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An Optimal Power Flow (OPF) function schedules the power system controls to optimize an objective

function while satisfying a set of nonlinear equality and inequality constraints. The equality constraints

are the conventional power flow equations; the inequality constraints are the limits on the control and

operating variables of the system. Mathematically, the OPF can be formulated as a constrained nonlinear

optimization problem. This section reviews features of the problem and some of its variants as well as

requirements for online implementation.

Optimal scheduling of the operations of electric power systems is a major activity, which turns out to

be a large-scale problem when the constraints of the electric network are taken into account. This

document deals with recent developments in the area emphasizing optimal power flow formulation and

deals with conventional optimal power flow (OPF), accounting for the dependence of the power

demand on voltages in the system, and requirements for online implementation.

The OPF problem was defined in the early 1960s (Burchett et al., Feb. 1982) as an extension of

conventional economic dispatch to determine the optimal settings for control variables in a power

network respecting various constraints. OPF is a static constrained nonlinear optimization problem,

whose development has closely followed advances in numerical optimization techniques and computer

technology. It has since been generalized to include many other problems. Optimization of the electric

system with losses represented by the power flow equations was introduced in the 1960s (Carpentier,

1962; Dommel and Tinney, Oct. 1968). Since then, significant effort has been spent on achieving faster

and robust solution methods that are suited for online implementation, operating practice, and security

requirements.

OPF seeks to optimize a certain objective, subject to the network power flow constraints and

system and equipment operating limits. Today, any problem that involves the determination of the



instantaneous ‘‘optimal’’ steady state of an electric power system is referred to as an Optimal Power Flow

problem. The optimal steady state is attained by adjusting the available controls to minimize an objective

function subject to specified operating and security requirements. Different classes of OPF problems,

designed for special-purpose applications, are created by selecting different functions to be minimized,

different sets of controls, and different sets of constraints. All these classes of the OPF problem are

subsets of the general problem. Historically, different solution approaches have been developed to solve

these different classes of OPF. Commercially available OPF software can solve very large and complex

formulations in a relatively short time, but may still be incapable of dealing with online implementation

requirements.

There are many possible objectives for an OPF. Some commonly implemented objectives are:

. fuel or active power cost optimization,

. active power loss minimization,

. minimum control-shift,

. minimum voltage deviations from unity, and

. minimum number of controls rescheduled.

In fuel cost minimization, the outputs of all generators, their voltages, LTC transformer taps and LTC

phase shifter angles, and switched capacitors and reactors are control variables. The active power losses

can be minimized in at least two ways (Happ and Vierath, July, 1986). In both methods, all the above

variables are adjusted except for the active power generation. In one method, the active power

generation at the swing bus is minimized while keeping all other generation constant at prespecified

values. This effectively minimizes the total active power losses. In another method, an actual expression

for the losses is minimized, thus allowing the exclusion of lines in areas not optimized.

The behavior of the OPF solutions during contingencies was a major concern, and as a result, security

constrained optimal power flow was introduced in the early 1970s. Subsequently, online implementa-

tions became a new thrust in order to meet the challenges of new deregulated operating environments.
20.1 Conventional Optimal Economic Scheduling

Conventional optimal economic scheduling minimizes the total fuel cost of thermal generation, which

may be approximated by a variety of expressions such as linear or quadratic functions of the active

power generation of the unit. The total active power generation in the system must equal the load plus

the active transmission losses, which can be expressed by the celebrated Kron’s loss formula. Reserve

constraints may be modeled depending on system requirements. Area and system spinning, supple-

mental, emergency, or other types of reserve requirements involve functional inequality constraints. The

forms of the functions used depend on the type of reserve modeled. A linear form is evidently most

attractive from a solution method point of view. However, for thermal units, the spinning reserve model

is nonlinear due to the limit on a unit’s maximum reserve contribution. Additional constraints may be

modeled, such as area interchange constraints used to model network transmission capacity limitations.

This is usually represented as a constraint on the net interchange of each area with the rest of the system

(i.e., in terms of limits on the difference between area total generation and load).

The objective function is augmented by the constraints using a Lagrange-type multiplier lambda, l.

The optimality conditions are made up of two sets. The first is the problem constraints. The second set is

based on variational arguments giving for each thermal unit:

@Fi

@Pi

¼ l 1� @PL

@Pi

� �
i ¼ 1, . . . , N (20:1)

The optimality conditions along with the physical constraints are a set of nonlinear equations that

requires iterative methods to solve. Newton’s method has been widely accepted in the power industry as
� 2006 by Taylor & Francis Group, LLC.



a powerful tool to solve problems such as the load flow and optimal load flow. This is due to its reliable

and fast convergence, known to be quadratic.

A solution can usually be obtained within a few iterations, provided that a reasonably good initial

estimate of the solution is available. It is therefore appropriate to employ this method to solve the

present problem.

20.2 Conventional OPF Formulation

The optimal power flow is a constrained optimization problem requiring the minimization of:

f ¼ x,uð Þ (20:2)

subject to

g x,uð Þ ¼ 0 (20:3)

h x,uð Þ � 0 (20:4)

umin � u � umax (20:5)

xmin � x � xmax (20:6)

Here f(x,u) is the scalar objective function, g(x,u) represents nonlinear equality constraints (power

flow equations), and h(x,u) is the nonlinear inequality constraint of vector arguments x and u.

The vector x contains dependent variables consisting of bus voltage magnitudes and phase angles,

as well as the MVAr output of generators designated for bus voltage control and fixed parameters

such as the reference bus angle, noncontrolled generator MW and MVAr outputs, noncontrolled MW

and MVAr loads, fixed bus voltages, line parameters, etc. The vector u consists of control variables

including:

. real and reactive power generation

. phase-shifter angles

. net interchange

. load MW and MVAr (load shedding)

. DC transmission line flows

. control voltage settings

. LTC transformer tap settings

Examples of equality and inequality constraints are:

. limits on all control variables

. power flow equations

. generation=load balance

. branch flow limits (MW, MVAr, MVA)

. bus voltage limits

. active=reactive reserve limits

. generator MVAr limits

. corridor (transmission interface) limits

The power system consists of a total of N buses, NG of which are generator buses. M buses are voltage

controlled, including both generator buses and buses at which the voltages are to be held constant. The

voltages at the remaining (N � M) buses (load buses), must be found.
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The network equality constraints are represented by the load flow equations:

Pi(V ,d)� Pgi þ Pdi ¼ 0 (20:7)

Qi(V ,d)� Qgi þ Qdi ¼ 0 (20:8)

Two different formulation versions can be considered.
where
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olar Form:
(a) P

Pi V ,dð Þ ¼ Vij j
XN

1

Vij j Yij

�� �� cos (di � dj � fij) (20:9)

Qi V ,dð Þ ¼ Vij j
XN

1

Vj

�� �� Yij

�� �� sin (di � dj � fij) (20:10)

Yij ¼ Yij

�� ��=wij (20:11)
Pi ¼ Active power injection into bus i.

Qi ¼ Reactive power injection into bus i.

j~VVij ¼ Voltage magnitude of bus i.

di ¼ Angle at bus i.

j~YYij j, wij ¼ Magnitude and angle of the admittance matrix.

Pdi, Qdi¼ Active and reactive load on bus i.

ectangular Form:
(b) R

Pi e,fð Þ ¼ ei

XN

1

Gijej � Bij fj

� �" #
þ fi

XN

1

Gijfj þ Bijej

� �" #
(20:12)

Qi e,fð Þ ¼ fi

XN

1

Gijej � Bij fj

� �" #
� ei

XN

1

Gijfj þ Bijej

� �" #
(20:13)
ei ¼ Real part of complex voltage at bus i.

fi ¼ Imaginary part of the complex voltage at bus i.

Gij¼ Real part of the complex admittance matrix.

Bij ¼ Imaginary part of the complex admittance matrix.
The control variables vary according to the objective being minimized. For fuel cost minimization,

they are usually the generator voltage magnitudes, generator active powers, and transformer tap ratios.

The dependent variables are the voltage magnitudes at load buses, phase angles, and reactive

generations.

20.2.1 Application of Optimization Methods to OPF

Various optimization methods have been proposed to solve the optimal power flow problem, some of

which are refinements on earlier methods. These include:

1. Generalized Reduced Gradient (GRG) method.

2. Reduced gradient method.
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3. Conjugate gradient methods.

4. Hessian-based method.

5. Newton’s method.

6. Linear programming methods.

7. Quadratic programming methods.

8. Interior point methods.

Some of these techniques have spawned production OPF programs that have achieved a fair level of

maturity and have overcome some of the earlier limitations in terms of flexibility, reliability, and

performance requirements.

20.2.1.1 Generalized Reduced Gradient Method

The Generalized Reduced Gradient method (GRG), due to Abadie and Carpentier (1969), is an

extension of the Wolfe’s reduced gradient method (Wolfe, 1967) to the case of nonlinear constraints.

Peschon in 1971 and Carpentier in 1973 used this method for OPF. Others have used this method to

solve the optimal power flow problem since then (Lindqvist et al., 1984; Yu et al., 1986).

20.2.1.2 Reduced Gradient Method

A reduced gradient method was used by Dommel and Tinney (1968). An augmented Lagrangian

function is formed. The negative of the gradient @L=@u is the direction of steepest descent. The method

of reduced gradient moves along this direction from one feasible point to another with a lower value of f,

until the solution does not improve any further. At this point an optimum is found, if the Kuhn-Tucker

conditions (1951) are satisfied. Dommel and Tinney used Newton’s method to solve the power flow

equations.

20.2.1.3 Conjugate Gradient Method

In 1982, Burchett et al. used a conjugate gradient method, which is an improvement on the reduced

gradient method. Instead of using the negative gradient rf as the direction of steepest descent, the

descent directions at adjacent points are linearly combined in a recursive manner.

Gk ¼ �rf þ bkGk�1 b0 ¼ 0 (20:14)

Here, rk is the descent direction at iteration ‘‘k.’’

Two popular methods for defining the scalar value bk are the Fletcher-Reeves method (Carpentier,

June 1973) and the Polak-Ribiere method (1969).

20.2.1.4 Hessian-Based Methods

Sasson (Oct. 1969) discusses methods (Fiacco and McCormick, 1964; Lootsma, 1967; Zangwill, 1967)

that transform the constrained optimization problem into a sequence of unconstrained problems. He

uses a transformation introduced by Powell and Fletcher (1963). Here, the Hessian matrix is not

evaluated directly. Instead, it is built indirectly starting initially with the identity matrix so that at the

optimum point it becomes the Hessian itself.

Due to drawbacks of the Fletcher-Powell method, Sasson et al. (1973) developed a Hessian load flow

with an extension to OPF. Here, the Hessian is evaluated and solved unlike in the previous method. The

objective function is transformed as before to an unconstrained objective. An unconstrained objective is

formed. All equality constraints and only the violating inequality constraints are included. The sparse

nature of the Hessian is used to reduce storage and computation time.

20.2.1.5 Newton OPF

Newton OPF has been formulated by Sun et al. (1984), and later by Maria et al. (Aug. 1987). An

augmented Lagrangian is first formed. The set of first derivatives of the augmented objective with respect

to the control variables gives a set of nonlinear equations as in the Dommel and Tinney method. Unlike
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in the Dommel and Tinney method where only a part of these are solved by the N-R method, here, all

equations are solved simultaneously by the N-R method.

The method itself is quite straightforward. It is the method of identifying binding inequality

constraints that challenged most researchers. Sun et al. use a multiply enforced, zig-zagging guarded

technique for some of the inequalities, together with penalty factors for some others. Maria et al. used an

LP-based technique to identify the binding inequality set. Another approach is to use purely penalty

factors. Once the binding inequality set is known, the N-R method converges in a very few iterations.

20.2.1.6 Linear Programming-Based Methods

LP methods use a linear or piecewise-linear cost function. The dual simplex method is used in some

applications (Bentall, 1968; Shen and Laughton, Nov. 1970; Stott and Hobson, Sept.=Oct. 1978; Wells,

1968). The network power flow constraints are linearized by neglecting the losses and the reactive

powers, to obtain the DC load flow equations. Merlin (1972) uses a successive linearization technique

and repeated application of the dual simplex method.

Due to linearization, these methods have a very high speed of solution, and high reliability in the

sense that an optimal solution can be obtained for most situations. However, one drawback is the

inaccuracies of the linearized problem. Another drawback for loss minimization is that the loss

linearization is not accurate.

20.2.1.7 Quadratic Programming Methods

In these methods, instead of solving the original problem, a sequence of quadratic problems that

converge to the optimal solution of the original problem are solved. Burchett et al. use a sparse

implementation of this method. The original problem is redefined as simply, to minimize,

f (x) (20:15)

subject to:

g(x) ¼ 0 (20:16)

The problem is to minimize

gT p þ 1

2
pT Hp (20:17)

subject to:

Jp ¼ 0 (20:18)

where

p ¼ x � xk (20:19)

Here, g is the gradient vector of the original objective function with respect to the set of variables ‘‘x.’’

‘‘J’’ is the Jacobian matrix that contains the derivatives of the original equality constraints with respect to

the variables, and ‘‘H’’ is the Hessian containing the second derivatives of the objective function and a

linear combination of the constraints with respect to the variables. xk is the current point of lineariza-

tion. The method is capable of handling problems with infeasible starting points and can also handle ill-

conditioning due to poor R=X ratios. This method was later extended by El-Kady et al. (May 1986) in a

study for the Ontario Hydro System for online voltage=var control. A nonsparse implementation of the

problem was made by Glavitsch (Dec. 1983) and Contaxis (May, 1986).
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20.2.1.8 Interior Point Methods

The projective scaling algorithm for linear programming proposed by N. Karmarkar is characterized

by significant speed advantages for large problems reported to be as much as 50:1 when compared

to the simplex method (Karmarkar, 1984). This method has a polynomial bound on worst-case

running time that is better than the ellipsoid algorithms. Karmarkar’s algorithm is significantly

different from Dantzig’s simplex method. Karmarkar’s interior point rarely visits too many extreme

points before an optimal point is found. The IP method stays in the interior of the polytope and

tries to position a current solution as the ‘‘center of the universe’’ in finding a better direction for

the next move. By properly choosing the step lengths, an optimal solution is achieved after a number

of iterations. Although this IP approach requires more computational time in finding a moving

direction than the traditional simplex method, better moving direction is achieved resulting in less

iterations. Therefore, the IP approach has become a major rival of the simplex method and has

attracted attention in the optimization community. Several variants of interior points have been

proposed and successfully applied to optimal power flow (Momoh, 1992; Vargas et al., 1993; Yan

and Quintana, 1999).
20.3 OPF Incorporating Load Models

20.3.1 Load Modeling

The area of power systems load modeling has been well explored in the last two decades of the

twentieth century. Most of the work done in this area has dealt with issues in stability of the power

system. Load modeling for use in power flow studies has been treated in a few cases (Concordia and

Ihara, 1982; IEEE Committee Report, 1973; IEEE Working Group Report, 1996; Iliceto et al., 1972;

Vaahedi et al., 1987). In stability studies, frequency and time are variables of interest, unlike in power

flow and some OPF studies. Hence, load models for use in stability studies should account for any load

variations with frequency and time as well. These types of load models are normally referred to as

dynamic load models. In power flow, OPF studies neglecting contingencies, and security-constrained

OPF studies using preventive control, time, and frequency, are not considered as variables. Hence, load

models for this type of study need not account for time and frequency. These load models are static

load models.

In security-constrained OPF studies using corrective control, the time allowed for certain control

actions is included in the formulation. However, this time merely establishes the maximum allowable

correction, and any dynamic behavior of loads will usually end before any control actions even begin to

function. Hence, static load models can be used even in this type of formulation.
20.3.2 Static Load Models

Several forms of static load models have been proposed in the literature, from which the exponential and

quadratic models are most commonly used. The exponential form is expressed as:

Pm ¼ apV bb (20:20)

Qm ¼ aqV bq (20:21)

The values of the coefficients ap and aq can be taken as the specified active and reactive powers at that

bus, provided the specified power demand values are known to occur at a voltage of 1.0 per unit,

measured at the network side of the distribution transformer. A typical measured value of the demand

and the network side voltage is sufficient to determine approximately the values of the coefficients,

provided the exponents are known. The range of values reported for the exponents vary in the literature,

but typical values are 1.5 and 2.0 for bp and bq, respectively.
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20.3.3 Conventional OPF Studies Including Load Models

Incorporation of load models in OPF studies has been considered in a couple of cases (El-Din et al.,

1989; Vaahedi and El-Din, May 1989) for the Ontario Hydro energy management system. In both cases,

loss minimization was considered to be the objective. It is concluded by Vaahedi and El-Din (1989) that

the modeling of ULTC operation and load characteristics is important in OPF calculations.

The effects of load modeling in OPF studies have been considered for the case where the generator bus

voltages are held at prespecified values (Dias and El-Hawary, 1989). Since the swing bus voltage is held

fixed at all times (and also the generator bus voltages in the absence of reactive power limit violations),

the average system voltage is maintained in most cases. Thus, an increase in fuel cost due to load

modeling was noticed for many systems that had a few (or zero) reactive limit violations, and a decrease

for those with a noticeable number of reactive limit violations. Holding the generator bus voltages at

specified values restricts the available degrees of freedom for OPF and makes the solution less optimal.

Incorporation of load models in OPF studies minimizing fuel cost (with all voltages free to vary

within bounds) can give significantly different results when compared with standard OPF results. The

reason for this is that the fuel cost can now be reduced by lowering the voltage at the modeled

buses along with all other voltages wherever possible. The reduction of the voltages at the

modeled buses lowers the power demand of the modeled loads and will thus give the lower fuel cost.

When a large number of loads are modeled, the total fuel cost may be lower than the standard OPF.

However, a lowering of the fuel cost via a lowering of the power demand may not be desirable under

normal circumstances, as this will automatically decrease the total revenue of the operation. This can

also give rise to a lower net revenue if the decrease in the total revenue is greater than the decrease in the

fuel cost. This is even more undesirable. What is needed is an OPF solution that does not decrease the

total power demand in order to achieve a minimum fuel cost. The standard OPF solution satisfies this

criterion. However, given a fair number of loads that are fed by fixed tap transformers, the standard OPF

solution can be significantly different from the practically observed version of this solution.

Before attempting to find an OPF solution incorporating load models that satisfies the required

criterion, we deal with the reason for the problem. In a standard OPF formulation, the total revenue is

constant and independent of the solution. Hence, we can define net revenue RN, which is linearly related

to the total fuel cost FC by the formula:

RN ¼ �F C þ constant (20:22)

The constant term is the total revenue dependent on the total power demand and the unit price of

electricity charged to the customers. From this relationship we see that a solution with minimum fuel

cost will automatically give maximum net revenue. Now, when load models are incorporated at some

buses, the total power demand is not a constant, and hence the total revenue will also not be constant. As

a result,

RN ¼ �FC þ RT (20:23)

where ‘‘RT‘‘ is the total demand revenue and is no longer a constant.

If instead of minimizing the fuel cost, we now maximize the net revenue, we will definitely avoid the

difficulties encountered earlier. This is equivalent to minimizing the difference between the fuel cost and

the total revenue. Hence we see that, in the standard OPF, the required maximum net revenue is implied,

and the equivalent minimum fuel cost is the only function that enters the computations.

20.3.4 Security Constrained OPF Including Load Models

A conventional OPF result can have optimal but insecure states during certain contingencies. This can be

avoided by using a security constrained OPF. Unlike in the former, for a security constrained OPF, we

can incorporate load models in a variety of ways. For example, we can consider the loads as independent
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of voltage for the intact system, but dependent on the voltage during contingencies. This can be justified

by saying that the voltage deviations encountered during a standard OPF and modeled OPF are small

compared to those that can be encountered during contingencies. Since the total power demand for the

intact system is not changed, fuel cost comparisons between this case and a standard SCOPF seem more

reasonable. We can also incorporate load models for the intact system as well as during contingencies,

while minimizing the fuel cost. However, we then encounter the problem discussed in the previous

section regarding net earnings. Another approach is to incorporate load models for the intact case as well

as during contingencies, while minimizing the total fuel cost minus the total revenue.

20.3.5 Inaccuracies of Standard OPF Solutions

It was stated earlier that the standard OPF (or standard security constrained OPF) solution can give

results not compatible with practical observations (i.e., using the control variable values from these

solutions) when a fair number of loads are fed by fixed tap transformers. The discrepancies between the

simulated and observed results will be due to discrepancies between the voltage at a bus feeding a load

through a fixed tap transformer, and the voltage at which the specified power demand for that load

occurs. The observed results can be simulated approximately by performing a power flow incorporating

load models. The effects of load modeling in power flow studies have been treated in a few cases (Dias

and El-Hawary, 1990; El-Hawary and Dias, Jan. 1987; El-Hawary and Dias, 1987; El-Hawary and Dias,

July 1987). In all these studies, the specified power demand of the modeled loads was assumed to occur

at a bus voltage of 1.0 per unit. The simulated modeled power flow solution will be same as the

practically observed version only when exact model parameters are utilized.

20.4 SCOPF Including Load Modeling

Security constrained optimal power flow (abbreviated SCOPF) takes into account outages of certain

transmission lines or equipment (Alsac and Stott, May=June 1974; Schnyder and Glavitsch, 1987). Due

to the computational complexity of the problem, more work has been devoted to obtaining faster

solutions requiring less storage, and practically no attention has been paid to incorporating load models

in the formulations. A SCOPF solution is secure for all credible contingencies or can be made secure by

corrective means. In a secure system (level 1), all load is supplied, operating limits are enforced, and no

limit violations occur in a contingency. Security level 2 is one where all load is supplied, operating limits

are satisfied, and any violations caused by a contingency can be corrected by control action without loss

of load. Level 1 security is considered in Dias and El-Hawary (Feb. 1991).

Studies of the effects of load voltage dependence in PF and OPF (Dias and El-Hawary, Sept. 1989)

concluded that for PF incorporating load models, the standard solution gives more conservative results

with respect to voltages in most cases. However, exceptions have been observed in one test system. Fuel

costs much lower than those associated with the standard OPF are obtained by incorporating load

models with all voltages free to vary within bounds. This is due to the decrease in the power demand by

the reduction of the voltages at buses whose loads are modeled. When quite a few loads are modeled, the

minimum fuel costs may be much lower than the corresponding standard OPF fuel cost with a

significant decrease in power demand.

A similar effect can be expected when load models are incorporated in security constrained OPF

studies. The decrease in the power demand when load models are incorporated in OPF studies may not

be desirable under normal operating conditions. This problem can be avoided in a security constrained

OPF by incorporating load models during contingencies only. This not only gives results that are more

comparable with standard OPF results, but may also give lower fuel costs without lowering the power

demand of the intact system. The modeled loads are assumed to be fed by fixed tap transformers and are

modeled using an exponential type of load model.

In Dias and El-Harawy (1990), some selected buses were modeled using an exponential type of load

model in three cases. In the first, the specified load at modeled buses is obtained with unity voltage. In
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the second case, the transformer taps have been adjusted to give all industrial-type consumers 1.0 per

unit at the low-voltage panel when the high-side voltage corresponds to the standard OPF solution. In

the third case, the specified power demand is assumed to take place when the high-side voltages

correspond to the intact case of the standard security constrained OPF solution. It is concluded that a

decrease in fuel cost can be obtained in some instances when load models are incorporated in security

constrained OPF studies during contingencies only. In situations where a decrease in fuel cost is

obtained in this manner, the magnitude of decrease depends on the total percentage of load fed by

fixed tap transformers and the sensitivity of these loads to modeling. The tap settings of these fixed tap

transformers influence the results as well. An increase in fuel cost can also occur in some isolated cases.

However, in either case, given accurate load models, optimal power flow solutions that are more

accurate than the conventional OPF solutions can be obtained. An alternate approach for normal

OPF as well as security constrained OPF is also suggested.

20.4.1 Influence of Fixed Tap Transformer Fed Loads

A standard OPF assumes that all loads are independent of other system variables. This implies that all

loads are fed by ULTC transformers that hold the load-side voltage to within a very narrow bandwidth

sufficient to justify the assumption of constant loads. However, when some loads are fed by fixed tap

transformers, this assumption can result in discrepancies between the standard OPF solution and its

observed version. In systems where the average voltage of the system is reasonably above 1.0 per unit

(specifically where the loads fed by fixed tap transformers have voltages greater than the voltage at which

the specified power demand occurs), the practically observed version of the standard OPF solution will

have a higher total power demand, and hence a higher fuel cost, and total revenue, and net revenue.

Conversely, where such voltages are lower than the voltage at which the specified power demand occurs,

the total power demand, fuel cost, total and net revenues will be lower than expected. For the former

case, the system voltages will usually be slightly less than expected, while for the latter case they will

usually be slightly higher than expected.

The changes in the power demand at some buses (in the observed version) will alter the power flows

on the transmission lines, and this can cause some lines to deliver more power than expected. When this

occurs on transmission lines that have power flows near their upper limit, the observed power flows may

be above the respective upper limit, causing a security violation. Where the specified power demand

occurs at the bus voltages obtained by a standard OPF solution, the observed version of the standard

OPF solution will be itself, and there will ideally be no security violations in the observed version.

Most of the above conclusions apply to security constrained OPF as well (Dias and El-Hawary, Nov.

1991). However, since a security constrained OPF solution will in general have higher voltages than its

normal counterpart (in order to avoid low voltage limit violations during contingencies), the increase in

power demand, and total and net revenues will be more significant while the decrease in the above

quantities will be less significant. Also, the security violations due to line flows will now be experienced

mainly during contingencies, as most line flows will now usually be below their upper limits for the

intact case. For security constrained OPF solutions that incorporate load models only during contin-

gencies, the simulated and observed results will mainly differ in the intact case. Also, with loads modeled

during contingencies, the average voltage is lower than for the standard security constrained OPF

solution and hence there will be more cases with a decrease in the power demand, fuel cost, and total

and net revenues in the observed version of the results than for its standard counterpart.

20.5 Operational Requirements for Online Implementation

The most demanding requirements on OPF technology are imposed by online implementation. It was

argued that OPF, as expressed in terms of smooth nonlinear programming formulations, produces

results that are far too approximate descriptions of real-life conditions to lead to successful online

implementations. Many OPF formulations do not have the capability to incorporate all operational
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considerations into the solutions. Moreover, some operating practices are occasionally incompatible

with such OPF formulations. Consequently, many proposed ‘‘theoretical optimal solutions’’ are of little

value to the operators who are almost constantly presented with simultaneous events that are outside the

scope of OPF definition. These limitations, if properly addressed, do not have to prevent OPF programs

from being used in practice, especially when the operational optimal solution may also not be known.

Papalexopoulos (1996) offers some of the requirements that need to be met so that OPF applications are

useful to, and usable by, the dispatchers in online applications.
20.5.1 Speed Requirements

Fast OPF programs designed for online application are needed because under normal conditions, the

state of the power system changes continuously and can change abruptly during emergency conditions.

The changes involve the evolution of bus active and reactive power generation and loads with time,

control variables moving to and off their limits as time changes, and topology changes due to switching

operations and other planned or forced outages. The need for fast OPF solutions is especially true when

an excessive amount of calculations due to modeling of contingency constraints or repeated OPF runs is

involved.

In general, an online OPF calculation should have been completed before the state of the power

system has changed to another state that is appreciably different from the earlier state. Determining the

optimal execution frequency to maximize the benefits of the computations depends on the specific

situation and is limited by finite computing resources. It may be preferable to develop incrementally

correct and flexible algorithms to offer fast and more frequent scheduling. This leads us to conclude that

conventional formulations and algorithms characterized with quadratic convergence that give very

accurate and ‘‘mathematically optimal’’ solutions, but neglect operational realities are not appropriate

for online implementation. Fast and frequent scheduling requires ‘‘hot start’’ OPF capabilities developed

to take advantage of the optimal status of previously optimized operating points. The hot start option is

significant when the rate of change of system state is small and previously optimized points are still

‘‘relevant’’ to the current operating conditions.
20.5.2 Robustness of OPF Solutions with Respect to Initial Guess Point

An OPF program needs to produce consistent solutions and thus must not be sensitive to the selected

initial guess used. In addition, changes in the OPF solutions between operating states need to be

consistent with the changes in the power system operating constraints. The OPF solutions will never

be exactly the same when starting from different initial guess points because the solution process is

iterative. Any differences should be within the tolerances specified by the convergence criterion, and of a

magnitude that would be considered insignificant to the operator. First-order OPF solution methods

were not well received because noticeably different solutions could be obtained when an OPF algorithm

was initialized from different initial guess points, with only one (or even none) of the solutions actually

constituting a local optimum. Theoretically, if the objective function and the feasible region can be

shown to be convex, then the optimal solution will be unique (Gill et al., 1981). Unfortunately, the

complexity of the nonlinear equations and inequality constraints involved in OPF problems make it

untenable to rigorously prove convexity. If multiple local minima actually exist, then additional

computational or heuristic methods must be used to resolve the issue.

A normally feasible OPF solution space may become nonconvex (thus leading to multiple OPF

solutions) due to two considerations. The first is due to use of discontinuous techniques to model

specific operating practices and preferences, and the second is due to modeling of local controls. The

conventional power flow problem with local control capability, whose implicit objective is feasible with

respect to a limited set of inequalities, does not have a unique solution. Nevertheless, solutions of the

same problem from different starting conditions usually match quite closely. Occasionally, different

initial guess solutions can lead to different solutions. This takes place when two or more feasible voltage
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levels can satisfy nonlinear loads. OPF applications, however, should be able to overcome this type of

ambiguity.
20.5.3 Discrete Modeling

Discrete control is widely used in the electric network. For example, transformers are used for voltage

control, shunt capacitors and reactors are switched on or off to correct voltage profiles and to reduce

active power transmission losses, and phase shifters are used to regulate the MW flows of transmission

lines. An efficient and effective OPF discretization procedure is needed to assist the operators in utilizing

discrete controls in a realistic and optimal or near-optimal manner. Discrete elements to be included in

the OPF formulation are branch switching; prohibited zones of generator cost curves; and priority

sequence levels for unfeasibility handling. OPF algorithms designed for online applications should be

able to appropriately handle the discrete aspects of the problem.

Using both discrete and continuous controls converts the OPF into a mixed discrete-continuous

optimization problem. A possible accurate solution using a method such as mixed-integer nonlinear

programming would be orders of magnitude slower than ordinary nonlinear programming methods

(Gill et al., 1981). Linear programming-based OPF algorithms allow substantial recognition of discrete

controls by setting the cost curve segment break points at discrete control steps. However, most methods

that solve for a nonseparable objective function by nonlinear programming methods do not properly

model discrete controls.

Current OPF algorithms treat all controls as continuous variables during the initial solution process.

Once the continuous solution is obtained, each discrete variable is moved to the nearest discrete setting.

This produces acceptable solutions, assuming that the step sizes for the discrete controls are sufficiently

small, which is usually the case for transformer taps and phase shifter angles (Papalexopoulos et al.,

1996). Approximate solutions that can produce near-optimal results appear to be a reasonable alterna-

tive to rigorous solution methods. One such scheme (Liu et al., 1991) uses penalty functions for discrete

controls. The object is to penalize the continuous approximations of discrete control variables for

movements away from their discrete steps. This scheme is well suited for Newton-based OPF algorithms.

The scheme consists of a set of rules to determine the timing of introduction and criteria of updating the

penalties in the optimization process. This heuristic algorithm is of limited scope. Substantially more

work is needed to effectively resolve all problems associated with the discrete nature of controls and

other discrete elements of the OPF problem.
20.5.4 Detecting and Handling Infeasibility

As the requirements for satisfactory system operation increase, the region of feasible solutions that

satisfy all constraints simultaneously may become too small. In this case, there is a need to establish

criteria to prioritize the constraints. For OPF applications, this means that when a feasible solution

cannot be found, it is still very important for the algorithm to suggest the ‘‘best optimal’’ engineering

solution in some sense, even though it is infeasible. This is even more critical for OPF applications that

incorporate contingency constraints.

There are several approaches to deal with this problem. In one approach, all power flow equations are

satisfied and only the soft constraints that truly cause the bottlenecks are allowed to be violated using a

least squares approximation process. An LP approach introduces a weighted slack variable for each

binding constraint. If a constraint can be enforced, the slack variable will be reduced to zero and the

constraint will be satisfied. The constraints causing infeasibility will have non-zero slack variables whose

magnitudes are proportional to the amounts they need to be relaxed to achieve feasibility. Usually, all

binding constraints of a particular type are modeled as if they have identical infeasibility characteristics.

That is, all slack variables corresponding to these binding constraints share the same cost curve, and their

sensitivities are scaled by a weighting factor associated with the type of the corresponding constraint.

Using Newton’s method, if the OPF does not converge in the first specified set of iterations, the
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constraint weighting factors, corresponding to the penalty functions associated with the load bus voltage

limits and the branch flow limits, will be reduced successively until a solution is reached. This normally

results in all constraints being met except for those load bus voltage and branch flow limits that

contribute to infeasibility. Special care should be taken in selecting the proper weighting factors to

avoid numerical problems and produce acceptable solutions.

Another approach develops hierarchical rules that operate on the controls and constraints of the OPF

problem. The rules introduce discontinuous changes in the original OPF formulation. These changes

include using a different set of control=constraint limits, expansion of the control set by class or

individually, branch switching, load shedding, etc. They are usually implemented in a predefined

priority sequence to be consistent with utility practices. The decision as to when to proceed to the

next priority level of modifications to achieve feasibility is critical, especially when it involves radial

overloads, normally overloaded constraints and constraints known to have ‘‘soft’’ limits. The selection of

a final optimal solution among all the others in the set is achieved with the implementation of a

‘‘preference index.’’ An application of the preference index approach that minimizes postcontingency

line overloads due to generator outages is given in (Yokoyama et al., 1988).

20.5.5 Consistency of OPF Solutions with Other Online Functions

Online OPF is implemented in either study or closed-loop mode. In study mode, the OPF solutions are

presented as recommendations to the operator. In closed-loop mode, control actions are implemented

in the system via the SCADA system of the EMS (IEEE Trans., June, 1983). In closed-loop mode, OPF is

triggered by a number of events, including an operator request, the execution of the real-time sequence

and security analysis, structural change, large load change, etc. A major concern for an OPF in closed-

loop mode is the design of its interface with the other online functions, which are executed at different

frequencies. Some of these functions are unit commitment, economic dispatch (ED), real-time sequence,

security analysis, automatic generation control (AGC), etc. To reduce the discrepancy between ideal and

realistic OPF solutions, emphasis should be placed on establishing consistency between these functions

and static optimal solutions produced by OPF. This requires proper interfacing and integration of OPF

with these functions. The integration design should be flexible enough to allow OPF formulation

modifications consistent with the ever dynamic and sometimes ill-defined security problem definition.

20.5.6 Ineffective ‘‘Optimal’’ Rescheduling

Production-grade OPF algorithms use all available control actions to obtain an optimal solution, but for

many applications it is not practical to execute more than a limited number of control actions. The OPF

problem then becomes one of selecting the best set of actions of a limited size out of a much larger set of

possible actions. The problem was identified but no concrete remedies were offered. It is not possible to

select the best and most effective set of a given size from existing OPF solutions that use all controls to

solve each problem. The control actions cannot be ranked and the effectiveness of an action is not related

to its magnitude. Each control facility participates in both minimization of the objective function and

enforcement of the constraints. Separation of the two effects for evaluation purposes is not feasible. The

problem is difficult to define analytically and existing conventional technologies are not adequate. It is

important to note that emerging computational intelligence tools such as fuzzy reasoning and neural

networks may offer some resolution. The problem of ineffective rescheduling is related to but is not

identical to the ‘‘minimum number of controls’’ objective. It is also closely linked to the problem of

discrete control variables, since methods that recognize the discrete nature of some control facilities tend

to decrease the number of control actions by keeping inefficient discrete controls at their initial settings.

20.5.7 OPF-Based Transmission Service Pricing

OPF programs are capable of computing marginal costs. Information about the optimal states with

respect to changes, such as load variations, operating limit changes, or constraint parameter changes,
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can be used in many practical applications. Specifically, the sensitivities of the production cost of

generation with respect to changes in the bus active power injections are called Bus Incremental Costs

(BICs). BICs can be used as nodal prices for pricing transmission services, as they reflect the transmis-

sion loss and the congestion components for transferring power from one point to another. In a lossless

network with no binding constraints, all BICs should be equal. However, when an operating limit is

reached, the congestion component takes effect and all BICs in the network can be different. This means

that nodal price differences across uncongested lines can be much larger than marginal losses. Extensive

experience has shown that it is possible for power to flow from a bus with higher nodal price to a bus

with lower nodal price, resulting in negative transmission charges. Failure to properly account for this

effect can lead to unacceptable incentives for transmission users. The same applies in the case of

transmission reinforcements to mitigate congestion. If as a result of the upgrades, the incremental

transmission rights (positive or negative) are not accounted for properly, similar distortions are possible.

20.6 Conclusions

A review of recent developments in optimal economic operation of electric power systems with emphasis

on the optimal power flow formulation was given. We dealt with conventional formulations of economic

dispatch, conventional optimal power flow, and accounting for the dependence of the power demand on

voltages in the system. Challenges to OPF formulations and solution methodologies for online appli-

cation were also outlined.
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