
13 Optimal Power  ow 

13.1 INTRODUCTION 

The optimal power flow of O P F  has had a long history in its development. It 
was first discussed by Carpentier in 1962 (reference 1) and took a long time to 
become a successful algorithm that could be applied in everyday use. Current 
interest in the O P F  centers around its ability to solve for the optimal solution 
that takes account of the security of the system. 

In Chapter 3, we introduced the concept of economic dispatch. In the 
economic dispatch we had a single constraint which held the total generation 
to equal the total load plus losses. Thus, the statement of the economic dispatch 
problem results in a Lagrangian with just one constraint: 

(13.1) 

If we think about the single “generation equals load plus losses” constraint: 

we realize that what it is actually saying is that the generation must obey the 
same conditions as expressed in a power flow-with the condition that the 
entire power flow is reduced to one simple equality constraint. There is good 
reason, as we shall see shortly, to state the economic dispatch calculation in 
terms of the generation costs, and the entire set of equations needed for the 
power flow itself as constraints. The power flow equations were introduced in 
Chapter 4. This formulation is called an optimal power flow. 

We can solve the O P F  for the minimum generation cost (as in Chapter 3) 
and require that the optimization calculation also balance the entire power 
flow-at the same time. Note also that the objective function can take different 
forms other than minimizing the generation cost. It is common to express the 
O P F  as a minimization of the electrical losses in the transmission system, or 
to express i t  as the minimum shift of generation and other controls from an 
optimum operating point. We could even allow the adjustment of loads in order 
to determine the minimum load shedding schedule under emergency conditions. 
Regardless of the objective function, however, an O P F  must solve so that the 
entire set of power constraints are present and satisfied at the solution. 
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Why set up the generation dispatch calculation as an OPF? 

1. If the entire set of power flow equations are solved simultaneously with 
the generation cost minimization, the representation of incremental losses is 
exact. Further, with an objective function that minimizes the losses themselves, 
the power flow equations are quite necessary. 

2.  The economic dispatch solutions in Chapter 3 only observed the genera- 
tion limits P; I & I P+. With all of the power flow constraints included in 
the formulation, many more of the power system limits can be included. These 
include limits on the generator reactive power, Q; 5 Qi  5 Q;, limits on the 
voltage magnitude at generation and load buses, IEJ- I I E i (  I I E i ( + ,  and flows 
on transmission lines or transformers expressed in either MW, amperes or MVA 
(e.g. MVA; I MVAij I MVA;). This set of operating constraints now allows 
the user to guarantee that the dispatch of generation does not, in fact, force 
the transmission system into violating a limit, which might put it in danger of 
being damaged. 

3. The O P F  can also include constraints that represent operation of the 
system after contingency outages. These “security constraints” allow the OPF 
to dispatch the system in a defensive manner. That is, the O P F  now forces the 
system to be operated so that if a contingency happened, the resulting voltages 
and flows would still be within limit. Thus, constraints such as the following 
might be incorporated: 

IEkl- 5 IE,/ (with line nm out) I IE,I+ (1 3.3) 

MVA, I MVAij (with line nm out) I MVA; (1 3.4) 

which implies that the OPF would prevent the post-contingency voltage on 
bus k or the post-contingency flow on line i j  from exceeding their limits for an 
outage of line nm. This special type of O P F  is called a “security-constrained 
OPF,” or SCOPF. 

4. In the dispatch calculation developed in Chapter 3, the only adjustable 
variables were the generator M W outputs themselves. In the OPF, there are 
many more adjustable or “control” variables that be be specified. A partial list 
of such variables would include: 

0 Generator voltage. 
0 LTC transformer tap position. 
0 Phase shift transformer tap position. 
0 Switched capacitor settings. 
0 Reactive injection for a static VAR compensator. 
0 Load shedding. 
0 DC line flow. 
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Thus, the OPF gives us a framework to have many control variables adjusted 
in the effort to optimize the operation of the transmission system. 

5. The ability to use different objective functions provides a very flexible 
analytical tool. 

Given this flexibility, the OPF has many applications including: 

1. The calculation of the optimum generation pattern, as well as all control 
variables, to achieve the minimum cost of generation together with 
meeting the transmission system limitations. 

2.  Using either the current state of the power system or a short-term load 
forecast, the OPF can be set up to provide a “preventative dispatch” if 
security constraints are incorporated. 

3. In an emergency, that is when some component of the system is 
overloaded or a bus is experiencing a voltage violation, the OPF can 
provide a “corrective dispatch” which tells the operators of the system 
what adjustments to make to relieve the overload or voltage violation. 

4. The OPF can be used periodically to find the optimum setting for 
generation voltages, transformer taps and switched capacitors or static 
VAR compensators (sometimes called “voltage-VAR” optimization). 

5. The OPF is routinely used in planning studies to determine the maximum 
stress that a planned transmission system can withstand. For example, 
the OPF can calculate the maximum power that can safely be transferred 
from one area of the network to another. 

6. The OPF can be used in economic analyses of the power system by 
providing “bus incremental costs” (BICs). The BICs are useful to deter- 
mine the marginal cost of power at any bus in the system. Similarly, the 
OPF can be used to calculate the incremental or marginal cost of 
transmitting power from one outside company-through its system-to 
another outside company. 

13.2 SOLUTION OF THE OPTIMAL POWER FLOW 

The optimal power flow is a very large and very difficult mathematical 
programming problem. Almost every mathematical programming approach 
that can be applied to this problem has been attempted and it has taken 
developers many decades to develop computer codes that will solve the OPF 
problem reliably. 

Chapter 3 introduced the concept of the lambda-iteration methods, the 
gradient method and Newton’s method. We shall review all of these here and 
introduce two new techniques, the linear programming (LP) method and the 
interior point method. The attributes of these methods are summarized next. 
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0 Lambda iteration method Losses may be represented by a [ B ]  matrix, or 
the penalty factors may be calculated outside by a power flow. This forms 
the basis of many standard on-line economic dispatch programs. 

0 Gradient methods: Gradient methods are slow in convergence and are 
difficult to solve in the presence of inequality constraints. 

0 Newton’s method: Very fast convergence, but may give problems with 
inequality constraints. 

0 Linear programming method (LPOPF): One of the fully developed methods 
now in common use. Easily handles inequality constraints. Nonlinear 
objective functions and constraints handled by linearization. 

0 Interior point method: Another of the fully developed and widely used 
methods for OPF. Easily handles inequality constraints. 

We introduced and analyzed the lambda-iteration method in Chapter 3. This 
method forms the basis of standard on-line economic dispatch codes. The 
technique works well and can be made to run very fast. It overlooks any 
constraints on the transmission system and does not produce a dispatch of the 
generation that will avoid overloads, voltage limit violations, or security 
constraint violations. 

We shall derive the gradient method using the same mathematics used in 
Chapter 3, only with various advanced models of the transmission system 
instead of the “load plus losses equals generation” constraint used in Chapter 
3. It is then a simple step to go on to develop the Newton’s method applied 
with these same constraints. Finally, the LPOPF and interior point methods are 
presented. 

The objective function in the O P F  is usually minimized. In some cases, such 
as power transfers, i t  may be maximized. We shall designate the objective 
function as f. The equations that guarantee that the power flow constraints are 
met will be designated as 

(1 3.5) 

Note that here we shall only be concerned with a variable vector z. This vector 
contains the adjustable controls, the bus voltage magnitudes, and phase angles, 
as well as the fixed parameters of the system, Later, we shall break the variables 
up into sets of state variables, control variables, and fixed parameters. 

The O P F  can also solve for an optimal solution with inequality constraints 
on dependent variables, such as line MVA flows. These will be designated 

h -  I h(z) I h t  (1 3.6) 

In addition, limits may be placed directly on state variables or control 
variables: 

z-  I Z I Z +  (1 3.7) 
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The OPF problem then consists of minimizing (or maximizing) the objective 
function, subject to the equality constraints, the inequality constraints, and the 
state and control variable limits. 

The developments and illustrative examples in this chapter concentrate (but 
not exclusively) on the LPOPF technique. The method is widely used and only 
requires an AC or DC power flow program, plus a suitable LP package for 
solving illustrative examples and (homework) problems. 

13.2.1 The Gradient Method 

In this section, we shall consider the objective function to be total cost of 
generation (later examples will demonstrate how other objectives can be used). 
The objective function to be minimized is: 

c &(pi) 
all gen. 

where the sum extends to all generators on the power system, including the 
generator at the reference bus. 

We shall start out defining the unknown or state vector x as: 

on each PQ bus 

Bi on each PV bus 

another vector, y, is defined as: 

,:k, }on the reference bus 

PEe' 
y = 1 Qkne, }on each PQ bus 

(1 3.8) 

(13.9) 

1, z:l")on each Q V bus 

Note that the vector y is made up of all of the parameters that must be specified. 
Some of these parameters are adjustable (for example, the generator output, 
P;e', and the generator bus voltage). Some of the parameters are fixed, as far 
as the OPF calculation is concerned, such as the P and Q at each load bus. 
To make this distinction, we shall divide the y vector up into two parts, u and p: 

(13.10) 
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where u represents the vector of control or adjustable variables, and p represents 
the fixed or constant variables. Note also that we are only representing equality 
constraints at this point. 

Finally, we shall define a set of rn equations that govern the power flow: 

Lpk(1~l, 0) - p;et for each P V  (gen.) bus k ,  not 
including the reference bus 

Note that these equations are the same bus equations as shown in Chapter 4 
for the Newton power flow (Eq. 4.18). 

We must recognize that the reference-bus power generation is not an 
independent variable. That is, the reference-bus generation always changes to 
balance the power flow; we cannot specify it at the beginning of the calculation. 
We wish to express the cost or objective function as a function of the control 
variables and of the state variables. We do this by dividing the cost function 
as follows: 

( 1 3.12) 

where the first summation does not include the reference bus, The pi are all 
independent, controlled variables whereas cef is a dependent variable. We say 
that the pi are in the vector u and the Pref is a function of the network voltages 
and angles: 

Pref = pref(IEl, 0) (13.13) 

then the cost function becomes: 

We can now set up the Lagrange equation for the OPF as follows: 

Z(X, 4 P) = f(x, u) + u, P> ( 1 3.1 5 )  
where 

x = vector of state variables 

u = vector of control variables 

p = vector of fixed parameters 

1 = vector of Lagrange multipliers 

g = set of equality constraints representing the power flow equations 

f = the objective function 
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This Lagrange equation is perhaps better seen when written as: 

( 1 3.1 6) 

We now have a Lagrange function that has a single objective function and m 
Lagrange multipliers, one for each of the m power flow equations. 

To minimize the cost function, subject to the constraints, we set the gradient 
of the Lagrange function to zero: 

v 9 = 0  (13.17) 

To do this, we break up the gradient vector into three parts corresponding to 
the variables x, u, and I: 

a6p 

aa. VLfL = ~ = g(x, u, p) 

( 1 3.18) 

( 1 3.1 9)  

(1 3.20) 

Some discussion of the three gradient equations above is in order. First, Eq. 
13.18 consists of a vector of derivatives of the objective function with respect 
to the state variables, x. Since the objective function itself is not a function of 
the state variable except f o r  the reference bus, this becomes: 

L 

(13.21) 
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The [dg/ax] term in Eq. 13.18 actually is the Jacobian matrix for the Newton 
power flow, which was developed in Chapter 4. That is: 

[:I = 
(1 3.22) 

Note that this matrix must be transposed for use in Eq. 13.18. 
Equation 13.19 is the gradient of the Lagrange function with respect to the 

control variables. Here the vector af/du is a vector of derivatives of the objective 
function with respect to the control variables: 

(1 3.23) 

The other term in Eq. 13. 19, [ag/du], actually consists of a matrix of all zeros 
with some -1 terms on the diagonals, which correspond to equations in 
g(x, u, p) where a control variable is present. Finally, Eq. 13.20 consists simply 
of the power flow equations themselves. 

The solution of the gradient method of O P F  is as follows: 

1. Given a set of fixed parameters p, assume a starting set of control 

2. Solve a power flow. This guarantees that Eq. 13.20 is satisfied. 
3. Solve Eq. 13.19 for lambda; 

variables u. 

ax (1 3.24) 

4. Substitute 1, into Eq. 13.18 to get the gradient of 64 with respect to the 
control variables. 
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Bus 1 

I 

I 
Bus 2 

Bus 4 
I 

I 

Bus 3 

FIG. 13.1 Four-bus system for Example 13A. 

The gradient will give the direction of maximum increase in the cost function 
as a function of the adjustments in each of the u variables. Since we wish to 
decrease the objective function, we shall move in the direction of the negative 
of the gradient. The gradient method gives no indication how far along the 
negative gradient direction we should move. Assuming that a distance is picked 
that reduces the objective, one must start at step 2 above, and repeat steps 
2,3, and 4 over and over until the gradient itself becomes sufficiently close to the 
zero vector, indicating that all conditions for the optimum have been reached. 

EXAMPLE 13A 

The following is a very simple example presented to show the meaning of each 
of the elements in the gradient equations. Example 13B will be a more practical 
example of the gradient method. 

The four-bus system in Figure 13.1 will be modeled with a DC power flow. 
The following are known: 

P2, P3, and 8, = 0 

Line reactances: x12, xI4, x2,, xZ3, and x3, 

Cost functions: F,(Pl) and F4(P4) 
All J E (  values are fixed at 1.0 per unit volts 

The only independent control variable in this problem is the generator output 
Pl, or: 

u = PI ( 1  3.25) 
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The state variables are el, e2, and 03, or: 

x = [  r,] (1 3.26) 

We wish to minimize the total generation cost while maintaining a solved DC 
power flow for the network. To do this with the gradient method we form the 
Lagrangian: 

In terms of the equations presented earlier: 

Note that in g(x, u), the Pl is the control variable and P2 and P3 are fixed. 
We shall now expand g(x, u) as follows: [ pl(el . . . e,) - p1 ] =[ ~ ( e l - e Z ) + - ( e l - e 2 4 ) - p l  1 

g(x, u) = p2(el . . . e,) - p2 x14 

~ 3 ( 0 1  . . . 8,) - p3 
(1 3.30) 

The result is: 

and the Lagrange function becomes: 

(13.31) 
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We now proceed to develop the three gradient components: 

VLfA = g(x, u) = 0 (13.33) 

which simply says that we need to start by always maintaining the DC power 
flow: 

The next component: 

(1 3.34) 

(13.35) 

a ~ ,  ap4 
ap4 ae, 

aP4 ae, 

.ap4 ae, 

This can be used to solve the vector of Lagrange multipliers: 

r";l A 2  = ( -  

where 

(13.36) 

(1 3.37) 
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It can be easily demonstrated that: 

[ B ’ I T -  

so that 

Final1 y, 

(13.38) 

( 1  3.39) 

( 1  3.40) 

(13.41) 

the gradient with respect to the control variable is zero when the two 
incremental costs are equal, which is the common economic dispatch criterion 
(assuming neither generator is at a limit). Since the DC power flow represents 
a linear lossless system, the result simply confirms that the gradient method 
will produce a result that is the same as economic dispatch. 

EXAMPLE 13B 

In this example, we shall minimize the real power losses (MW losses) on the 
three-bus AC system in Figure 13.2. To work this example, the student must 
be able to run an AC power flow on the three-bus system. (This example is 
taken from reference 4.) 

Given the three-bus network shown in Figure 13.2, where 

and 
P3 + j Q 3  = 2.0 +jl.O per unit 

P2 = 1.7 per unit 
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Q+ '2 

Bus 1 Bus 2 
Reference 

B u s 3  t P , + j Q ,  

FIG. 13.2 Three-bus example for Example 13B. 

In this problem, the generation at bus 2 will be fixed, the only control variables 
will be the voltage magnitude at buses 1 and 2. That is 

( 1  3.42) 

The state variables will be the phase angles at buses 2 and 3 and the voltage 
at bus 3: 

The fixed parameters are 

P =  [:I 
Q 3  

( 1  3.43) 

( 1  3.44) 

We shall solve for the minimum losses using the gradient method. This requires 
that we solve, repeatedly, the following: 

(1 3.45) 
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Starting at an initial set of voltages: 

we proceed using 

(13.46) 

(1 3.47) 

(1 3.48) 

where the above represents the AC power flow equations as shown in Chapter 
4. When we take the derivative, 

ap, ap, 
ae, ae, 
ap, ap3 
a ~ ,  a~~ 

- -  

- -  (1 3.49) 

these derivatives are calculated as shown in Chapter 4, Eq. 4.22 and the above 
represents the Jacobian matrix that would be used in the Newton power flow 
solution to this network. Similarly: 

(1 3.50) 

[ " a 3  _ _ _ _  aQ3 J 
dlE,I 8lEzl 

One special note, the objective function, ~ o , s , s  can be expressed in two 
different ways. The first is simply to write out the losses as: 

(13.51) 
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or one can use the simple observation that since Pz and P3 are fixed, any change 
in the losses due to adjustments of V, and V2 will be directly reflected in changes 
in Pl. That is, AP,o,,,, = APl and 

We shall use the second form of the objective so that 

and then: 
f = P ,  

The solution to the first AC power flow, with 

(1 3.52) 

(1 3.53) 

(1 3.54) 

(1 3.55) 

gives per unit losses of 0.3906 (39.06 MW losses on 100-MVA base). The 
reference-bus power, P,, is 0.6906 per unit MW. Taking this solved power flow 
as the starting point, we have: 

r 8.14 8.14 1.541 

9 = 1 6.96 12.0 
ax 

3.85 1 
L -4.5 -7.85 10.0 J 

(1 3.56) 

(13.57) 
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Then, 
[;I' = [" 3.354 5.0 ] 

4.94 4.5 6.96 

(1 3.59) 

(1 3.60) 

(1 3.61) 

and, with o( = 0.03, we obtain a new set of voltages: 

[ %: ;I1 = [A::] - [ - 2'25 1.787 j . 0 3  = [ y:::] (1  3.62) 

This represents the new control variable settings that must be fed back to the 
AC power flow. 

0.2380 per unit and the generation at the reference bus of PI = 0.5380. 
Another iteration of the gradient calculation yields pl,,,,, = 0.2680 per unit for 
a controls setting of: 

The new AC power flow, with the above new voltages, results in pl,,,,, = 

(1 3.63) 

Note that for this simple problem, the gradient is able to find a reduction in 
losses after the first iteration, but the next iteration caused the losses to increase. 
Eventually, it will need tuning, in the form of additional adjustments to the 
value of a, so that it will not simply oscillate around a minimum. Further, we 
never specified any voltage limits for Vl and Vz. As we reduce losses, we may 
very well run into voltage limits on buses 1 or 2, or both. Here, the gradient 
method loses whatever simplicity it has and tends to become unmanageable. 
This would further be the case if we were to place a limit on V,, which would 
be a functional inequality and would be very difficult to express in the gradient 
formulation we have used. 

13.2.2 Newton's Method 

The problems with the gradient method lie mainly in the fact that the direction 
of the gradient must be changed quite often and this leads to a very slow 
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convergence. To speed up this convergence, we can use Newton’s method, where 
we take the derivative of the gradient with respect to x, u, and 1. Then, the 
optimal solution becomes: 

- V64, 

a 
- V Z X  
aU 

a 
- V Y U  
a U  

a 
- V 9 ,  
au 

a 
- V P x  
a A  

a 
- V S U  aA 
a 
an I 

- V 9 ,  

The form of Eq. 13.22 is essentially the same as that derived in Section 3.5 on 
Newton’s method. This matrix equation is a very formidable undertaking to 
compute and manipulate. It is extremely sparse and requires special sparsity 
logic. 

Handling inequality constraints is very difficult in either gradient or Newton 
approaches. The usual method is to form a constraint “penalty” function as 
follows. Suppose the voltage at a bus must meet limits: 

IEilmin I IEiJ I lEilmax (13.65) 

It is possible to enforce this constraint by inventing the following exterior 
penalty functions: 

for 1 ~ ~ 1  < I E , ~  min 

for 1 ~ ~ 1  > l ~ ~ l ~ ~ ~  
for E within limits (1 3.66) 4IEiI) = 

This penalty function is shown in Figure 13.3. 

FIG. 13.3 Exterior penalty functions for voltage magnitude violations. 
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To solve the O P F  with the voltage inequality constraint, we add the penalty 
function to the objective function, f. The resulting function will be large if the 
voltage is outside its limit, and thus the O P F  will try to force it within its limits 
as it minimizes the objective. 

Since Newton’s method has the second derivative information built into it, 
it does not have great difficulty in converging and it can handle the inequality 
constraints as well. The difficulty with Newton’s method arises in the fact that 
near the limit the penalty is small, so that the optimal solution will tend to 
allow the variable, a voltage in the example above, to float over its limit. The 
seemingly simple tuning procedure of raising the value of K may eventually 
cause the matrices to become ill-conditioned and the method fails. When there 
are few limits to be concerned with and the objective function is “shallow,” 
that is, the variability off with adjustments in the control variables is very low, 
Newton’s method is the best method to use. 

References 5-7 give examples of the development of Newton’s method to 
solve the full AC OPF. 

13.3 LINEAR SENSITIVITY ANALYSIS 

Before continuing with the discussion of the linear programming and interior 
OPF  methods, we shall develop the concept of linear sensitivity analysis. Linear 
sensitivity coefficients give an indication of the change in one system quantity 
(e.g., MW flow, MVA flow, bus voltage, etc.) as another quantity is varied (e.g., 
generator MW output, transformer tap position, etc.) These linear relation- 
ships are essential for the application of linear programming. Note that as the 
adjustable variable is changed, we assume that the power system reacts so as 
to keep all of the power flow equations solved. As such, linear sensitivity 
coefficients can be expressed as partial derivatives for example: 

8MVA flowij 
BMWgen, 

shows the sensitivity of the flow (MVA) on line (i to j )  with respect to the power 
generated at bus k. 

Some sensitivity coefficients may change rapidly as the adjustment is made 
and the power flow conditions are updated. This is because some system 
quantities vary in a nonlinear relationship with the adjustment and resolution 
of the power flow equations. This is especially true for quantities that have to 
do with voltage and MVAR flows. Sensitivities such as the variation of MW 
flow with respect to a change in generator MW output are rather linear across 
a wide range of adjustments and lead to the usefulness of the DC power flow 
equations and the “a”  and “ d ”  factors introduced in Chapter 11. 

For this reason, the value represented by a sensitivty coefficient is only good 
for small adjustments and the sensitivities must be recalculated often. 
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13.3.1 

The following procedure is used to linearize the AC transmission system model 
for a power system. To start, we shall define two general equations giving the 
power injection at a bus. That is, the net power flowing into a transmission 
system from the bus. This function represents the power flowing into trans- 
mission lines and shunts at the bus: 

Sensitivity Coefficients of an AC Network Model 

where 

Ei = IEiJLBi 

tij = the transformer tap in branch i j  

yij = the branch admittance 

Yshunc, = the sum of the branch and bus shunt admittances at bus i 

Then, at each bus: 

(1 3.68) 

The set of equations that represents the first-order approximation of the AC 
network around the initial point is the same as generally used in the Newton 
power flow algorithm. That is: 

This can be placed in matrix form for easier manipulation: 
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This equation will be placed into a more compact format that uses the vectors 
x and u, where x is the state vector of voltages and phase angles, and u is the 
vector of control variables. The control variables are the generator MW, 
transformer taps, and generator voltage magnitudes (or generator MVAR). 
Note that at any given generator bus we can control a voltage magnitude only 
within the limits of the unit VAR capacity. Therefore, there are times when the 
role of the state and control are reversed. Note that other controls can easily 
be added to this formulation. The compact form of Eq. 12.30 then is written: 

Now, we will assume that there are several transmission system dependent 
variables, h, that represent, for example, MVA flows, load bus voltages, line 
amperes, etc., and we wish to find their sensitivity with respect to changes in 
the control variables. Each of these quantities can be expressed as a function 
of the state and control variables; that is, for example: 

(1 3.72) 

where I E,1 represents only load bus voltage magnitude. 

operating point 
As before, we can write a linear version of these variables around the 

where 
h ,  = the line nm MVA flow 

h ,  = the bus k voltage magnitude 

Again, we can put this into a compact format using the vectors x and u as before: 

Ah = [Jh,]Ax + [Jhu]AU (13.74) 

We will now eliminate the Ax variables; that is: 

AX = [Jp,]-'[Jpu]A~ (1 3.75) 

(13.76) 
Then, substituting: 

Ah = [Jhxl[Jpxl-'[JpulAu + CJhulAu 
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This last equation gives the linear sensitivity coefficients between the trans- 
mission system quantities, h, and the control variables, u. 

13.4 LINEAR PROGRAMMING METHODS 

The gradient and Newton methods of solving an O P F  suffer from the difficulty 
in handling inequality constraints. Linear programming, however, is very adept 
at handling inequality constraints, as long as the problem to be solved is such 
that it can be linearized without loss of accuracy. 

Figure 13.4 shows the type of strategy used to create an O P F  using linear 
programming. The power flow equations could be for the DC representation, 
the decoupled set of AC equations, or the full AC power flow equations. The 
choice will affect the difficulty of obtaining the linearized sensitivity coefficients 
and the convergence test used. 

In the formulation below, we show how the OPF can be structured as an 
LP. First, we tackle the problem of expressing the nonlinear input-output or 
cost functions as a set of linear functions. This is similar to the treatment in 
Section 7.9 for hydro-units. Let the cost function be Fi(pi) as shown in Figure 
13.5. 

We can approximate this nonlinear function as a series of straight-line 
segments as shown in Figure 13.6. The three segments shown will be represented 
as pil, Piz, p i 3 ,  and each segment will have a slope designated: 

then the cost function itself is 

&(p , )  = &(P?’”) + Si lp i1  + size2 + si3pi3 (1 3.77) 

(13.78) 

pi = PFi” + + PiZ + pi3  (1 3.79) 

and 

and finally 
0 I Pik I P i  for k = 1, 2, 3 

The cost function is now made up of a linear expression in the pik values. 
In the formulation of the OPF using linear programming, we only have the 

control variables in the problem. We do not attempt to place the state variables 
into the LP, nor all the power flow equations. Rather, constraints are set up 
in the LP that reflect the influence of changes in the control variables only. In 
the examples we present here, the control variables will be limited to generator 
real power, generator voltage magnitude, and transformer taps. The control 
variables will be designated as the u variables (see earlier in this chapter). 

The next constraint to consider in an LPOPF are the constraints that 
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FIG. 13.4 Strategy for solution of the LPOPF. 

represent the power balance between real and reactive power generated, and 
that consumed in the loads and losses. The real power balance equation is: 

P,," - h a d  - so,, = 0 (1 3.80) 

The loss term here represents the 12R losses in the transmission lines and 
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Pi 

FIG. 13.5 A nonlinear cost function characteristic. 

pmin Pi 
L 

FIG. 13.6 A linearized cost function. 

transformers. We can take derivatives with respect to the control variables, u, 
and this results in: 

If we make the following substitution: 

AU = u - u0 (13.82) 

then, the power balance equation becomes 

7 (2)~ - (%)u - (2). = K ,  
(1 3.83) 
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where 

(13.84) 

A similar equation can be written for the reactive power balance: 

where the loss term is understood to include 12X as well as the charging from 
line capacitors and shunt reactors. A substitution using Au = u - uo, as above, 
can also be done here. 

The LP formulation, so far, would need to restrict control variables to move 
only within their respective limits, but it does not yet constrain the O P F  to 
optimize cost within the limits of transmission flows and load bus voltages. To 
add the latter type constraints, we must add a new constraint to the LP. For 
example, say we wish to constrain the MVA flow on line nm to fall within an 
upper limit: 

MVA flow,,,,, I MVA flow,","" (13.86) 

We model this constraint by forming a Taylor's series expansion of this flow 
and only retaining the linear terms: 

MVA ~Iow,,, = MVA + c au 
MVA flo~,,,,, AU I MVA flow::" 

(1 3.87) 
Again, we can substitute Au = u - uo so we get: 

(g MVA flow,,, u s MVA flow,","" - Kf 1 
where 

a 
,, a U  

K ,  = MVA + C - MVA ~~ow, , , , , u~  

(1 3.88) 

(13.89) 

Other constraints such as voltage magnitude limits, branch MW limits, etc., 
can be added in a similar manner. We add as many constraints as necessary 
to constrain the power system to remain within its prescribed limits. Note, of 
course, that the derivatives of &, and MVA flow,,,, are obtained from the linear 
sensitivity coefficient calculations presented in the previous section. 
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13.4.1 Linear Programming Method with Only Real Power Variables 

As an introduction to the LPOPF, we will set up and solve a power system 
example which only has generator real powers as control variables. Further, 
the model for the power system power balance constraint will assume that load 
is constant and that the losses are constant. Finally, since the entire model used 
in the LP is based on a MW-only formulation, we shall use the “a” and “d ”  
factors derived in Chapter 11 to model the effect of changes in controls on the 
constraints. As indicated in Figure 13.4, we shall solve the LP and then make 
the adjustments to the control variables and solve a power flow in each main 
iteration. This guarantees that the total generation equals load plus losses, and 
that the MW flows are updated properly. The cost functions can be treated as 
before using multiple segmented “piecewise linear” approximations. 

The “power balance” equation for this case is as follows: 

PI + Pz + . . . + Pref = + F‘,,,,,, = constant (1 3.90) 

To constrain the power system, we need the expansion of the constraints, such 
as MW flows, bus voltages, etc., as linear functions of the control variables. In 
this case, the linear control variables will be represented as a vector u: 

u =  [ i] 
Pref 

(1 3.91) 

This is done with the linear sensitivity approach, as derived in the previous 
section. The result is a set of constraints: 

h(u) I h’ (13.92) 

which is written as 

(13.93) 
ah h(u) = h(u0) + - (U - uO) I h+ 
l3U 

However, we shall observe that the derivatives ah/& can be replaced with the 
“a”  sensitivity coefficients developed in Chapter 11. 

Thus, for a MW flow constraint on line rs we have: 

MW,, = MW,O, + ars-,,(u - uo) I MW:aX (1 3.94) 
U 

or 

MW,, = C a r s - , , u  I M W F X  - ) (13.95) 
U 
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TABLE 13.1 Line Flows: Power Flow 0 

Line 

1-2 
1-4 
1-5 
2-3 
2-4 
2-5 
2-6 
3-5 
3-6 
4-5 
5-6 

Limit 

30 
50 
40 
20 
40 
20 
30 
20 
60 
20 
20 

MW Flow 

28.69 
43.58 
35.60 
2.93 

3 3.09 
15.51 
26.25 
19.12 
43.17 
4.08 
1.61 

Similar constraints are added for any power system network quantity that is 
to held within its limit. 

EXAMPLE 13C 

We shall use the LPOPF reduced model method to solve an OPF problem. 
An LP and an AC power flow will be used to solve a series of dispatch problems. 
The transmission system will be the six bus system introduced in Chapter 4, 
the MW limits on the transmission lines will be those introduced in Example 
11B and shown in Table 13.1. The generator cost functions are those found in 
Example 4E and linearized as shown below. 

We shall solve a series of LP-AC power flow calculations as follows. 

Step 0 

Run a base AC power flow (this will be the AC power flow shown in Figure 
4.8 and it will be designated as POWER Flow 0 in numbering the various 
power flow calculations in this example). Looking at Figure 4.8 and the limit 
set we are using from Example 11B, also shown below, we note that there are 
no overloads. 

The generation values for this power flow are: 

PI = 107.87 MW, P2 = 50 MW, and P3 = 69 MW power jow  0: result 

The total cost for this initial dispatch is 3189.4 P/h. 

Step 1 

We now set up the LP to solve for the optimum cost with only the power 
balance equation in the LP  constraint set. By the nature of the cost curve 
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TABLE 13.2 Generator Unit Break Point MWs 
_ _ _ _ _ ~  

Break Point Break Point 
1 Break Point Break Point 4 

Unit (unit min) 2 3 (unit max) 

1 50 
2 37.5 
3 45 

100 
70 
90 

160 
130 
140 

200 
150 
180 

TABLE 13.3 Generator Cost Curve Segment Slope 

Generator Si 1 Si2 Si 3 

1 
2 
3 

12.4685 13.0548 13.5875 
11.2887 12.1 110 12.8222 
11.8333 12.5373 13.2042 

segments, we also incorporate the limits on the generators. The generator cost 
functions are as follows: 

Generator on bus 1: 
with limits of: 

Generator on bus 2: 
with limits of: 

Generator on bus 3: 
with limits of: 

Fl(P,) = 213.1 + 11.669P1 + 0.00533P: Jt/h 
50.0 MW I PI I 200.0 MW 

F2(P2)  = 200.0 + 10.333P2 + 0.00889Pi Jth 
37.5 MW I P2 I 150.0 MW 

F3(P3) = 240.0 + 10.833P3 + 0.00741P: Jt/h 
45.0 MW I P3 I 180.0 MW 

The LP will be run with the unit cost functions broken into three straight-line 
segments such that the break points are located as shown in Table 13.2. The 
generator cost function segment slopes are computed as follows: 

F i ( P $ )  - F,(P,,.) 
si /  = (1 3.96) 

where P $  and PG are the values of pi at the end of the j i h  cost curve segment. 
The values are shown in Table 13.3. The segment limits are shown in Table 13.4. 

The LP cost function is: 

[F,(Pyin) + 12.4685P1, + 13.O548Pl2 + 13.5878P13] 
+ [F,(PTin) + 11.2887P2, + 12.1110P2, + 12.8222P2,] (13.97) 

+ [F3(Pyin) + 1 1.8333P3, + 12.5373p3, + 13.2042P3,] 
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TABLE 13.4 Segment Limits 

Segment Min MW Max MW 

Pl 1 

p12 PI 3 

p2 1 

p2 2 

p3 1 

p3 3 

p2 3 

p3 2 

50 
60 
40 
32.5 
60 
20 
45 
50 
40 

Since the &(PT'") terms are constant, we can drop them in the LP. Then, the 
cost function becomes: 

12.4685PI1 + 13.O548Pl2 + 13.5878PI3 + 11.2887PZ1 

+ 12.1110P22 + 12.8222P2, + 11.8333P3, 

+ 12.5373p3, + 13.2O42p3, 

(13.98) 

The generation, load, and losses equality constraint is 

pl + p2 + p3 = e o a d  + e o s s e s  (13.99) 

The load is 210 MW and the losses from the initial power flow are 7.87 MW. 
Substituting the equivalent expression for each generator's output in terms of 
its three linear segments, we obtain: 

This results in the following after the Pfi", eoad, and floss values are sub- 
stituted: 

pll + p12 + p13 + p21 + p23 + p33 + p31 + p32 + p33 

= 210 + 7.87 - 50 - 37.5 - 45 = 85.37 (1 3.101) 

We now solve the LP with the cost function and equality constraint given 
above, and with the six variables representing the generator outputs. The 
solution to this LP is shown in Table 13.5. 
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TABLE 13.5 First LP Solution 
~ 

Variable Min MW Solution MW Max MW 

Pl 1 0 0.0 50 
p 1 2  0 0.0 60 
PI 3 0 0.0 40 
p 2  1 0 32.5 32.5 
p 2  2 0 7.87 60 
p2 3 0 0.0 20 
p3 1 0 45.0 45 
p3 2 0 0.0 50 
p 3  3 0 0.0 40 

The total generation on each generator is: 

p, = P y  + p,, + pi2 + p i 3  ( 1 3.102) 

then the generator optimal outputs are 

PI = 50 MW, P2 = 77.87 MW, and P3 = 90 MW L P  1: result 

Note that this solution of necessity will have only one of the variables not at 
a break point while the others will be at a break point. Note also that the output 
on bus 1 is at its low limit. When we substitute these values for the generation 
at buses 1, 2, and 3, and run the power flow, we get the following: 

PI = 48.83 MW, Pz = 77.87 MW, and P3 = 90 MW powerflow 1: result 

The total cost for this dispatch is 3129.1 P/h. This illustrates the fact that the 
LP  uses a linear model of the power system and when we put its results into 
a nonlinear model, such as the power flow, there are bound to be differences. 
Since the losses have changed (to 6.70 MW), the power output of the reference 
bus must decrease to balance the power flow. However, the solution to the 
optimal LPOPF has the reference-bus power output below its minimum of 
50 MW. To correct this condition we set up another LP  solution with the same 
cost function but with a slightly different equality constraint that reflects the 
new value of losses. The result of this LP is: 

PI = 50 MW, P2 = 76.7 MW, and P3 = 90 MW L P  1.1: result 

Once again, we enter these results into the power flow and obtain: 

Pl = 49.99 MW, Pz = 76.7 MW and P3 = 90 MW powerflow 1.1 resuli 
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TABLE 13.6 Line Flows: Power Flow 1.1 

Line Limit MW Flow 

1-2 30 
1-4 50 
1-5 40 
2-3 20 
2-4 40 
2-5 20 
2-6 30 
3-5 20 
3-6 60 
4-5 20 
5-6 20 

a Overloaded line. 

4.28 
25.60 
20.1 1 
- 6.42 
48.75" 
17.75 
20.88 
28.91" 
54.63 

1.84 
3.87 

The total cost for this dispatch is 3129.6 P/h and the losses are 6.7 MW. 
This represents the least cost dispatch that we shall obtain in this example. 
As constraints are added later to meet the flow limits, the cost will 
increase. 

Note also that we have two overloads on the optimum cost dispatch as 
shown in Table 13.6. 

Step 2 

The LP and power flow executions in step 1 resulted in a less-costly dispatch 
than the original power flow, but in doing so we have overloaded two 
transmission lines. We shall refer to these overloads as ( n  - 0) overloads. This 
notation means that there are n lines minus zero outages in the network at the 
time of the overload. [Later we shall use the notation (n - 1) to indicate that 
there are n lines minus one line (that is, a single-line outage) in the network at 
the time of the overloads. This notation can be used for further levels of 
overload such as ( n  - 2), ( n  - 3), etc. However, many electric utility trans- 
mission operations departments only go as far as (n - 1) in dispatching their 
systems.] 

We must redispatch the power system at this point to remove the ( n  - 0) 
overloads. To do this, we add two constraints to the LP, one for each overloaded 
line. The power flow constraint on line 2-4 is modeled as: 

Substituting 48.75 for f$-4, 76.7 for P:, and 90 for P:, we get the following for 
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the constraint for line 2-4 (note that ~ 2 - 4 ,  = 0) and, finally, we expand P2 and 
P3 in terms of the segments: 

48.75 + 0.31(37.5 + P21 + P 2 2  + P23 - 76.7) 

+ 0.22(45 + P31 + P32 + P33 - 90) I 40 (1 3.104) 

or 
O.31p2, + 0.31p22 + o.31Pz3 + 0.22P3, + 0.22P3, + O.22p3, I 13.302 

(1 3.105) 

The constraint for line 3-5 is built similarly and results in: 

0.06P2, + 0.06P2, + 0.06P2, + o.29P3, + O.29p3, + 0.29P3, 5 6.492 
( 1 3.106) 

The solution to the LP  gives: 

PI = 87.02 MW, P2 = 70.0 MW and P3 = 59.66 MW L P  2: resuli 

Also note that only the first transmission line constraint is binding in the LP, 
the remaining constraint is “slack,” that is, it is not being forced up against its 
limit. When these values are put into the power flow we obtain: 

Pl = 87.54 MW, P2 = 70.0 MW and P3 = 59.66 MW powerJEow 2: result 

The flows on the two constrained lines are: 

f2-4 = 39.40 MW and f3-5 = 20.36 MW 

The total operating cost has now increased to 3155.0 v/h. 
We now run another complete LP-power flow iteration to account for 

changes in losses and to bring the constraints closer to their limits. The solution 
to the second-iteration LP  gives: 

Pl = 86.16 MW, P2 = 73.3 MW and 

Both transmission line constraints are binding in the second LP. When these 
values are put into the power flow we obtain: 

P3 = 57.73 MW LP 2.1: result 

Pl = 86.16 MW, P2 = 73.3 MW and P3 = 57.73 MWpowerJEow 2.1: result 

The flows on the two constrained lines are: 

f2-4 = 39.99 MW and f3-5 = 20.06 MW 

The total operating cost has now decreased slightly to 3153.3 P/h. There are no 
more (n - 0) line overloads. 
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TABLE 13.7 Line Flows: Power Flow 2.1 (with Line 2-3 
Out) 

Line Limit MW Flow 

1-2 
1-4 
1-5 
2-3 
2-4 
2-5 
2-6 
3-5 
3-6 
4-5 
5-6 

30 
50 
40 
20 
40 
20 
30 
20 
60 
20 
20 

18.1 
36.37 
31.74 

40.73" 
19.19 
31.11" 
18.26 
39.47 
4.59 
1.17 

- 

a Overloaded line. 

Step 3 

We have now achieved an optimal dispatch with all (n - 0) overloads met. This 
dispatch will satisfy generation and all line flow limits; however, if we have a 
transmission line outage contingency, we may have overloads. By modeling the 
first contingency overloads, or the so-called (n - 1) overloads, we can guarantee 
that should the contingency outage take place, there would be no resulting 
overloads. This is the scheme involved in security-constrained OPF, or SCOPF, 
and is the subject of Section 13.5. 

In this example, to make matters simple we shall only study the result of 
one contingency outage. In our sample system, we shall start from the result 
of power flow 2.1 and take out line 2-3. The flows that result from this 
contingency power flow are shown in Table 13.7. 

We now must form a new LP that has the generation, load, losses equality 
constraint and the original two (n - 0) line flow constraints done in step 2, and 
two new constraints for each of the (n - 1) overloads (i.e., on line 2-4 and line 
2-6). To model line 2-4 with line 2-3 removed, we use the following constraint, 
as derived in Appendix 11A of Chapter 11. 

(13.107) 

The new LP has five constraints. The first result of this LP gives: 

P, = 91.39 MW, Pz = 66.96 MW, and P3 = 58.84 MW LP 3: result 
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The ( n  = 0) constraint on line 3-5 is binding and the (n  - 1) constraint on line 
2-6 is binding. When these values are put into the power flow, we obtain (note 
that this power flow has all lines in): 

PI = 91.52 MW, Pz = 66.96 MW, and P3 = 58.8 MW powerflow 3: result 

The flows on the two ( n  - 0) constrained lines are: 

f2-4 = 38.23 MW and f3-s = 19.94 MW 

A second power flow with line 2-3 out is also run with the same generation 
values. The results of this power flow show that the two ( n  - 1) flow constraints 
are: 

fcont ingency = 38 86 MW and fcont ingency 2-6 = 30.00 MW 2 - 4  

The total operating cost has now increased to 3160.5 P/h. A complete second 
iteration of the LP and power flows is run and results in the following power 
flows: 

PI = 90.53 MW, P2 = 67.92 MW, and P3 = 58.84 MWpowerflow 3.1: result 

The flows on the two (n  - 0) constrained lines are: 

f2-4 = 38.54 MW and f3-s = 20.00 MW 

A second power flow with line 2-3 out is also run with the same generation 
values. The results of this power flow show that the two ( n  - 1) flow constraints 
are: 

30.09 MW f contingency = 39.18 MW and f contingency = 
2-4 2-6 

The total operating cost has now increased to 3159.1 $/h. 

13.4.2 Linear Programming with AC Power Flow Variables and Detailed Cost 
Functions 

O P F  programs that optimize the AC power flow of a power system go beyond 
the LPOPF introduced in the last section, in several respects. 

First, they do not usually use fixed break points. Rather, the break points are 
added as needed as the solution progresses and can become close enough so that 
no error is perceptible between the piecewise linear approximation and the true 
nonlinear input-output curve of the generators. “Second, the AC quantities of 
voltage magnitude and perhaps phase angle become variables in the LP  and 
the constraints are set up as linear functions using the sensitivity coefficients 
methods shown in Section 13.3. Usually, however, the nonlinear representations 



SECURITY-CONSTRAINED OPTIMAL POWER FLOW 547 

of the bus power and reactive power injections and the line or transformer 
MVA flows are not well represented as linear functions. To cope with the 
nonlinear nature of these constraints involves restricting the movement of each 
variable and then relinearlizing the equality and inequality constraints quite 
often. The result is an LP  that “converges” on the optimal AC power flow, 
meeting all the power flow equality constraints and inequality constraints. 

Reference 9 is an example of such an O P F  code built around an LP. 

13.5 SECURITY-CONSTRAINED OPTIMAL POWER FLOW 

In Chapter 11, we introduced the concept of security analysis and the idea that 
a power system could be constrained to operate in a secure manner. Programs 
which can make control adjustments to the base or pre-contingency operation 
to prevent violations in the post-contingency conditions are called “security- 
constrained optimal power flows,” or SCOPF. 

We have seen previously that an OPF is distinguished from an economic 
dispatch by the fact that it constantly updates a power flow of the transmission 
system as it  progresses toward the minimum of the objective function. One 
advantage of having the power flow updated is the fact that constraints can be 
added to the O P F  that reflect the limits which must be respected in the 
transmission system. Thus, the O P F  allows us to reach an optimum with limits 
on network components recognized. 

An extension to this procedure is to add constraints that model the limits 
on components during contingency conditions. That is, these new “security 
constraints” or “contingency constraints” allow the O P F  to meet precon- 
tingency limits as well as post-contingency limits. There is a price to pay, 
however, and that is the fact as we iterate the OPF with an AC power flow, 
we must also run power flows for all the contingency cases being observed. This 
is illustrated in Figure 13.7. 

The SCOPF shown in Figure 13.7 starts by solving an OPF with (n - 0) 
constraints only. Only when it  has solved for the optimal, constrained 
conditions is the contingency analysis executed. In Figure 13.7, the contingency 
analysis starts by screening the power system and identifying the potential 
worst-contingency cases. As was pointed out in Chapter 11, not all of these 
cases are going to result in a post-contingency violation and it is important to 
limit the number of full power flows that are executed. This is especially 
important in the SCOPF, where each contingency power flow may result in 
new contingency constraints being added to the OPF. We assume here that 
only the M worst cases screened by the screening algorithm are added. It is 
possible to make M = 1, in which case only the worst potential contingency is 
added. 

Next, all the (n - 1) contingency cases that are under consideration must be 
solved by running a power flow with that contingency reflected in alterations 
to the power flow model. When the power flow results in a security violation, 
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FIG. 13.7 Security-constrained optimal power flow. 

the power system model is used to create a contingency constraint. In fact, what 
is done is to run a network sensitivity calculation (See Section 13.3) on the 
model with the contingency outage and save the resulting constraint sensitivities. 
When all contingency power flows are complete, all the contingency constraints 
are added to the O P F  model and it is solved. 

Note, in Figure 13.7, there are two main loops to be executed. The loop 
labeled “ O P F  Iteration” requires the O P F  and each of the contingency power 
flows to be re-executed until the OPF has solved with all contingency 
constraints met. Next, the outer loop labeled “Contingency Screening Iteration” 
is tried. If the contingency screening algorithm does not pick up any new 
contingencies the SCOPF can end; if new contingencies are found, it must add 
them to the list and continue. 
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Why is all this necessary? The optimum operation conditions for a power 
system will often result in violation of system security. This is especially 
true when a large amount of interchange power is available at a favorable price. 
In this instance, the selling power system can be modeled in the OPF with its 
price of production set accordingly, and the OPF will then raise the interchange 
up to the point where transmission system components are limiting. Now, when 
the contingency analysis is run, there may be many cases which result in 
contingency violations and the OPF, with contingency constraints added, will 
have to back off the interchange power in order to meet the contingency limits. 

It should also be noted that when some contingency constraints are added 
to the OPF, it will redispatch generation, and adjust voltages and transformers 
to meet these constraints. The process of adjustments may result in many new 
contingency violations when the screening algorithm and the power flows are 
run. The need to iterate between the OPF and the contingency screening 
represents an effort to find the “most constraining” contingencies. 

SCOPF was introduced as step 3 in Example 13C and will also be illustrated 
in Example 13D, which follows. 

EXAMPLE 13D 

This example shows the results of running the same six-bus case used in 
Example 13C, with the same generator cost functions. However, we now are 
using a full AC O P F  so that we will use line MVA limits and bus voltage limits 
as well. The MVA limits are shown in Table 13.8. The bus voltages are also 
limited, with bus 5 being the only one to hit its upper limit of 1.Opu voltage 
magnitude. 

The full AC O P F  has six control variables: three generator outputs and three 
generator voltage magnitude schedules. In addition, the AC OPF can be used 
to minimize either MW losses, or  to minimize operating cost. Table 13.9 
summarizes these results. 

TABLE 13.8 Line MVA Flows: Power Flow 0 

Line MVA Limit MVA Flow 

1-2 
1-4 
1-5 
2-3 
2-4 
2-5 
2-6 
3-5 
3-6 
4-5 
5-6 

40 
60 
40 
40 
60 
30 
90 
70 
80 
20 
40 

32.57 
48 
37.34 
12.61 
56.71 
21.83 
29.03 
30.04 
74.86 

6.41 
9.80 



VI 
3 TABLE 13.9 Full AC OPF Results 

Case 

Base case 

Min cost, adjust 
generator MW only 

Min losses, adjust 
generator voltage only 

Min cost with 
generator MW 
adjustment, then min 
losses with adjustment 
of gen voltages 

Min cost with both 
generator MW and 
voltage adjustment 

Min cost, adjust 
generator MW with 
line 3-6 out 

107.9 

86.9 

107.1 

86.3 

52.0 

70.0 

50.0 

59.3 

50.0 

59.3 

87.5 

91.8 

60.0 1.05 

71.0 1.05 

60.0 1.05 

71.0 1.05 

77.0 1.05 

62.0 1.05 

1.0499 

1.05 

1.0429 

1.0429 

1.0429 

1.031 

1.0429 7.87 3189.4 

1.0458 7.14 3157.9 

1.0499 7.1 3179.5 

1.0499 6.54 3150.3 

Generators 2 and 3 at 
max VAR limit 

Line 2-4 MVA limit, 
generator 3 at max 
VAR limit 

Bus 5 max voltage, 
line 1-5 MVA limit, 
generator 3 at max 
VAR limit 

Bus 5 max voltage, 
generator 3 at max 
VAR limit 

1.0499 6.41 3124.6 

1.07 15.05 3219.7 

Bus 5 max voltage, 
line 2-4 MVA limit, 
generator 3 at max 
VAR limit 

Before, OPF line 1-5 
has 12% MVA 
overload; after, line 
2-4 at MVA limit, 
generator a t  max 
VAR limit 
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Note the variety of ways that a power system can be optimized using an 
OPF. For example, some power system operators may wish to simply reduce 
system losses through the adjustment of generator voltage schedules-this is 
often done with hydrosystems where the generator MW outputs must be kept 
on a fixed time schedule to meet hydro-requirements. 

13.6 INTERIOR POINT ALGORITHM 

In 1984, Karmarkar (refeence 10) presented a new solution algorithm for linear 
programming problems that did not solve for the optimal solution by following 
a series of points that were on the “constraint boundary” but, rather, followed 
a path through the interior of the constraints directly toward the optimal 
solution on the constraint boundary. This solution was much faster than 
conventional LP algorithms. 

In 1986, Gill et al. (reference 11) showed the relationship between 
Karmarkar’s algorithm and the so-called “logarithmic barrier function 
algorithm.” This algorithm has become the basis for many OPF solution 
algorithms and is explained in reference 12. 

In this derivation, no distinction is made between the control variables and 
the state variables; rather, all variables are considered in the x vector. The 
objective function will be f(x). The constraints will be brokem into equality 
constraints and inequality constraints. The equality constraints are g(x) = 0 
and the inequality constraints are 

h -  I h(x) I h +  (1 3.109) 

where the h -  and h C  vectors are the lower and upper limits on the inequality 
constraints, respectively. Finally, we restrict the variables themselves to be 
within lower and upper bounds 

x- I x I x’ ( 1 3.1 10) 

The first step in transforming this problem is to add slack variables so that all 
the equations become equality constraints. We then obtain the following set of 
equations: 

min f(x) 

(13.1 11) 
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Note that we now have a set of equations with all equality constraints except 
the final consisting of nonnegativity conditions on x - x-  and the slack 
variables. These nonnegativity conditions are handled by adding what is called 
a “logarithmic barrier function” to the objective. Basically, this is a form of 
penalty function which becomes very large as the function or variable gets close 
to zero. The new objective function then looks like: 

The parameter, p ,  is called the “barrier parameter” and is a positive number 
that is forced to go to zero as the algorithm converges to the optimum. This 
then presents us with the Lagrange equation: 

The solution to this Lagrangian equation is obtained by setting its gradient to 
zero: 

(1 3.1 14) 

These nonlinear equations are then solved iteratively by Newton’s method, and 
the value of p is adjusted toward zero. 

The solution produces the values of the dual variables, some of which are 
the marginal costs for the real and reactive power at the buses. These bus 
incremental costs, BICs are the subject of the next section. Note that in Chapter 
10, the BICs were calculated using an interior point OPF. 
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13.7 BUS INCREMENTAL COSTS 

If we take the classical Lagrange equation for an optimal power flow: 

q x ,  u, P) = f(x, u) + w x ,  u, P) ( 1 3.1 1 5 )  

and we asume that we have an optimal solution to this equation, then we can 
ask an interesting question: “What is the change in the optimal operating cost 
if we change one of the parameters p?” More specifically: ‘What is the change 
in optimal operating cost if we change the power produced or consumed at a 
bus in the network?” Thus, what we want is the following derivative: 

The derivative of 2’ 
appear in the second 
for bus i is: 

(1 3.1 16) 

with respect to Pi is simple, since the parameters only 
part of the Lagrange equation. The resulting derivative 

-- - /zi a 9  
ap, (13.117) 

We see that the interpretation of the vector of Lagrange multipliers is 
that they indicate the increment in optimal cost with respect to small changes 
in the parameters of the network. In the case of small change in power, either 
consumed or produced at a bus, the Lagrange multiplier for that bus then 
indicates the incremental cost that will be incurred as a result of this change. 
This cost has been given the name “bus incremental cost” or BIC and is the 
same incremental cost we dealt with in the beginning of the text, where we 
derived the incremental cost of delivery of power from a generator. A power 
system is in economic dispatch when the BIC for each generator matches the 
generator’s own incremental cost for the power it is producing. 

The BIC is a useful concept for nondispatched generator buses and for 
evaluating the marginal cost of wheeling. In some proposed schemes, this bus 
incremental cost is used to establish the spot market price for energy. 

One point is worth noting before we leave this topic. The above discussion 
assumed that one has the vector of Lagrange multipliers for an optimal solution. 
However, depending on the method used to solve the OPF, this may not be 
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the case. Certainly, in the case of the O P F  that is based on linear programming, 
the 1. values are not available unless a special formulation is used-yet we need 
the BICs for the buses. 

The Lagrange equation at the optimal solution can be used to solve for the 
Lambda vector, even through it was not used in the O P F  alogorithm. This is 
because, at the optimal solution to the OPF, the Lagrange equation is assumed 
to satisfy, 

v 9 = 0  ( 1 3.1 1 8) 

or, for the state variable, x, we have: 

which can be used to solve for 1 as follows: 

af 
[ 3 ' I =  -ax 

The problem here is that the matrix 

(1 3.1 19) 

( 1 3.1 20) 

(1 3.121) 

has N rows where N equals the number of state variables, and M columns 
corresponding to M binding constraints. We shall assume that N I M .  The 
vector 

af 
- 

ax 

has N elements and the lambda vector, I ,  has M elements. Thus, the equation 
which can be used to solve for the lambda vector is overdetermined; that is, 
there are more elements in the lambda vector than rows in the matrix or the 
right-hand side. This type of equation has many solutions for the lambda vector. 
The correct one is found by applying a least-squares technique, as explained 
in Chapter 12 on state estimation. Further, the usual method of solving for the 
lambda vector is to apply the Q R  algorithm (also explained in Chapter 12). 
Thus, we can use any method to solve for the optimal state vector for an O P F  
and then develop the matrix and right-hand side shown above and solve for 
the BIC vector. 

EXAMPLE 13E 

This example gives the bus incremental costs for the same six-bus sample used 
in Examples 13C and 13D. For the case where both generation MW and 
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TABLE 13.10 Bus Incremental Costs 

12.22 
11.89 
11.97 
12.98 
12.59 
12.29 

0 
0 
0.1 
0.8 1 
0.5 1 
0.38 

scheduled voltages are adjusted to obtain minimum cost, the bus incremental 
costs are given in Table 13.10. 

There is a cost for increasing the M W  delivered, as well as the MVAR 
delivered from or to any bus in the network. In Table 13.10, the bus incremental 
costs for delivering MW at buses 1 ,  2, and 3 are equal to the incremental costs 
of the generator cost functions at the optimal dispatch. The bus incremental 
cost to deliver MVAR at buses 1 and 2 is zero since these generators are not 
at their maximum VAR limit and can generate incremental MVAR for “free.” 
The incremental cost to deliver more MVARs at bus 3 is nonzero since 
generator 3 is at maximum VAR limit and one would have to generate the 
extra VARs at buses 1 and 2. Finally, the delivery points have higher bus 
incremental costs since they require that all MW and MVAR consumed at these 
buses must be delivered via the transmission system, which will cost the system 
in MW and MVAR losses. 

In addition to the bus incremental costs, the procedure outlined above 
can also be used to generate the cost of changing the limit at any binding 
constraint. In the case of the dispatch used in Table 13.10, line 2-4 is 
at an MVA linit and bus 5 is at maximum voltage. The incremental cost with 
respect to changing the MVA limit on line 2-4 is - 1.01 P/MVAh, indicating 
that if the limit were increased the system operating cost would decrease. Last 
of all, the incremental cost of changing the bus 5 upper voltage limit - 88.4 P/pu 
volt. 

PROBLEMS 

13.1 You are going to use a linear program and a power flow to solve an 
OPF. The linear program will be used to solve constrained dispatch 
problems and the power flow will confirm that you have done the correct 
thing. For each of the problems, you should use the power flow data for 
the six-bus problem found in Chapter 4. 
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The following data on unit cost functions applies to this problem: 

Unit 1 (bus 1): F ( P )  = 600.0 + 6.0P + 0.002P2 

Pmin = 70 MW 

P,,, = 250.0 MW 

F ( P )  = 220.0 + 7.3P + 0.003P2 Unit 2 (bus 2): 

Pmin = 55 MW 

P,,, = 135 MW 

F ( P )  = 100.0 + 8.0P + 0.004P2 Unit 3 (bus 3): 

Pmin = 60 MW 

P,,, = 160 MW 

When setting up the LP  you should use three straight-line segments with 
break points as below: 

Unit 1, break points at: 70, 130, 180, and 250 MW 

Unit 2, break points at: 55, 75, 95, and 135 MW 

Unit 3, break points at: 60, 80, 120, and 160 MW 

When using the LP for dispatching you should ignore losses. 
Set up the power flow as follows: 

Load = 300 MW 

Generation on bus 2 = 100 MW 

Generation on bus 3 = 100 MW 

This should lead to a flow of about 67 MW on line 3-6. 
Using the linear program, set up a minimum cost L P  for the three 

units using the break points above and the generation shift (or “ a ” )  
factors from Figure 11.7. You are to constrain the system so that the flow 
on line 3-6 is no greater than 50 MW. 

When you obtain an answer from the LP, enter the values for Pz and 
P3 found in the LP  into the load flow and see if, indeed, the flow on line 
3-6 is close to the 30 MW desired. (Be sure the load is still set to 300 MW.) 

Using the six-bus power flow example from Chapter 4 with load at 240 
MW, try to adjust the MW generated on the three generators and the 
voltage on each generator to minimize transmission losses. Keep the 

13.2 



PROBLEMS 557 

generators within their economic limits and the voltages at the generators 
within 0.90 to 1.07 pu volts. Use the following as MVAR limits: 

Bus 2 generator: 100 MVAR max 

Bus 3 generator: 60 MVAR max 

13.3 Using the six-bus power flow example from Chapter 4, set up the base 
case as in Problem 13.1 (300 MW load, 100 MW on generator buses 
2 and 3). Solve the base conditions and note that the load voltages on 
buses 4, 5 ,  and 6 are quite low. Now, drop the line from bus 2 to bus 3 
and resolve the power flow. (Note that the VAR limits on buses 2 and 
3 should be the same as in Problem 13.2.) 

This results in a severe voltage drop at bus 6. Can you correct this 
voltage so it comes back into normal range (e.g., 0.90 per unit to 1.07 
per unit)? Suggested options: Add fixed capacitance to ground at bus 6, 
raise the voltage at one or more of the generators, reduce the load MW 
and MVAR at bus 6, etc. 

13.4 You are going to solve the following optimal power flow in two different 
ways. Given a power system with two generators, Pl and P2, with their 
corresponding cost functions F,(Pl) and F2(P2). In addition, the voltage 
magnitudes on the generator buses are also to  be scheduled. 

The balance between load and generation will be assumed to be 
governed by a linear constraint: 

In addition, two constraints have been identified and their sensitivities 
calculated. The first is a flow constraint where: 

Aflow,, = 1 af,Ae + 1 av,AK 
i i 

The second constraint involves a voltage magnitude at bus k which is 
assumed to be sensitive only to the generator voltages: 

a. Assume that the initial generator outputs are Py and P: and that the 
initial voltage magnitudes are and fi and that you have obtained 
the initial flow, flow&, and the initial voltage, @, from a power flow 
program. 

Further assume that there are limits to be constrained flow and 
voltage: flow,f, and flow,; and for the voltage V: and V;. 
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Express the flow on line nm and the voltage on bus k as linear 
functions of the four control variables: PI, P2, 4, V2. 

b. Show how to obtain the minimum cost with the gradient method. In 
this case, you may assume that the flow constraint and  the voltage 
constraint are equality constraints where we desire the constraints to 
be scheduled to the upper limit. Any matrices in this formulation 
should be shown with all terms; if the inverse is needed, just express 
it as an inverse matrix-do not try to show all the terms in the inverse 
itself. 

c. Show the same minimun cost dispatch solution with an LP where we 
break each cost function into two segments. 

FURTHER READING 

Reference 1 is considered the classic paper that first introduced the concept of 
an optimal power flow. References 2 and 3 give a good overview of the techniques and 
methods of OPFs. Reference 4 is a good introduction to the basic mathematics of the 
gradient method, and references 5-7 cover the Newton OPF method. 

Reference 8 shows how the bus incremental costs are calculated using a least-squares 
approach. Reference 9 is an excellent paper dealing with the application of linear 
programming to the OPF solution. References 10 and 11 introduce the concept of the 
interior point algorithm. References 12 and 13 deal with the application of the interior 
point algorithm to the OPF solution. References 14 and 15 talk extensively about how 
to incorporate security constraints into the OPF, while reference 16 shows some of the 
special AGC logic needed when an OPF is holding a line flow constraint. 
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