shift the entire contents of a
shift register is called the word time. These timing sequences are generated by the con-
trol section of the system. In a parallel computer, control signals are enabled during
one clock-pulse interval. Transfers into registers are in parallel, and they occur upon
application of a single clock pulse. In a serial computer, control signals must be main-
tained for a period equal to one word time. The pulse applied every bit time transfers
the result of the operation, one at a time, into a shift register. Most computers operate
in a parallel mode because this is a faster mode of operation.

TABLE 7-1

Serial-Transfer Example -

Timing Puise Shift Register A Shift Register 8 Serial Output of 8
Initial value T o0 1 .0 0 1_0 0

After T, P71 N0 NT w1 N0 Mo N I

After T, 1 1 l 0 1 1 0 0 0

After T; ¢ 1 l 1 0 ] 1 0 0

After T, 1 0 1 1 1 0 1 1 1
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Bidirectional Shift Register with Parallel Load

Shift registers can be used for converting serial data to parallel data, and vice versa. If
we have access to all the flip-flop outputs of a shift register, then information entered
serially by shifting can be taken out in parallel from the outputs of the flip-flops. If a
parallel-load capability is added to a shift register, then data entered in parallel can be
taken out in serial fashion by shifting the data stored in the register.

Some shift registers provide the necessary input and output terminals for parallel
transfer. They may also have both shift-right and shift-left capabilities. The most gen-
eral shift register has all the capabilities listed below. Others may have only some of
these functions, with at least one shift operation.

1. A clear control to clear the register to 0.
. A CP input for clock pulses to synchronize all operations.

3. A shift-right control to enable the shift-right operation and the serial inpur and
output lines associated with the shift right.

4. A shift-left control to enable the shift-left operation and the serial input and out-
put lines associated with the shift left.

5. A parallel-load control to enable a parallel transfer and the n input lines associ-
ated with the paratlel transfer.

6. n parallel output lines.

7. A control state that leaves the information in the register unchanged even though
clock pulses are continuously applied.

[ o]

A register capable of shifting both right and left is called a bidirectional shift regis-
ter. One that can shift in only one direction is called a unidirectional shift register, If
the register has both shift and parallel-load capabilities, it is called a shift register with
parallel load.

The diagram of a shift register that has all the capabilities listed above is shown in
Fig. 7-9. It consists of four D flip-flops, although RS flip-flops could be used provided
an inverter is inserted between the S and R terminals. The four multiplexers (MUX) are
part of the register and are drawn here in block diagram form. (See Fig. 5-16 for the
logic diagram of the multiplexer.) The four multiplexers have two common selection
variables, s, and so. Input O in each MUX is selected when s;50 = 00, input 1 is se-
lected when si50 = 01, and similarly for the other two inputs to the multiplexers.

The s, and s, inputs control the mode of operation of the register as specified in the
function entries of Table 7-2. When 5,50 = 00, the present value of the register is ap-
plied to the D inputs of the flip-flops. This condition forms a path from the output of
each flip-flop into the input of the same flip-flop. The next clock pulse transfers into
each flip-flop the binary value it held previously, and no change of state occurs. When
5150 = 01, terminals 1 of the multiplexer inputs have a path to the D inputs of the flip-
flops. This causes a shift-right operation, with the serial 1nput transferred into flip-flop
As. When 5,50 = 10, a shift-left operation resuits, with the other serial input going into
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4-bit bidirectional shift register with parallel load

flip-flop A,. Finally, when si50 = 11, the binary information on the parallel input lines
is transferred into the register simultaneously during the next clock pulse.

A bidirectional shift register with parallel load is a general-purpose register capable
of performing three operations: shift left, shift right, and parallel load. Not all shift reg-
isters available in MSI circuits have all these capabilities. The particular application
dictates the choice of one MSI shift register over another.

TABLE 7-2
Function Table for the Register of Fig. 7-9

Mode Control

5 Sa Register Operation
0 0 No change

0 1 Shift right

] 0 Shift left

1 1

Parallel load
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Serial Addition

Operations in digital computers are mostly done in parallel because this is a faster mode
of operation. Serial operations are slower but require less equipment. To demonstrate
the serial mode of operation, we present here the design of a serial adder. The parallel
counterpart was discussed in Section 5-2.

The two binary numbers to be added serially are stored in two shift reglsters Bits
are added one pair at a time, sequentially, through a single full-adder (FA) circhit, as
shown in Fig. 7-10. The carry out of the full-adder is transferred to a D flip-flop. The
output of this flip-flop is then used as an input carry for the next pair of significant bits.
The two shift registers are shifted to the right for one word-time period. The sum bits
from the § output of the full-adder could be transferred into a third shift register. By
shifting the sum into A while the bits of A are shifted out, it is possible to use one reg-
ister for storing both the augend and the sum bits. Thy serial input (SI) of register B is
able to receive a new binary number while the addend bits are shifted out during the
addition.

The operation of the serial adder is as follows. Initially, the A register holds the au-
gend, the B register holds the addend, and the carry flip-flop is cleared to 0. The serial
outputs (SO) of A and B provide a pair of significant bits for the full-adder at x and y.
Output Q of the flip-flop gives the input carry at z. The shift-right control enables both
registers and the carry flipflop; so at the next clock pulse, both registers are shifted

ST
e s » S0
Shift-right -»1 Shift-register A
CP > |
, X
y FA
C
External SI__ s0 ¢
Input »{ Shift-register 2
Q@ D
Clear J
J
FIGURE 7-10

Serial adder
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once to the right, the sum bit from § enters the leftmost flip-flop of A, and the output
carry is transferred into flip-flop Q. The shift-right control enables the registers for a
number of clock pulses equal to the number of bits in the registers. For each succeeding
clock pulse, a new sum bit is transferred to 4, a new carry is transferred to Q, and both
registers are shifted once to the right. This process continues until the shift-right ¢con-
trol is disabled. Thus, the addition is accomplished by passing each pair of bits together
with the previous carry through a single full-adder circuit and transferring the sum, one
bit at a time, into register A,

If a new number has to be added to the contents of register A, this number must be
first transferred serially into register B. Repeating the process once more will add the
second number to the previous number in A.

Comparing the serial adder with the parallel adder described in Section 5-2, we note
the following differences. The parallel adder must use registers with parallel-load capa-
bility, whereas the serial adder uses shift registers. The number of full-adder circuits in
the parailel adder is equal to the number of bits in the binary numbers, whereas the se-
rial adder requires only one full-adder circuit and a carry flip-flop. Excluding the regis-
ters, the parallel adder is a purely combinational circuit, whereas the serial adder is a
sequential circuit. The sequential circuit in the serial adder consists of a full-adder cir-
cuit and a flip-flop that stores the output carry. This is typical in serial operations be-
cause the result of a bit-time operation may depend not only on the present inputs but
also on previous inputs.

To show that bit-time operations in serial computers may require a sequential circuit,
we will redesign the serial adder by considering it a sequential circuit.

Example
7-3

Design a serial adder using a sequential-logic procedure.

First, we must stipulate that two shift registers are available to store the binary num-
bers to be added serially. The serial outputs from the registers are designated by vari-
ables x and y. The sequential circuit to be designed will not include the shift registers;
they will be inserted later to show the complete unit. The sequential circuit proper has
two inputs, x and y, that provide a pair of significant bits, an output § that generates the
sum bit, and flip-flop @ for storing the carry. The present state of Q provides the
present value of the carry. The clock pulse that shift the registers enables flip-flop O to
load the next carry. This carry is then used with the next pair of bits in x and y. The
state table that specifies the sequential circuit is given in Table 7-3.

The present state of O is the present value of the carry. The present carry in Q is
added together with inputs x and ¥ to produce the sum bit in output S. The next state of
@ is equivalent to the output carry. Note that the state-table entries are identical to the
entries in a full-adder truth table, except that the input carry is now the present state of
© and the output carry is now the next state of Q.

If we use a D flip-flop for (), we obtain the same circuit as in Fig. 7-10 because the
input requirements of the D input are the same as the next-state values. If we use a JK
flip-flop for @, we obtain the input excitation requirements listed in Table 7-3. The
three Boolean functions of interest are the flip-flop input functions for J@ and KQ and
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TABLE 7-3

Excitation Table for a Serial Adder

Present Next Flip-Flop

State inputs State Qutput __Inputs
Q x v Q h) JQ KQ
0 0 0 0 0 0 X
0 0 1 0 1 0 X
0 1 0 0 1 0 X
0 1 1 1 0 1 X
1 0 0. 0 1 X 1
1 0 1 1 0 X 0
1 1 0 1 0 X 0
1 1 1 1 1 X 0

output S. These functions are specified in the excitation table and can be simplified by
means of maps:

JO = xy
KQ — xryr —_ (x + y)l
S=xByDQ

As shown in Fig. 7-11, the circuit consists of three gates and a JK flip-flop. The two
shift registers are also included in the diagram to show the complete serial adder. Note
that output § is a function not only of x and y, but also of the present state of Q. The
next state of Q is a function of the present values of x and y that come out of the serial
outputs of the shift registers.

hY)
p > S0 =
Shift-right Shift-register 4 al Y S
cP - i
r
Extemal SI >~—f
) - SO = LS
input —] Shift-register 8 4 D—b ¢
_.‘ .
Clear
FIGURE 7-11

Second form of serial adder [ |
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7-4 RIPPLE COUNTERS

MSI counters come in two categories: ripple counters and synchronous counters. In a
ripple counter, the flip-flop output transition serves as a source for triggering other flip-
flops. In other words, the CP inputs of all flip-flops (except the first) are triggered not
by the incoming pulses, but rather by the transition that occurs in other flip-flops. In a

J 0 A,

Count pulses ————Cf>

O
\%

Logic-1
FIGURE 7-12
4-pit hinary rnpple counter
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synchronous counter, the input pulses are applied to all CP inputs of all flip-flops. The
change of state of a particular flip-flop is dependent on the present state of other flip-
flops. Synchronous MSI counters are discussed in the next section. Here we present
some common MSI ripple counters and explain their operation.

Binary Ripple Counter

A binary ripple counter consists of a series connection of complementing flip-flops
(T or JK type), with the output of each flip-flop connected to the CP input of the next
higher-order flip-flop. The flip-flop holding the least significant bit receives the incom-
ing count pulses. The diagram of a 4-bit binary ripple counter is shown in Fig. 7-12.
All J and X inputs are equal to 1. The small circle in the CP input indicates that the
flip-flop complements during a negative-going transition or when the output to which it
is connected goes from 1 to 0. To understand the operation of the binary counter, refer
to its count sequence given in Table 7-4. It is obvious that the lowest-order bit A, must
be complemented with each count pulse. Every time A, goes from 1 to 0, it comple-
ments A,. Every time A, goes from 1 to 0, it complements As, and so on. For example,
take the transition from count 0111 to 1000. The arrows in the table emphasize the
transitions in this case. A, is complemented with the count pulse. Since A; goes from
1 to 0, it triggers A, and complements it. As a result, A, goes from 1 to 0, which in
turn complements As;. As now goes from 1 to 0, which complements As. The output
transition of As, if connected to a next stage, will not trigger the next flip-flop since it
goes from O to 1. The flip-flops change one at a time in rapid succession, and the signal
propagates through the counter in a ripple fashion. Ripple counters are sometimes
called asynchronous counters.

TABLE 7-4
Count Sequence for a Blnary Ripple Counter

Count Sequence

As A Az A Conditions for Complementing Flip-Flops

0 0 0 Complement A,

0 0 0 1 Complement A, A, will go from | to 0 and complement A;

0 0 1 Complement A,

0 0 1 1 Complement A, A; will go from 1 to 0 and complement A;;
™ (\J, Az will go from 1 to 0 and complement A,

0 1 0 0 Complement A,

0 1 0 1 Compiement A, A; will go from 1 te 0 and complement A;

0 1 1 0 Complement A,

0 1 1 1 Complement A, A; will go from 1 to 0 and complement Ax;

J Az will go from 1 to 0 and complement A;
I VIRVERN A; will go from 1 to 0 and complement A4
i 0 0 0 andsoon. ..
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A binary counter with a reverse count is called a binary down-counter. In a down-
counter, the binary count is decremented by 1 with every input count pulse. The count
of a 4-bit down-counter starts from binary 15 and continues to binary counts 14, 13,
12, . . ., 0 and then back to 15. The circuit of Fig. 7-12 wili function as a binary
down-counter if the outputs are taken from the complement terminals Q' of all flip-
flops. If only the normal outputs of flip-flops are available, the circuit must be modified
slightly as described next.

A list of the count sequence of a count-down binary counter shows that the lowest-
order bit must be complemented with every count pulse. Any other bit in the sequence
1s complemented if its previous lower-order bit goes from 0 to 1. Therefore, the dia-
gram of a binary down-counter looks the same as in Fig. 7-12, provided all flip-flops
trigger on the positive edge of the pulse. (The small circles in the CP inputs must be
absent.) If negative-edge-triggered flip-flops are used, then the CP mput of each flip-
flop must be connected to the Q' output of the previous flip-flop. Then when QO goes
from O to I, Q' will go from 1 to 0 and complement the next flip-flop as required.

BCD Rippie Counter

A decimal counter follows a sequence of ten states and returns to O after the count of 9.
Such a counter must have at least four flip-flops to represent each decimal digit, since a
dectmal digit is represented by a binary code with at least four bits. The sequence of
states in a decimal counter is dictated by the binary code used to represent a decimal
digit. If BCD is used, the sequence of states is as shown in the state diagram of Fig.
7-13. This is similar to a binary counter, except that the state after 1001 (code for dec-
imal digit 9) is 0000 (code for decimal digit 0).

The design of a decimal ripple counter or of any ripple counter not following the bi-
nary sequence Is not a straightforward procedure. The formal tools of logic design can
serve only as a guide. A satisfactory end product requires the ingenuity and imagina-
tion of the designer.

The logic diagram of a BCD ripple counter is shown in Fig. 7-14. The four outputs
are designated by the letter symbol Q' with a numeric subscript equal to the binary
weight of the corresponding bit in the BCD code. The flip-flops trigger on the negative
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FIGURE 7-13
State diagram of a decimal BCD counter
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FIGURE 7-14
BCD ripple counter

edge, i.e., when the CP signal goes from 1 to 0. Note that the output of Q; is applied to
the CP inputs of both Q and Qs and the output of Q> is applied to the CP input of Q..
The J and K inputs are connected either to a permanent 1 signal or to outputs of flip-
flops, as shown in the diagram. '
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A ripple counter is an asynchronous sequential circuit and cannot be described by
Boolean equations developed for describing clocked sequential circuits. Signals that af-
fect the flip-flop transition depend on the order in which they change from 1 to 0. The
operation of the counter can be explained by a list of conditions for flip-flop transitions.
These conditions are derived from the logic diagram and from knowledge of how a JK
flip-flop operates. Remember that when the CP input goes from 1 to 0, the flip-flop is
set if J =1, is cleared if X = 1, is complemented if / = K = 1, and is left un-
changed if J = K = 0. The following are the conditions for each flip-flop state transi-
tion:

1. O, is complemented on the negative edge of every count pulse.

2. (), is complemented if Qx = 0 and @, goes from 1 to 0. Q: is cleared if s =1
and {, goes from 1 to 0.

3. (. is complemented when Q, goes from 1 to .

4. Qs is complemented when 0, Q> = 11 and @, goes from | to 0. Qs is cleared if
either Q. or 2, is ¢ and Q, goes from 1 to 0.

To verify that these conditions resuit in the sequence required by a BCD ripple coun-
ter, it is necessary to verify that the flip-flop transitions indeed follow a sequence of
states as specified by the state diagram of Fig. 7-13. Another way to verify the opera-
tion of the counter is to derive the timing diagram for each flip-fiop from the conditions
Just listed. This diagram is shown in Fig. 7-15 with the binary states listed after cach
clock pulse. @, changes state after each clock pulse. Q> complements every time Q,
goes from 1 to 0 as long as Qs = 0. When Qs becomes 1, (0, remains cleared at 0. o))
complements every time (), goes from 1 to 0. O remaips cleared as long as Q- or Oy is
0. When both @, and Q4 become 1’s, s complements when O, goes from | to 0. Qs is
cleared on the next transition of Q.

The BCD counter of Fig. 7-14 is a decade counter, since it counts from 0 to 9. To
count in decimal from O to 99, we need a two-decade counter. To count from 0 to 999,
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FIGURE 7-15
Timing diagram for the decimal counter of g /-14
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FIGURE 7-16

Block diagram of a three-decade decimal BCD counter

we need a three-decade counter. Multiple-decade counters can be constructed by con-
necting BCD counters in cascade, one for each decade. A three-decade counter is
shown in Fig. 7-16. The inputs to the second and third decades come from Qs of
the previous decade. When (s in one decade goes from 1 fo 0, it triggers the count for
the next higher-order decade while its own decade goes from 9 to 0. For instance, the
count after 399 will be 400.

7-5 SYNCHRONOUS COUNTERS

Synchronous counters are distinguished from ripple counters in that clock pulses are
applied to the CP inputs of all flip-flops. The common pulse triggers all the flip-flops
simultaneously, rather than one at a time in succession as in a ripple counter. The deci-
sion whether a flip-flop is to be complemented or not is determined from the values of
the J and K inputs at the time of the pulse. If J = K = 0, the flip-flop remains un-
changed. If f = K = 1, the flip-flop complements.

A design procedure for any type of synchronous counter was presented in Section
6-8. The design of a 3-bit binary counter was carried out in detail and is illustrated in
Fig. 6-34. In this section, we present some typical MSI synchronous counters and ex-
plain their operation. It must be realized that there is no need to design a counter if it is
already available commercially in [C form.

Binary Counter

The design of synchronous binary counters is so simple that there is no need to go
through a rigorous sequential-logic design process. In a synchronous binary counter,
the flip-flop in the lowest-order position is compiemented with every pulse. This means
that its J and K inputs must be maintained at logic-1. A flip-flop in any other position is
complemented with a pulse provided all the bits in the lower-order positions are equal
to 1, because the lower-order bits (when all 1’s) will change to 0's on the next count
pulse. The binary count dictates that the next higher-order bit be complemented. For
example, if the present state of a 4-bit counter is A;A3A»A; = 0011, the next count
will be 0100. A, is always complemented. A; is complemented because the present state
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of A; = 1. A; is complemented because the present state of A,A, = 11. But A4 is not
complemented because the present state of A;A,A; = 011, which does not give an
all-1’s condition.

Synchronous binary counters have a regular pattern and can easily be constructed
with complementing flip-flops and gates. The regular pattern can be clearly seen from
the 4-bit counter depicted in Fig. 7-17. The CP terminals of all flip-flops are connected
to a common clock-pulse source. The first stage A, has its J and K equal to 1 if the
counter is enabled. The other J and X inputs are equal to 1 if all previous low-order bits
are equal to 1 and the count is enabled. The chain of AND gates generates the required
logic for the / and X inputs in each stage. The counter can be extended to any number
of stages, with each stage having an additional flip-flop and an AND gate that gives an
output of 1 if all previous flip-flop outputs are 1’s.

Note that the flip-flops trigger on the negative edge of the pulse. This is not essential
here as it was with the ripple counter. The counter could also be triggered on the posi-
tive edge of the pulse.

Binary Up—-Down Counter

BCD Counter

In a synchronous count-down binary counter, the flip-flop in the lowest-order position
is complemented with every pulse. A flip-flop in any other position is complemented
with a pulse provided all the lower-order bits are equal to 0. For example, if the
present state of a 4-bit count-down binary counter is A;A; A, A; = 1100, the next count
will be 1011. A, is always complemented. A; is complemented because the present state
of A; = 0. A; is complemented because the present state of A4, = 00. But A, is not
complemented because the present state of A3 4, A, = 100, which is not an all-0’s con-
dition.

A count-down binary counter can be constructed as shown in Fig. 7-17, except that
the inputs to the AND gates must come from the complement outputs @' and not from
the normal outputs Q of the previous flip-flops. The two operations can be combined in
one circuit. A binary counter capable of counting either up or down is shown in Fig.
7-18. The T flip-flops employed in this circuit may be considered as JK flip-flops with
the J and X terminals tied together. When the up input control is 1, the circuit counts
up, since the 7 inputs receive their signals from the values of the previous normal out-
puts of the flip-flops. When the down input control is 1 and the up input is 0, the circuit
counts down, since the complemented outputs of the previous flip-flops are applied to
the T inputs. When the up and down inputs are both 0, the circuit does not change state
but remains in the same count. When the up and down inputs are both 1, the circuit
counts up. This ensures that only one operation is performed at any given time.

A BCD counter counts in binary-coded decimal from 0000 to 1001 and back to 0000.
Because of the return to O after a count of 9, a BCD counter does not have a regular
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TABLE 7-5
Excitation Table for BCD Counter
Present State Next State Cutput Flip-Flop Inputs
e Q4 Q: O QG Q. O O ¥ TQq 7a, Qs TG,
0 g 0 0 0 0 0 1 0 0 G 0 1
0 0 0 1 0 0 1 0 0 G 0 1 1
0 0 1 0 0 0 1 1 0 0 0 0 1
0 0 1 1 0 1 0 0 0 0 1 1 {
0 1 0 0 0 1 0 1 0 0 0 0 1
0 1 0 1 0 1 1 0 0 0 0 1 l
0 1 1 0 0 1 1 1 0 0 0 0 |
0 1 1 1 i 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 1 0 0 0 0 1
1 0 0 1 0 0 0 0 1 i 0 0 1

pattern as in a straight binary count. To derive the circuit of a BCD synchronous coun-
ter, it is necessary to go through a design procedure as discussed in Section 6-8.

The excitation table of a BCD counter is given in Table 7-5. The excitation for the T
flip-flops is obtained from the present and next state conditions. An output y is also
shown in the table. This output is equal to 1 when the counter present state is 1001, In
this way, y can enable the count of the next-higher-order decade while the same pulse
switches the present decade from 1001 to 0000,

The flip-flop input functions from the excitation table can be simplified by means of
maps. The unused states for minterms 10 to 15 are taken as don’t-care terms. The sim-
plified functions are

10, = 1

0, = Qs Oy

Qs = 0 Oh

TOx = QO + Qa2 Os
Y= Qs

The circuit can be easily drawn with four T flip-flops, five AND gates, and one OR gate.

Synchronous BCD counters can be cascaded to form a counter for decimal numbers
of any length. The cascading is done as in Fig. 7-16, except that output ¥ must be con-
nected to the count input of the next-higher-order decade.

Binary Counter with Paraliel Load

Counters employed in digital systems quite often require a parallel-load capability for
transferring an initial binary number prior to the count operation. Figure 7-19 shows
the logic diagram of a register that has a parallel-load capability and can also operate as
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4-pit binary counter with parallel load

a counter. The input load control when equal to 1 disables the count sequence and
causes a transfer of data from inputs /, through I, into fiip-flops A, through A, respec-
tively. If the load input is 0 and the count input control is 1, the circuit operates as a
counter. The clock pulses then cause the state of the flip-flops to change according to
the binary count sequence. if both control inputs are 0, clock pulses do not change the
state of the register.
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The carry-out terminal becomes a 1 if all flip-flops are equal to 1 while the count in-
put is enabled. This is the condition for complementing the flip-flop holding the next-
higher-order bit. This output is useful for expanding the counter to more than four bits.
The speed of the counter is increased if this carry is generated directly from the outputs
of all four flip-flops instead of going through a chain of AND gates. Similarly, each
flip-flop is associated with an AND gate that receives all previous flip-flop outputs di-
rectly to determine when the flip-flop should be complemented.

The operation of the counter is summarized in Table 7-6, The four control inputs:
clear, CP, load, and count determine the next output state. The clear input is asyn-
chronous and, when equal to 0, causes the counter to be cleared to all 0’s, regardless of
the presence of clock pulses or other inputs. This is indicated in the table by the X en-
tries, which symbolize don’t-care conditions for the other inputs, so their value can be
cither 0 or 1. The clear input must go to the 1 state for the clocked operations listed in
the next three entries in the table. With the load and count inputs both at 0, the outputs
do not change, whether a pulse is applied in the CP terminal or not. A load input of 1
causes a transfer from inputs /,—I, into the register during the positive edge of an input
pulse. The input information is loaded into the register regardless of the value of the
count input, because the count input is inhibited when the load input is 1. If the load
input is maintained at 0, the count input controls the operation of the counter. The out-
puts change to the next binary count on the positive-edge transition of every clock
pulse, but no change of state occurs if the count input is 0.

The 4-bit counter shown in Fig. 7-19 can be enclosed in one IC package. Two ICs
are necessary for the construction of an 8-bit counter; four ICs for a 16-bit counter; and
so on. The carry output of one IC must be connected to the count input of the IC hold-
ing the four next-higher-order bits of the counter.

Counters with parallel-load capability having a specified number of bits are very
useful in the design of digital systems. Later, we will refer to them as registers with
load and increment capabilities, The increment function is an operation that adds 1 to
the present content of a register. By enabling the count control during one clock pulse
period, the content of the register can be incremented by 1.

A counter with parallel load can be used to generate any desired number of count se-
quences. A modulo-N (abbreviated mod-N) counter is a counter that goes through a re-
peated sequence of N counts. For example, a 4-bit binary counter is a mod-16 counter.
A BCD counter is a mod-10 counter. In some applications, one may not be concerned
with the particular N states that 8 mod-N counter uses. If this is the case, then a coun-

TABLE 7-6
Function Table for the Counter of Fig. 7-19
Clear Ccr Load Count Function
g X X X Clear to 0
1 X 0 0 No change
1 1 1 X Load inputs
1 t 0 1 Count next binary state
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ter with parallel load can be used to construct any mod-N counter, with N being any
value desired. This is shown in the following example.

Example Construct a mod-6 counter using the MSI circuit specified in Fig. 7-19.

7-4 Figure 7-20 shows four ways in which a counter with parallel load can be used to
generate a sequence of six counts. In each case, the count control is set to 1 to enable
the count through the pulses in the CP input. We also use the facts that the load control
inhibits the count and that the clear operation is independent of other control inputs.

The AND gate in Fig. 7-20(a) detects the occurrence of state 0101 in the output.
When the counter is in this state, the load input is enabled and an all-0’s input is loaded
into the register. Thus, the counter goes through binary states 0, 1, 2, 3, 4, and 5 and
then returns to 0. This produces a sequence of six counts.

The clear input of the register is asynchronous, i.¢., it does not depend on the clock.
In Fig. 7-20(b), the NAND gate detects the count of 0510, but as soon as this count
occurs, the register is cleared. The count 0110 has no chance of staying on for any ap-

Ag Ay Ay Ay A, Ay 4; A
Load le— Count = 1 Clear le— Count = 1
Counter _ Counter _
of Fig. 7-19 [+ Clear=1 of Fig. 119 | Load =0
cP le— (P
Inputs = 0 Inputs have no effect
(a) Binary states 0, 1,2, 3,4, 5. (b) Binary states 0, 1, 2, 3,4, 5.
Ay Ay Ay A
Ay A3 Ay A I
Carry-out Load
l+— Count = 1 — }— Count = 1
Counter Counter
of Fig. 7-19 t+— Clear = 1 of Fig. 7-19 la— Clear= 1
Load y
o N A A o el [ A RN
I 0 1 0 0o 0o 1 1
(c) Binary states 10, 11,12, 13, 14, 15. {d) Binary states 3,4.5.6, 7. 8.
FIGURE 7-20

Four ways to achieve a mod-6 counter using a counter with parallel load
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preciable time because the register goes immediately to 0. A momentary spike occurs
in output A; as the count goes from 0101 to 0110 and immediately to 0000. This mo-
mentary spike may be undesirable, and for this reason, this configuration is not recom-
mended. If the counter has a synchronous clear input, it would be possible to clear the
counter with the clock after an occurrence of the 0101 count.

Instead of using the first six counts, we may want to choose the last six counts from
10 to 15. In this case, it is possible to take advantage of the output carry to load a num-
ber in the register. In Fig. 7-20(c}, the counter starts with count 1310 and continues to
1111. The output carry generated during the last state enables the load control, which
then loads the input, which is set at 1010.

It is also possible to choose any intermediate count of six states. The mod-6 counter
of Fig. 7-20(d) goes through the count sequence 3, 4, 5, 6, 7, and 8. When the last
count 1000 is reached, output A; goes to | and the load control is enabled. This loads
the value of 0011 into the register, and the binary count continues from this state. W

7-6 TIMING SEQUENCES

The sequence of operations in a digital system are specified by a control unit. The con-
trol unit that supervises the operations in a digital system would normally consist of
timing signals that determine the time sequence in which the operations are executed.
The timing sequences in thé control unit can be easily generated by means of counters
or shift registers. This section demonstrates the use of these MSI functions in the gen-
eration of timing signals for a control unit.

Word-Time Generation

First, we demonstrate a circuit that generates the required timing signal for serial mode
of operation. Serial transfer of information was discussed in Section 7-3, with an exam-
ple depicted in Fig. 7-8. The control unit in a serial computer must generate a word-
time signal that stays on for a number of pulses equal to the number of bits in the shift
registers. The word-time signal can be generated by means of a counter that counts the
required number of pulses.

Assume that the word-time signal to be generated must stay on for a period of eight
clock pulses. Figure 7-21(a) shows a counter circuit that accomplishes this task. Ini-
tially, the 3-bit counter is cleared to 0. A start signal will set flip-flop Q. The output of
this flip-flop supplies the word-time control and also enables the counter. After the
count of eight pulses, the flip-flop is reset and @ goes to 0. The timing diagram of Fig.
7-21(b) demonstrates the operation of the circuit. The start signal is synchronized with
the clock and stays on for one clock-pulse period. After @ is set to 1, the counter starts
counting the clock pulses. When the counter reaches the count of 7 (binary 111), it
sends a stop signal to the reset input of the flip-flop. The stop signal becomes a 1 after
the negative-edge transition of pulse 7. The next clock pulse switches the counter to the
000 state and also clears Q. Now the counter is disabled and the word-t