
6 Generation with Limited Energy 

6.1 INTRODUCTION 

The economic operation of a power system requires that expenditures for fuel 
be minimized over a period of time. When there is no limitation on the fuel 
supply to any of the plants in the system, the economic dispatch can be carried 
out with only the present conditions as data in the economic dispatch 
algorithm. In such a case, the fuel costs are simply the incoming price 
of fuel with, perhaps, adjustments for fuel handling and maintenance of the 
plant. 

When the energy resource available to a particular plant (be it coal, oil, gas, 
water, or nuclear fuel) is a limiting factor in the operation of the plant, the 
entire economic dispatch calculation must be done differently. Each economic 
dispatch calculation must account for what happened before and what will 
happen in the future. 

This chapter begins the development of solutions to the dispatching problem 
“over time.” The techniques used are an extension of the familiar Lagrange 
formulation. Concepts involving slack variables and penalty functions are 
introduced to allow solution under certain conditions. 

The example chosen to start with is a fixed fuel supply that must be paid 
for, whether or not it is consumed. We might have started with a limited fuel 
supply of natural gas that must be used as boiler fuel because it has been 
declared as “surplus.” The take-or-pay fuel supply contract is probably the 
simplest of these possibilities. 

Alternatively, we might have started directly with the problem of economic 
scheduling of hydroelectric plants with their stored supply of water or with 
light-water-moderated nuclear reactors supplying steam to drive turbine gener- 
ators. Hydroelectric plant scheduling involves the scheduling of water flows, 
impoundments (storage), and releases into what usually prove to be a rather 
complicated hydraulic network (namely, the watershed). The treatment of 
nuclear unit scheduling requires some understanding of the physics involved in 
the reactor core and is really beyond the scope of this current text (the methods 
useful for optimizing the unit outputs are, however, quite similar to those used 
in scheduling other limited energy systems). 
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6.2 TAKE-OR-PAY FUEL SUPPLY CONTRACT 

Assume there are N normally fueled thermal plants plus one turbine generator, 
fueled under a “take-or-pay” agreement. We will interpret this type of agreement 
as being one in which the utility agrees to use a minimum amount of fuel during 
a period (the “take”) or, failing to use this amount, it agrees to pay the minimum 
charge. This last clause is the “pay” part of the “take-or-pay” contract. 

While this unit’s cumulative fuel consumption is below the minimum, the 
system excluding this unit should be scheduled to minimize the total fuel cost, 
subject to the constraint that the total fuel consumption for the period for this 
particular unit is equal to the specified amount. Once the specified amount of 
fuel has been used, the unit should be scheduled normally. Let us consider a 
special case where the minimum amount of fuel consumption is also the 
maximum. The system is shown in Figure 6.1. We will consider the operation 
of the system over j,,, time intervals j where j = 1, .  . . , j,,,, so that 

P l j ,  P Z j , .  . . , PTj 

F l j ,  F , j , .  . . , FNj 

qT1 ,  q T 2 , .  . . , qTj 

(power outputs) 

(fuel cost rate) 

(take-or-pay fuel input) 
and 

are the power outputs, fuel costs, and take-or-pay fuel inputs, where 

cj 4 power from i‘h unit in the j‘h time interval 

hj 4 Jt/h cost for i I h  unit during the jth time interval 

qTj  4 fuel input for unit T i n  jth time interval 

F T j  4 e / h  cost for unit T i n j t h  time interval 

eoad 4 total load in the j‘h time interval 

nj 4 Number of hours in the j l h  time interval 

Mathematically, the problem is as follows: 

subject to 

and 

N 
min ( nj & j )  + njFTj  

j =  1 j =  1 

j =  1 

N 

I , / I ~ = P , ~ ~ ~ ~ -  C c j - P T j = O  f o r j = l  . . . j m a x  (6.3) 
i =  1 
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or, in words, 

We wish to determine the minimum production cost for units 1 to N 
subject to constraints that ensure that fuel consumption is correct and 
also subject to the set of constraints to ensure that power supplied is 
correct each interval. 

Note that (for the present) we are ignoring high and low limits on the units 
themselves. It should also be noted that the term 

is constant because the total fuel to be used in the “T” plant is fixed. Therefore, 
the total cost of that fuel will be constant and we can drop this term from the 
objective function. 

The Lagrange function is 

The independent variables are the powers Sj and PTj,  since E j  = &(pi j )  and 
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q T j  = qT(Prj). For any given time period, j = k ,  

and 

Note that if one analyzes the dimensions of y, it would be @ per unit of q 
(e.g., p/ft3, p/bbl, R/ton). As such, y has the units of a “fuel price” expressed 
in volume units rather than MBtu as we have used up to now. Because of this, 
y is often referred to as a “pseudo-price’’ or “shadow price.” In fact, once 
it is realized what is happening in this analysis, it becomes obvious that we 
could solve fuel-limited dispatch problems by simply adjusting the price of the 
limited fuel(s); thus, the terms “pseudo-price” and “shadow price” are quite 
meaningful. 

Since y appears unsubscripted in Eq. 6.6, y would be expected to be a 
constant value over all the time periods. This is true unless the fuel-limited 
machine is constrained by fuel-storage limitations. We will encounter such 
limitations in hydroplant scheduling in Chapter 7. The appendix to Chapter 7 
shows when to expect a constant y and when to expect a discontinuity 
in y. 

Figure 6.2a shows how the load pattern may look. The solution to a 
fuel-limited dispatching problem will require dividing the load pattern into 
time intervals, as in Figure 6.2b, and assuming load to be constant during 
each interval. Assuming all units are on-line for the period, the optimum 
dispatch could be done using a simple search procedure for y, as is shown 
in Figure 6.3. Note that the procedure shown in Figure 6.3 will only work 
if the fuel-limited unit does not hit either its high or its low limit in any time 
interval. 

I I I I I I I I I 
+ Time 

FIG. 6.2a Load pattern. 
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6.3 COMPOSITE GENERATION PRODUCTION COST FUNCTION 

A useful technique to facilitate the take-or-pay fuel supply contract procedure 
is to develop a composite generation production cost curve for all the non- 
fuel-constrained units. For example, suppose there were N non-fuel constrained 
units to be scheduled with the fuel-constrained unit as shown in Figure 6.4. 
Then a composite cost curve for units 1, 2 , .  . . , N can be developed. 

where 

and 

F,(P,) = FI(P1) + ' * * + MPN) 

Ps=P1 + . . . +  P, 
(6.7) 

If one of the units hits a limit, its output is held constant, as in Chapter 3, Eq. 3.6. 
A simple procedure to allow one to generate Fs(P,) consists of adjusting E. 

from imin to in specified increments, where 

At each increment, calculate the total fuel consumption and the total power 
output for all the units. These points represent points on the F,(P,) curve. The 
points may be used directly by assuming F,(P,) consists of straight-line segments 
between the points, or a smooth curve may be fit to the points using a 
least-squares fitting program. Be aware, however, that such smooth curves may 
have undesirable properties such as nonconvexity (e.g., the first derivative is 
not monotonically increasing). The procedure to generate the points on Fs(Ps) 
is shown in Figure 6.5. 

Load 

FIG. 6.4 Composite generator unit. 
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DONE 

FIG. 6.5 Procedure for obtaining composite cost curve. 

EXAMPLE 6A 

The three generating units from Example 3A are to be combined into a 
composite generating unit. The fuel costs assigned to these units will be 

Fuel cost for unit 1 = 1.1 P/MBtu 

Fuel cost for unit 2 = 1.4 P/MBtu 

Fuel cost for unit 3 = 1.5 P/MBtu 

Figure 6.6a shows the individual unit incremental costs, which range from 
8.3886 to 14.847 p/MWh. A program was written based on Figure 6.5, and A 
was stepped from 8.3886 to 14.847. 
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100 200 300 400 500  600 MW 

Unit output  

FIG. 6.6a Unit incremental costs. 

TABLE 6.1 
Example 6A 

Lambda Steps Used in Constructing a Composite Cost Curve for 

Step /. ps Fs F, Approx 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 

8.3886 
8.71 15 
9.0344 
9.3574 
9.6803 

10.0032 
11.6178 
1 1.9407 
12.2636 
12.5866 
12.9095 
13.2324 
13.5553 
13.8782 
14.2012 
14.5241 
14.8470 

300.0 
403.4 
506.7 
610.1 
7 13.5 
750.0 
765.6 
825.0 
884.5 
943.9 

1019.4 
1088.4 

11 10.67 
1133.00 
1155.34 
1 177.67 
1200.00 

4077.12 
4960.92 
5878.10 
6828.66 
7812.59 
8168.30 
8348.58 
9048.83 
9768.28 

10506.92 
11469.56 
12369.40 
12668.51 
12974.84 
13288.37 
13609.12 
13937.00 

4137.69 
4924.39 
5799.07 
6761.72 
78 12.35 
8 204.6 8 
8375.29 
9044.86 
9743.54 

10471.3 1 
11436.96 
12360.58 
12668.05 
12979.63 
13295.30 
1361 5.09 
13938.98 
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400 600 800 1000 1200 
Ps equivalent u n i t  output MW 

FIG. 6.6b Equivalent unit inputloutput curve. 

At each increment, the three units are dispatched to the same I, and 
then outputs and generating costs are added as shown in Figure 6.5. The 
results are given in Table 6.1. The result, called F, approx in Table 6.1 and 
shown in Figure 6.6b, was calculated by fitting a second-order polynomial 
to the P, and F, points using a least-squares fitting program. The equivalent 
unit function is 

F, approx(P,) = 2352.65 + 4.7151P5 + 0.0041168PI 

(P/h) 300 MW I p, I 1200 MW 

The reader should be aware that when fitting a polynomial to a set of points, 
many choices can be made. The preceding function is a good fit to the total 
operating cost of the three units, but it is not that good at approximating the 
incremental cost. More-advanced fitting methods should be used if one desires 
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to match total operating cost as well as incremental cost. See Problem 6.2 for 
an alternative procedure. 

EXAMPLE 6B 

Find the optimal dispatch for a gas-fired steam plant given the following. 

Gas-fired plant: 

HT(PT) = 300 + 6.0PT + O.O025PZ, MBtu/h 

Fuel cost for gas = 2.0 p/ccf (where 1 ccf = lo3 ft3) 

The gas is rated at 1100 Btu/ft3 

50 I PT I 400 

Composite of remaining units: 

H,(P,) = 200 + 8SPS + 0.002P,Z MBtu/h 

Equivalent fuel cost = 0.6 e/MBtu 

50 I P, I 500 

The gas-fired plant must burn 40. lo6 ft3 of gas. The load pattern is shown 
in Table 6.2. If the gas constraints are ignored, the optimum economic schedule 
for these two plants appears as is shown in Table 6.3. Operating cost of the 
composite unit over the entire 24-h period is 52,128.03 p. The total gas 
consumption is 21.8. lo6 ft3. Since the gas-fired plant must burn 40. lo6 ft3 of 
gas, the cost will be 2.0 p/lOOO ft3 x 40. lo6 ft3, which is 80,000 p for the gas. 
Therefore, the total cost will be 132,128.03 p. The solution method shown in 
Figure 6.3 was used with y values ranging from 0.500 to 0.875. The final value 
for y is 0.8742 p/ccf with an optimal schedule as shown in Table 6.4. This 
schedule has a fuel cost for the composite unit of 34,937.47 8. Note that the 
gas unit is run much harder and that it does not hit either limit in the optimal 

TABLE 6.2 Load Pattern 

Time Period Load 

1. 0000-0400 400 MW 
2. 0400-0800 650 M W  
3. 0800-1200 800 MW 
4. 1200-1600 500 MW 
5. 1600-2000 200 MW 
6. 2000-2400 300 MW 

Where: nj = 4, j = 1 . . . 6 .  
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TABLE 6.3 Optimum Economic Schedule 
(Gas Constraints Ignored) 

Time Period ps PT 

350 
500 
500 
450 
150 
250 

50 
150 
300 
50 
50 
50 

TABLE 6.4 Optimal Schedule (Gas Constraints Met) 

Time Period ps PT 

197.3 
353.2 
446.1 
259.1 
72.6 

135.0 

202.6 
296.8 
353.3 
240.3 
127.4 
165.0 

schedule. Further, note that the total cost is now 

34,937.47 p + 80,000 p = 114,937.4 p 

so we have lowered the total fuel expense by properly scheduling the gas plant. 

6.4 SOLUTION BY GRADIENT SEARCH TECHNIQUES 

An alternative solution procedure to the one shown in Figure 6.3 makes use 
of Eqs. 6.5 and 6.6. 

and 

then 

For an optimum dispatch, y will be constant for all hours j ,  j = 1 . . . j,,,. 
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We can make use of this fact to obtain an optimal schedule using the 
procedures shown in Figure 6.7a or Figure 6.7b. Both these procedures attempt 
to adjust fuel-limited generation so that y will be constant over time. The 
algorithm shown in Figure 6.7a differs from the algorithm shown in Figure 6.7b 
in the way the problem is started and in the way various time intervals are 

I I ASSUME FEASIBLE SCHEDULE 
SUCH THAT 

I I c 
Jrnax 

CALCULATE FToT,,= Z njFsj  I j - 1  

1 

CALCULATE y, FOR ALL INTERVALS - - 
SELECT j' AND j -  

SUCH THAT 7, IS MAXIMUM FOR 
j = j' AND y, IS MINIMUM FOR 

j = j- 

G 
ADJUST q IN j' AND j- 
qT, = qT, + Aq/n, i = i t  

ADJUST PT,, PT, 
qT, = qT, - Aq/n, i = j- 

t 
CALCULATE AFTOTAL = 

CALCULATE NEW rj-.<...". VALUES FOR j' AND OF yj j- >%> DONE 

FIG. 6.7a Gradient method based on relaxation technique. 
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START 

G 
G 

.c 

COMPUTE F, (P, ), dF,/dP, 

ASSUME FEASIBLE SCHEDULE 
FOR P,, PT FOR ALL 

, Jmax 
j = 1 ,  . . .  . 

CALCULATE C ni qTi 
, = 1  

I CALCULATE yj FOR I j = 1 ,  . . .  , imax 

DONE (USE 
METHOD OF 
FIGURE 6.7A 
TO CHECK FOR 
OPTIMALITY) 

j = l  

AND DECREASE FUEL USE 
q? = qT, - AqTi FOR i = J *  qq =qq  +AqTi FOR j = j *  

FIG. 6.7b Gradient method based on a simple search. 

selected for adjustment. The algorithm in Figure 6.7a requires an initial 
feasible but not optimal schedule and then finds an optimal schedule by 
“pairwise” trade-offs of fuel consumption while maintaining problem feasi- 
bility. The algorithm in Figure 6.7b does not require an initial feasible 
fuel usage schedule but achieves this while optimizing. These two methods 
may be called gradient methods because qTj  is treated as a vector and 
the y j  values indicate the gradient of the objective function with respect 
to q r j .  The method of Figure 6.7b should be followed by that of Figure 6.7a 
to insure optimality. 



184 GENERATION WITH LIMITED ENERGY SUPPLY 

EXAMPLE 6C 

Use the method of Figure 6.7b to obtain an optimal schedule for the problem 
given in Example 6B. Assume that the starting schedule is the economic dispatch 
schedule shown in Example 6B. 

Initial Dispatch 

Time Period 

1 2 3 4 5 6 

P, 350 500 500 450 150 250 
pr 50 150 300 50 50 50 
Y 1.0454 1.0266 0.9240 1.0876 0.9610 1.0032 

Since we wish to burn 4O.0.1O6ft3 of gas, the error is negative; therefore, 
we must increase fuel usage in the time period having maximum y, that is, 
period 4. As a start, increase PT to 150 MW and drop P, to 350 MW in 
period 4. 

Result of Step 1 

Time Period 

1 2 3 4 5 6 

P, 350 500 500 350 150 250 
PT 50 150 300 150 50 50 
Y 1.0454 1.0266 0.9240 0.9680 0.9610 1.0032 

ql. = 24.2. 10' f t3 .  

The error is still negative, so we must increase fuel usage in the period with 
maximum y ,  which is now period 1 .  Increase PT to 200MW and drop P, to 
200 MW in period 1. 

Result of Step 2 

Time Period 

1 2 3 4 5 6 

P, 200 500 500 350 150 250 
PT 200 150 300 150 50 50 
I 0.8769 1.0266 0.9240 0.9680 0.9610 1.0032 

1 ql. = 27.8.10' ft'. 
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and so on. After 11 steps, the schedule looks like this: 

Time Period 

1 2 3 4 5 6 

p, 200 350 450 250 1 5  140 
PT 200 300 3 50 250 125 160 
1 0.8769 0.8712 0.8772 0.8648 0.8767 0.8794 

q l .  = 40.002. lo6 ft3.  

which is beginning to look similar to the optimal schedule generated in 
Example 6A. 

6.5 HARD LIMITS AND SLACK VARIABLES 

This section takes account of hard limits on the take-or-pay generating unit. 
The limits are 

PT 2 P T m i n  (6.9) 
and 

PT 5 P T m a x  (6.10) 

These may be added to the Lagrangian by the use of two constraint functions 
and two new variables called slack variables (see Appendix 3A). The constraint 
functions are 

*l j  = pTj - PTrnax + s:j (6.1 1 )  

and 

$ 2 j  = PTmin - pTj + s:j (6.12) 

where SI j  and S2j are slack variables that may take on any real value including 
zero. 

The new Lagrangian then becomes 

(6.13) 

where r l  j ,  c(2j are Lagrange multipliers. Now, the first partial derivatives for 
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the klh period are 

~ = 0 = 2alkSlk a 3  
k 

(6.14) 

As we noted in Appendix 3A, when the constrained variable (PTk in this case) 
is within bounds, the new Lagrange multipliers a l t  = aZk = 0 and s 1 k  and s 2 k  

are nonzero. When the variable is limited, one of the slack variables, s 1 k  or s 2 k ,  

becomes zero and the associated Lagrange multiplier will take on a nonzero 
value. 

Suppose in some interval k ,  PTk = P,,,,,, then Slk = 0 and t l l k  # 0. Thus, 

(6.15) 

and if 

the value of c t l k  will take on the value just sufficient to make the equality true. 

EXAMPLE 6D 

Repeat Example 6B with the maximum generation on PT reduced to 300 MW. 
Note that the optimum schedule in Example 6A gave a Pj- = 353.3 MW in the 
third time period. When the limit is reduced to 300 MW, the gas-fired unit will 
have to burn more fuel in other time periods to meet the 40. lo3 f t3  gas 
consumption constraint. 

TABLE 6.5 Resulting Optimal Schedule with PTmax = 300 MW 

a q T  
~ P T  i 

Time Period j Ps j PT j i j  Y n j  ~ all  

183.4 2 16.6 5.54 5.54 0 
350.0 300.0 5.94 5.86 0.08 
500.0 300.0 6.3 5.86 0.44 
245.4 254.6 5.69 5.69 0 

59.5 140.5 5.24 5.24 0 
121.4 178.6 5.39 5.39 0 
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Table 6.5 shows the resulting optimal schedule where y = 0.8603 and total 
cost = 122,984.83 p. 

6.6 FUEL SCHEDULING BY LINEAR PROGRAMMING 

Figure 6.8 shows the major elements in the chain making up the delivery system 
that starts with raw-fuel suppliers and ends up in delivery of electric power to 
individual customers. The basic elements of the chain are as follows. 

The suppliers: These are the coal, oil, and gas companies with which the 
utility must negotiate contracts to acquire fuel. The contracts are usually 
written for a long term (10 to 20 yr) and may have stipulations, such as the 
minimum and maximum limits on the quantity of fuel delivered over a 
specified time period. The time period may be as long as a year, a month, 
a week, a day, or even for a period of only a few minutes. Prices may 
change, subject to the renegotiation provisions of the contracts. 

FIG. 6.8 Energy delivery system. 
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Transportation: Railroads, unit trains, river barges, gas-pipeline companies, 
and such, all present problems in scheduling of deliveries of fuel. 

Inventory: Coal piles, oil storage tanks, underground gas storage facilities. 
Inventories must be kept at proper levels to forestall fuel shortages when 
load levels exceed forecast or suppliers or shippers are unable to deliver. 
Price fluctuations also complicate the decisions on when and how much to 
add or subtract from inventories. 

The remainder of the system-generators, transmission, and loads-are covered 
in other chapters. 

One of the most useful tools for solving large fuel-scheduling problems is 
linear programming (LP). If the reader is not familiar with LP, an easily 
understood algorithm is provided in the appendix of this chapter. 

Linear programming is an optimization procedure that minimizes a linear 
objective function with variables that are also subject to linear constraints. 
Because of this limitation, any nonlinear functions either in the objective or in 
the constraint equations will have to be approximated by linear or piecewise 
linear functions. 

To solve a fuel-scheduling problem with linear programming, we must break 
the total time period involved into discrete time increments, as was done in 
Example 6B. The LP solution will then consist of an objective function that is 
made up of a sum of linear or piecewise linear functions, each of which is a 
function of one or more variables from only one time step. The constraints will 
be linear functions of variables from each time step. Some constraints will be 
made up of variables drawn from one time step whereas others will span two 
or more time steps. The best way to illustrate how to set up an LP to solve a 
fuel-scheduling problem will be to use an example. 

EXAMPLE 6E 

We are given two coal-burning generating units that must both remain on-line 
for a 3-wk period. The combined output from the two units is to supply the 
following loads (loads are assumed constant for 1 wk). 

Week Load (M W) 

1 
2 
3 

1200 
1500 
800 

The two units are to be supplied by one coal supplier who is under contract 
to supply 40,000 tons of coal per week to the two plants. The plants have 
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existing coal inventories at the start of the 3-wk period. We must solve for the 
following. 

1. How should each plant be operated each week? 
2. How should the coal deliveries be made up each week? 

The data for the problem are as follows. 

Coal: Heat value = 11,500 Btu/lb = 23 MBtu/ton (1 ton = 2000 lb) 

Coal can all be delivered to one plant or the other or it can be split, some 
going to one plant, some to the other, as long as the total delivery in each week 
is equal to 40,000 tons. The coal costs 30 @/ton or 1.3 @/MBtu. 

Inventories: Plant 1 has an initial inventory of 70,000 tons; its final inventory 
is not restricted 

has an initial inventory of 70,000 tons; its final inventory 
is not restricted 

Plant 2 

Both plants have a maximum coal storage capacity of 200,000 tons of 
coal. 

Generating units: 

Heat Input Heat Input 

Unit (MW) (MW) (MBtu/h) (MBtu/h) 
Min Max at Min at Max 

1 150 600 1620 5340 
2 400 1000 3850 8750 

The input versus output function will be approximated by a linear function 
for each unit: 

Hl(Pl) = 380.0 + 8.267P1 

H2(P2) = 583.3 + 8.16713, 
The unit cost curves are 

F,(Pl) = 1.3 P/MBtu x Hl(Pl) = 495.65 + 10.78P1 (P/h) 

F2(Pz) = 1.3 p/MBtu x H2(P2) = 760.8 + 10.65Pz (P/h) 
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The coal consumption q(tons/h) for each unit is 

q,(P,) = L (E) x H,(P,) = 16.52 + 0.3594P1 tons/h 
23 MBtu 

q2(P2) = 1 (x) x H2(P2) = 25.36 + 0.3551P2 tons/h 
23 MBtu 

To solve this problem with linear programming, assume that the units are 
to be operated at a constant rate during each week and that the coal deliveries 
will each take place at the beginning of each week. Therefore, we will set up 
the problem with 1-wk time periods and the generating unit cost functions and 
coal consumption functions will be multiplied by 168 h to put them on a “per 
week” basis; then, 

Fl(Pl) = 83,269.2 + 1811P, P/wk 

FZ(P2) = 127,814.4 + 1789P2 P/wk 
(6.16) 

q,(Pl) = 2775.4 + 60.4P1 tons/wk 

q2(P2) = 4260.5 + 59.7P2 tons/wk 

We are now ready to set up the objective function and the constraints for our 
linear programming solution. 

Objective function: 
objective function is 

To minimize the operating cost over the 3-wk period. The 

Minimize 2 = F,[Pl(l)] + F2[P2(1)] + F,[(P,(2)1 + F2[P2(2)1 

+ F1CP1(3)l + F2Cp2(2)1 (6.17) 

where P;:(j)  is the power output of the ith unit during thej th  week, j = 1 . . . 3 .  

Constraints: During each time period, the total power delivered from the units 
must equal the scheduled load to be supplied; then 

P,(l) + P,(1) = 1200 

P1(2) + P2(2) = 1500 

p1(3) 4- p2(3) = 800 

(6.18) 

Similarly, the coal deliveries, D, and D2, made to plant 1 and plant 2, 
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respectively, during each week must sum to 40,000 tons; then 

Dl(1) + D2(1) = 40,000 

Dl(2) + 4 ( 2 )  = 40,000 

D1(3) + &(3) = 40,000 

(6.19) 

The volume of coal at each plant at the beginning of each week plus the 
delivery of coal to that plant minus the coal burned at the plant will give the 
coal remaining at the beginning of the next week. Letting V, and V, be the 
volume of coal in each coal pile at the beginning of the week, respectively, we 
have the following set of equations governing the two coal piles. 

(6.20) 

where y ( j )  is the volume of coal in the ith coal pile at the beginning of the jfh 
week. 

To set these equations up for the linear-programming solutions, substitute 
the ql(Pl) and q2(P2) equations from 6.16 into the equations of 6.20. In addition, 
all constant terms are placed on the right of the equal sign and all variable 
terms on the left; this leaves the constraints in the standard form for inclusion 
in the LP. The result is 

Note: Vl(l) and V2(1) are constants that will be set when we start the problem. 
The constraints from Eqs. 6.18, 6.19, and 6.21 are arranged in a matrix, as 

shown in Figure 6.9. Each variable is given an upper and lower bound in 
keeping with the “upper bound” solution shown in the appendix of this chapter. 
The Pl(t) and P2(t)  variables are given the upper and lower bounds corresponding 
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to the upper and lower limits on the generating units. D,(t)  and D2(t )  are given 
upper and lower bounds of 40,000 and zero. Vl( t )  and V’(t) are given upper 
and lower bounds of 200,000 and zero. 

Solution: The solution to this problem was carried out with a computer 
program written to solve the upper bound LP problem using the algorithm 
shown in the Appendix. The first problem solved had coal storage at the 
beginning of the first week of 

Vl(l) = 70,000 tons 

VJ1) = 70,000 tons 
The solution is: 

Time Period vl Dl PI v, 0 2  p 2  
~ ~ ~ ~~~ ~ 

70000.0 0 200 70000.0 40000.0 1000 
55144.6 0 500 46039.5 4oooO.O 1000 
22 169.2 19013.5 150 22079.0 20986.5 650 
29347.3 

Optimum cost = 6,913,450.8 R 

In this case, there are no constraints on the coal deliveries to either plant 
and the system can run in the most economic manner. Since unit 2 has a lower 
incremental cost, it is run at its maximum when possible. Furthermore, since 
no restrictions were placed on the coal pile levels at the end of the third week, 
the coal deliveries could have been shifted a little from unit 2 to unit 1 with no 
effect on the generation dispatch. 

The next case solved was purposely structured to create a fuel shortage at  
unit 2. The beginning inventory at plant 2 was set to 50,000 tons, and a 
requirement was imposed that at the end of the third week the coal pile at unit 
2 be no less than 8000 tons. The solution was made by changing the right-hand 
side of the fourth constraint from -65,739.5 (i.e., 4260.5 - 70,000) to -45739.5 
(i.e., 4260.5 - 50,000) and placing a lower bound on V2(4) (i,e., variable XIS) 
of 8000. The solution is: 

Time Period v, D,  PI v2 02 p 2  

1 70000.0 0 200 50000.0 4oooO.O 1000 
2 55144.6 0 500 26039.5 40000.0 1000 
3 22169.2 0 300.5216 2079.0 40000.0 499.4124 
4 1241.9307 8000.0 

Optimum cost = 6,916,762.4 p. 
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Note that this solution requires unit 2 to drop off its generation in order to 
meet the end-point constraint on its coal pile. In this case, all the coal must be 
delivered to plant 2 to minimize the overall cost. 

The final case was constructed to show the interaction of the fuel deliveries 
and the economic dispatch of the generating units. In this case, the initial coal 
piles were set to 10,000 tons and 150,000 tons, respectively. Furthermore, a 
restriction of 30,000 tons minimum in the coal pile at unit 1 at the end of the 
third week was imposed. 

To obtain the most economic operation of the two units over the 3-wk 
period, the coal deliveries will have to be adjusted to insure both plants have 
sufficient coal. The solution was obtained by setting the right-hand side of the 
third and fourth constraint equations to -7224.6 and - 145739.5, respectively, 
as well as imposing a lower bound of 30,000 on V,(4) (i.e., variable X,,). The 
solution is: 

Time Period v* D, PI v2 4 p2 
1 l m . o  4855.4 200 15oooO.O 35144.6 1000 
2 0.0 4oooO.O 500 121 184.1 0 1000 
3 7024.6 40000.0 150 57223.6 0 650 
4 35189.2 141 58.1 

Optimum cost = 6,913,450.8 p. 

The LP was able to find a solution that allowed the most economic operation 
of the units while still directing enough coal to unit 1 to allow it to meet its 
end-point coal pile constraint. Note that, in practice, we would probably not 
wish to let the coal pile at unit 1 go to zero. This could be prevented by placing 
an appropriate lower bound on all the volume variables (i.e., X , ,  X,, X ,  X,,, 
XI ,, and XI d. 

This example has shown how a fuel-management problem can be solved 
with linear programming. The important factor in being able to solve very large 
fuel-scheduling problems is to have a linear-programming code capable of 
solving large problems having perhaps tens of thousands of constraints and as 
many, or more, problem variables. Using such codes, elaborate fuel-scheduling 
problems can be optimized out over several years and play a critical role in 
utility fuel-management decisions. 

APPENDIX 
Linear Programming 

Linear programming is perhaps the most widely applied mathematical pro- 
gramming technique. Simply stated, linear programming seeks to find the 
optimum value of a linear objective function while meeting a set of linear 
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constraints. That is, we wish to find the optimum set of x values that minimize 
the following objective function: 

subject to a set of linear constraints: 

In addition, the variables themselves may have specified upper and lower limits. 

There are a variety of solutions to the LP problem. Many of these solutions 
are tailored to a particular type of problem. This appendix will not try to 
develop the theory of alternate LP solution methods. Rather, it will present a 
simple LP algorithm that can be used (or programmed on a computer) to solve 
the applicable power-system sample problems given in this text. 

The algorithm is presented in its simplest form. There are alternative 
formulations, and these will be indicated when appropriate. If the student has 
access to a standard LP program, such a standard program may be used to 
solve any of the problems in this book. 

The LP technique presented here is properly called an upper-bounding dual 
linear programming algorithm. The “upper-bounding” part of its name refers to 
the fact that variable limits are handled implicitly in the algorithm. “Dual” 
refers to the theory behind the way in which the algorithm operates. For a 
complete explanation of the primal and dual algorithms, refer to the references 
cited at the end of this chapter. 

In order to proceed in an orderly fashion to solve a dual upper-bound linear 
programming problem, we must first add what is called a slack variable to each 
constraint. The slack variable is so named because it equals the difference or 
slack between a constraint and its limit. By placing a slack variable into an 
inequality constraint, we can transform it into an equality constraint. For 
example, suppose we are given the following constraint. 

2 x ,  + 3x2 I 15 (6A.  1) 

We can transform this constraint to an equality constraint by adding a slack 
variable, xj.  

2 x ,  + 3X2 + x 3  = 15 (6A.2)  

If x 1  and x 2  were to be given values such that the sum of the first two terms 
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in Eq. 6A.2 added up to less than 15, we could still satisfy Eq. 6A.2 by setting 
x3 to the difference. For example, if x1 = 1 and x2 = 3, then x3 = 4 would 
satisfy Eq. 6A.2. We can go even further, however, and restrict the values of x3  
so that Eq. 6A.2 still acts as an inequality constraint such as Eq. 6A.1. Note 
that when the first two terms of Eq. 6A.2 add to exactly 15, x3 must be set to 
zero. By restricting x3  to always be a positive number, we can force Eq. 6A.2 
to yield the same effect as Eq. 6A.1. Thus, 

is equivalent to: 2x1 + 3x2 I 15 ”1 2x1 + 3x2 + X 3  = 

O I X , < C O  

For a “greater than or equal to” constraint, we merely change the bounds on the 
slack variable: 

is equivalent to: 2x1 + 3x2 2 15 
2x1 -k 3x2 + X j  = 

- c O I x , I O  

Because of the way the dual upper-bounding algorithm is initialized, we will 
always require slack variables in every constraint. In the case of an equality 
constraint, we will add a slack variable and then require its upper and lower 
bounds to both equal zero. 

To solve our linear programming algorithm, we must arrange the objective 
function and constraints in a tabular form as follows. 

a l l X l  + a 1 2 x 2  + . . . + Xslackl 

aZlx l  + a22x2 + . . . f Xslackl = b2 (6A.3) 

= b, 

C l X l  + c2x2 + . * .  -2  = 0 

Y 

Basis variables 

Because we have added slack variables to each constraint, we automatically 
have arranged the set of equations into what is called canonical form. In 
canonical form, there is at  least one variable in each constraint whose coefficient 
is zero in all the other constraints. These variables are called the basis 
variables. The entire solution procedure for the linear programming algorithm 
centers on performing “pivot” operations that can exchange a nonbasis variable 
for a basis variable. A pivot operation may be shown by using our tableau 
in Eq. 6A.3. Suppose we wished to exchange variable x l ,  a nonbasis variable, 
for xslackZ, a slack variable. This could be accomplished by “pivoting” on column 
1, row 2. To carry out the pivoting operation we execute the following 
steps. 
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Pivoting on Column 1, Row 2 

Step 1 Multiply row 2 by l /uZl .  That is, each aZj ,  j = 1 . . . N in row 2 becomes 

a;j  = - azj  j = 1  . . .  N 
a2 1 

and 

b, b ,  becomes b, = - 
a2 1 

Step 2 For each row i (i # 2) ,  multiply row 2 by a,, and subtract from row 
i. That is, each coefficient a i j  in row i (i # 2) becomes 

Step 3 Last of all, we also perform the same operations in step 2 on the cost 
row. That is, each coefficient c j  becomes 

The result of carrying out the pivot operation will look like this: 

Notice that the new basis for our tableau is formed by variable x, and xSlackl, 
Xslackl no longer has zero coefficients in row 1 or the cost row. 

The dual upper-bounding algorithm proceeds in simple steps wherein 
variables that are in the basis are exchanged for variables out of the basis. When 
an exchange is made, a pivot operation is carried out at the appropriate row 
and column. The nonbasis variables are held equal to either their upper or their 
lower value, while the basis variables are allowed to take any value without 
respect to their upper or lower bounds. The solution terminates when all the 
basis variables are within their respective limits. 

In order to use the dual upper-bound LP algorithm, follow these rules. 
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Start: 

1. Each variable that has a nonzero coefficient in the cost row (i.e., the 
objective function) must be set according to the following rule. 

If Cj > 0, 

If Cj < 0, 

set x i  = x'j''" 

set x j  = X? 

2. If Cj = 0, x j  may be set to any value, but for convenience set it to its 
minimum also. 

3. Add a slack variable to each constraint. Using the x j  values from steps 1 
and 2, set the slack variables to make each constraint equal to its 
limit. 

Variable Exchange: 

1. Find the basis variable with the greatest violation; this determines the 
row to be pivoted on. Call this row R .  If there are no limit violations 
among the basis variables, we are done. The most-violated variable leaves 
the basis and is set equal to the limit that was violated. 

2. Select the variable to enter the basis using one of the following column 
selection procedures. 

Column Selection Procedure P1 (Most-violated variable below its minimum) 

Given constraint row R ,  whose basis variable is below its minimum and is the 
worst violation. Pick column S, so that, cs/( - aRqS)  is minimum for all S that 
meet the following rules: 

a. S is not in the current basis. 
b. aR,s  is not equal to zero. 
c. If xs is at its minimum, then C I ~ , ~  must be negative and cs must be 

d. If xs is at its maximum, then aR,S must be positive and cs must be 
positive or zero. 

negative or  zero. 

Column Selection Procedure P2 (Most-violated variable above its maximum) 

Given constraint row R,  whose basis variable is above its maximum and is the 
worst violation. Pick column S ,  so that, C ~ / C I , , ~  is the minimum for all S that 
meet the following rules: 

a. S is not in the current basis. 
b. aR,s  is not already zero. 
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Y 

c. If xs is at its minimum, then aR,s  must be positive and cs must be 

d. If xs is at its maximum, then aR,S must be negative and cs must be 
positive or zero. 

negative or zero. 

PICK COLUMN S USING 
COLUMN SELECTION 

PROCEDURE P1 

3. When a column has been selected, pivot at the selected row R (from 
step 1) and column S (from step 2). The pivot column’s variable, S ,  goes 
into the basis. 

PICK COLUMN S USING 
COLUMN SELECTION 

PROCEDURE P2 

If no column fits the column selection criteria, we have an infeasible solution. 
That is, there are no values for xl.. . x N  that will satisfy all constraints 

INFEASIBLE SOLUTION 

SEARCH AMONG THE BASIS 
VARIABLES FOR THE 

VARIABLE WITH THE WORST 
VIOLATION. THIS 

DETERMINESTHE ROW 
SELECTION, R 

J. 

I NF EASlB LE SO LUTlON 

NO V LATIONS AMONG 
BE S VARIABLES 

PIVOT ON SELECTED 
ROW AND COLUMN 

FIG. 6.10 Dual upper-bound linear programming algorithm. 
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simultaneously. In some problems, the cost coefficient cs associated with column 
S will be zero for several different values of S .  In such a case, cs/a,,, will be 
zero for each such S and none of them will be the minimum. The fact that cs 
is zero means that there will be no increase in cost if any of the S values are 
pivoted into the basis; therefore, the algorithm is indifferent to which one is 
chosen. 

Setting the Variables after Pivoting 

1. 
2. 
3. 

All nonbasis variables, except xs, remain as they were before pivoting. 
The most violated variable is set to the limit that was violated. 
Since all nonbasis variables are determined, we can proceed to set each 
basis variable to whatever value is required to make the constraints 
balance. Note that this last step may move all the basis variables to new 
values, and some may now end up violating their respective limits 
(including the xs variable). 

Go back to step 1 of the variable exchange procedure. 
These steps are shown in flowchart form in Figure 6.10. To help you 

understand the procedures involved, a sample problem is solved using the dual 
upper-bounding algorithm. The sample problem, shown in Figure 6.11, consists 
of a two-variable objective with one equality constraint and one inequality 
constraint. 

First, we must put the equations into canonical form by adding slack 
variables x3 and x4. These variables are given limits corresponding to the type 
of constraint into which they are placed, x3 is the slack variable in the equality 

x2 -1.4x1 +x2 ( 2  

\ Cost contours 

, x2 = 16 

x.2 = 2 
X1 

x , = 2  \ \ \ x , = 1 2  XI  +x2  = 20 

Minimize: 
Subject to: xI + x2 = 20 constraint 1 

constraint 2 

2 = 2 x,  + x2  

- 1 . 4 ~ ~  + x2 I 2 
2 5 x,  I 12 
2 5 x2 s 16 

FIG. 6.1 1 Sample linear programming problem. 
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constraint, so its limits are both zero; x4 is in an inequality constraint, so it is 
restricted to be a positive number. To start the problem, the objective function 
must be set to the minimum value it can attain, and the algorithm will then 
seek the minimum constrained solution by increasing the objective just enough 
to reach the constrained solution. Thus, we set both x1 and x2 at their minimum 
values since the cost coefficients are both positive. These conditions are shown 
here: 

Constraint 1: x1 + x2 + x3 
Constraint 2 - 1 . 4 ~  + x2 
cost: 2x1 + x2 

Minimum: 2 2  0 
Present value: 2 2  16 
Maximum: 12 16 0 

Basis 
variable 

1 

Worst- 
violated 
variable 

t 

= 2 0 + R  
+ x 4  = 2  

-z = 0 
O < x 3 < O  
O I x 4 1 c o  

0 

2.8 6 
00 

Basis 
variable 

2 

We can see from these conditions that variable x3 is the worst-violated 
variable and that it presently exceeds its maximum limit of zero. Thus, we must 
use column procedure P2 on constraint number 1. This is summarized as 
follows: 

I Using selection procedure P2 on constraint 1: I 
2 

i =  1 a,  > o  x1 =xrni"  1 c1  > 0 then 2 = - = 2 
a1 1 

min ci/ai is 1 at i = 2 

I Pivot at column 2, row 1 
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To carry out the required pivot operations on column 2,  row 1, we need 
merely subtract the first constraint from the second constraint and from the 
objective function. This results in: 

Constraint 1: x1 + x ,  + x3 = 20 

cost: X I  - x3 - z =  -20 

Constraint 2 - 2 . 4 ~ ~  - x 3  + x 4  = - 1 8 + R  

Minimum: 2 2 0  0 

Present value: 2 18 0 -13.2 22 

Maximum: 12 16 0 00 

Basis Basis 
variable variable 

1 2 
\ 

Worst- 
violated 
variable 

We can see now that the variable with the worst violation is x4 and 
that x4 is below its minimum. Thus, we must use selection procedure P1 as 
follows: 

Using selection procedure P1 on constraint 2: 

c 1  - i = 1 a ,  < O x, = x?'" c1 > 0 then - - 
-a1 -(-2.4) 

1 
= 0.4 166 

i = 3 a ,  < 0 x, = xl;lin = x Y x  c 3  < 0 then x3 is not eligible 

Pivot at column 1, row 2 

After pivoting, this results in: 
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Constraint 1: 

Constraint 2: x1 

cost: 

Minimum: 2 

Present value: 7.5 

Maximum: 12 

Basis 
variable 

1 

x 2  + 0 . 5 8 3 3 ~ ~  + 0 . 4 1 6 6 ~ ~  = 12.5 

+ 0.4166~3 - 0.4166~4 = 7.5 

- 1.4166~3 + 0.4166~4 - Z = -27.5 

2 0 0 

12.5 0 0 -27.5 

16 0 co 

Basis 
variable 

2 

At this point, we have no violations among the basis variables, so the 
algorithm can stop at the optimum. 

x1 = 7'5) cost = 27.5 
x 2  = 12.5 

See Figure 6.1 1 to verify that this is the optimum. The dots in Figure 6.1 1 
show the solution points beginning at the starting point x1 = 2, x2 = 2, 
cost = 6.0, then going to x1 = 2, x2 = 18, cost = 22.0, and finally to the 
optimum x1 = 7.5, x2 = 12.5, cost = 27.5. 

How does this algorithm work? At each step, two decisions are made. 

1 .  Select the most-violated variable. 
2. Select a variable to enter the basis. 

The first decision will allow the procedure to eliminate, one after the other, 
those constraint violations that exist at the start, as well as those that 
happen during the variable-exchange steps. The second decision (using the 
column selection procedures) guarantees that the rate of increase in cost, 
to move the violated variable to its limit, is minimized. Thus, the algorithm 
starts from a minimum cost, infeasible solution (constraints violated), toward 
a minimum cost, feasible solution, by minimizing the rate of cost increase at 
each step. 
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PROBLEMS 

6.1 Three units are on-line all 720 h of a 30-day month. Their characteristics 
are as follows: 

H I  = 225 + 8.47P1 + O.O025P:, 50 5 PI I 350 

H ,  = 729 + 6.20P2 + O.O081P:, 50 5 Pz I 350 

H ,  = 400 + 7.20p3 + O.O025P:, 50 S P3 I 4 5 0  

In these equations, the Hi are in MBtu/h and the pi are in MW. 
Fuel costs for units 2 and 3 are 0.60 P/MBtu. Unit 1, however, is 

operated under a take-or-pay fuel contract where 60,000 tons of coal are 
to be burned and/or paid for in each 30-day period. This coal costs 
12 p/ton delivered and has an average heat content of 12,500 Btu/lb 
( 1  ton = 2000 lb). 

The system monthly load-duration curve may be approximated by three 
steps as follows. 

Load 
(MW) 

800 50 40000 
500 550 275000 
300 120 36000 
Total 120 351000 

Compute the economic schedule for the month assuming all three units 
are on-line all the time and that the coal must be consumed. Show the 
MW loading for each load period, the MWh of each unit, and the value 
of gamma (the pseudo-fuel cost). 
What would be the schedule if unit 1 was burning the coal at 12 p/ton 
with no constraint to use 60,000 tons? Assume the coal may be 
purchased on the spot market for that price and compute all the data 
asked for in part a. In addition, calculate the amount of coal required 
for the unit. 

6.2 Refer to Example 6A, where three generating units are combined into a 
single composite generating unit. Repeat the example, except develop an 
equivalent incremental cost characteristic using only the incremental 
characteristics of the three units. Using this composite incremental 
characteristic plus the zero-load intercept costs of the three units, develop 
the total cost characteristic of the composite. (Suggestion: Fit the composite 
incremental cost data points using a linear approximation and a least- 
squares fitting algorithm.) 



PROBLEMS 205 

6.3 Refer to Problem 3.8, where three generator units have input-output 
curves specified as a series of straight-line segments. Can you develop a 
composite input-output curve for the three units? Assume all three units 
are on-line and that the composite input-output curve has as many linear 
segments as needed. 

6.4 Refer to Example 6E. The first problem solved in Example 6E left the 
end-point restrictions at zero to 200,000 tons for both coal piles at the 
end of the 3-wk period. Resolve the first problem [Vl(l)  = 70,000 and 
V2(1) = 70,0001 with the added restriction that the final volume of coal at 
plant 2 at the end of the third week be at least 20,000 tons. 

6.5 Refer to Example 6E. In the second case solved with the LP algorithm 
(starting volumes equal to 70,000 and 50,000 for plant 1 and plant 2, 
respectively), we restricted the final volume of the coal pile at plant 2 to 
be 8000 tons. What is the optimum schedule if this final volume restriction 
is relaxed (i.e., the final coal pile at plant 2 could go to zero)? 

6.6 Using the linear programming problem in the text shown in Example 6E, 
run a linear program to find the following: 

1. The coal unloading machinery at plant 2 is going to be taken out 
for maintenance for one week. During the maintenance work, no 
coal can be delivered to plant 2. The plant management would like 
to know if this should be done in week 2 or week 3. The decision 
will be based on the overall three-week total cost for running both 
plants. 

2. Could the maintenance be done in week l? If not, why not? 

Use as initial conditions those found in the beginning of the sample 
LP executions found in the text; i.e., K(1) = 70,000 and V2(2) = 70,000. 

6.7 The “Cut and Shred Paper Company” of northern Minnesota has two 
power plants. One burns coal and the other burns natural gas supplied 
by the Texas Gas Company from a pipeline. The paper company has 
ample supplies of coal from a mine in North Dakota and it purchases gas 
as take-or-pay contracts for fixed periods of time. For the 8-h time period 
shown below, the paper company must burn 15 .  lo6 ft3 of gas. 

The fuel costs to the paper company are 

Coal: 0.60 $/MBtu 

Gas: 2.0 $/ccf (where 1 ccf = 1000 ft3) 
the gas is rated at 1100 Btu/ft3 
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Input-output characteristics of generators: 

Unit 1 (coal unit): H,(P,) = 200 + 8 S P 1  + 0.002P: MBtu/h 

50 < PI < 500 

H2(P2)  = 300 + 6.0P2 + 0.0025Pi MBtu/h 

50 < P2 < 400 

Unit 2 (gas unit): 

Load (both load periods are 4 h long): 

Period Load (MW) 

1 
2 

400 
650 

Assume both units are on-line for the entire 8 h. 

plants, over the 8 h, which meets the gas consumption requirements. 
Find the most economic operation of the paper company power 

6.8 Repeat the example in the Appendix, replacing the x1 + x2 = 20 constraint 
with: 

XI + x2 < 20 

Redraw Figure 6.1 1 and show the admissible, convex region. 

6.9 An oil-fired power plant (Figure 6.12) has the following fuel consumption 
curve. 

50 + P + 0.005P2 for 100 I P I 500 MW 
for P = 0 

q(bbl/h) = 

The plant is connected to an oil storage tank with a maximum capacity 
of 4000 bbl. The tank has an initial volume of oil of 3000 bbl. In addition, 
there is a pipeline supplying oil to the plant. The pipeline terminates in 
the same storage tank and must be operated by contract at  500 bbl/h. 
The oil-fired power plant supplies energy into a system, along with other 
units. The other units have an equivalent cost curve of 

Feq = 300 + 6Peq + 0.0025Pzq 

50 I Peq I 700 MW 
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Electrical 
-Oil e-fl Storage - output P(MW) 

Pipeline 
Power Plant 

FIG. 6.12 Oil-fired power plant with storage tank for Problem 6.9. 

The load to be supplied is given as follows: 

Period Load (MW) 

1 
2 
3 

400 
900 
700 

Each time period is 2 h in length. Find the oil-fired plant’s schedule using 
dynamic programming, such that the operating cost on the equivalent 
plant is minimized and the final volume in the storage tank is 2000 bbl at 
the end of the third period. When solving, you may use 2000, 3000, and 
4000 bbl as the storage volume states for the tank. The q versus P function 
values you will need are included in the following table. 

0 
200 
250 
500 
7 50 

1000 
1250 
1500 
1800 

0 
100.0 
123.6 
216.2 
287.3 
341.2 
400.0 
447.7 
500.0 

The plant may be shut down for any of the 2-h periods with no start-up 
or shut-down costs. 

FURTHER READING 

Therc has not been a great deal of research work on fuel scheduling as specifically 
applied to power systems. However, the fuel-scheduling problem for power systems is 
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not really that much different from other “scheduling” problems, and, for this type of 
problem, a great deal of literature exists. 

References 1-4 are representative of efforts in applying scheduling techniques to the 
power system fuel-scheduling problem. References 5-8 are textbooks on linear program- 
ming that the authors have used. There are many more texts that cover L P  and its 
variations. The reader is encouraged to study L P  independently of this text if a great 
deal of use is to be made of LP. Many computing equipment and independent software 
companies have excellent L P  codes that can be used, rather than writing one’s own 
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